1.1 [bookmark: _Ref384895442][bookmark: _Ref384959982][bookmark: _Toc385057892][bookmark: _Toc405794711][bookmark: _Toc72656101][bookmark: _Toc235002319][bookmark: _Toc370634024][bookmark: _Toc391468815][bookmark: _Toc395183811][bookmark: _Toc7432333][bookmark: _Toc29976603]Conventions for functions returning output in a variable-length buffer
A number of the functions defined in Cryptoki return output produced by some cryptographic mechanism. The amount of output returned by these functions is returned in a variable-length application-supplied buffer. An example of a function of this sort is C_Encrypt, which takes some plaintext as an argument, and outputs a buffer full of ciphertext.
These functions have some common calling conventions, which we describe here. Two of the arguments to the function are a pointer to the output buffer (say pBuf) and a pointer to a location which will hold the length of the output produced (say pulBufLen). There are two ways for an application to call such a function:
1. If pBuf is NULL_PTR, then all that the function does is return (in *pulBufLen) a number of bytes which would suffice to hold the cryptographic output produced from the input to the function. This number may somewhat exceed the precise number of bytes needed, but should not exceed it by a large amount. CKR_OK is returned by the function.
2. [bookmark: _GoBack]If pBuf is not NULL_PTR, then *pulBufLen MUST contain the size in bytes of the buffer pointed to by pBuf. If that buffer is large enough to hold the cryptographic output produced from the input to the function, then that cryptographic output is placed there, and CKR_OK is returned by the function and *pulBufLen is set to the exact number of bytes returned. If the buffer is not large enough, then CKR_BUFFER_TOO_SMALL is returned. In either case, and *pulBufLen is set to hold at least the the exact number of bytes needed to hold the cryptographic output produced from the input to the function.
NOTE: This is a change from previous specs. The problem is that in some decrypt cases, the token doesn’t know how big a buffer is needed until the decrypt completes. The act of doing decrypt can alter the internal encryption state. Many tokens already implement this relaxed behavior, tokens which implement the more precise behavior are still compliant. The one corner case is applications using a token that knows exactly how big the decryption is (through some out of band means), could get CKR_BUFFER_TOO_SMALL returned when it supplied a buffer exactly big enough to hold the decrypted value when it may previously have succeeded.
All functions which use the above convention will explicitly say so.
Cryptographic functions which return output in a variable-length buffer should always return as much output as can be computed from what has been passed in to them thus far. As an example, consider a session which is performing a multiple-part decryption operation with DES in cipher-block chaining mode with PKCS padding. Suppose that, initially, 8 bytes of ciphertext are passed to the C_DecryptUpdate function. The block size of DES is 8 bytes, but the PKCS padding makes it unclear at this stage whether the ciphertext was produced from encrypting a 0-byte string, or from encrypting some string of length at least 8 bytes. Hence the call to C_DecryptUpdate should return 0 bytes of plaintext. If a single additional byte of ciphertext is supplied by a subsequent call to C_DecryptUpdate, then that call should return 8 bytes of plaintext (one full DES block).
