1 [bookmark: _Toc29976548][bookmark: _Toc7432278][bookmark: _Toc395183766][bookmark: _Toc391468770][bookmark: _Toc370633979][bookmark: _Toc235002275][bookmark: _Toc72656060][bookmark: _Ref457115175]Objects
[bookmark: _MON_989062413][bookmark: _MON_989062356][bookmark: _MON_989062305][bookmark: _MON_1146405105][bookmark: _MON_1136726965][bookmark: _MON_1136706112][bookmark: _MON_1136381218][bookmark: _MON_1136381083][bookmark: _MON_1136380883][bookmark: _MON_1098112092][bookmark: _MON_1098111966][bookmark: _MON_1046547267][bookmark: _MON_1042483206][bookmark: _MON_1007879754][bookmark: _MON_993993638][bookmark: _MON_993986834][bookmark: _MON_993986167]Cryptoki recognizes a number of classes of objects, as defined in the CK_OBJECT_CLASS data type. An object consists of a set of attributes, each of which has a given value. Each attribute that an object possesses has precisely one value. The following figure illustrates the high-level hierarchy of the Cryptoki objects and some of the attributes they support:

<In the above table, trust objects are a subclass of Storage>

Insert after 4.6 Certificate objects:
1.1 [bookmark: _Toc29976571]Trust objects
1.1.1 [bookmark: _Toc72656074][bookmark: _Toc235002292][bookmark: _Toc370633996][bookmark: _Toc391468787][bookmark: _Toc395183783][bookmark: _Toc7432302][bookmark: _Toc29976572]Definitions
This section defines the object class CKO_TRUST for type CK_OBJECT_CLASS as used in the CKA_CLASS attribute of objects.

CK_TRUST is defined as:
typedef CK_ULONG CK_TRUST

and can have the following values: CKT_TRUSTED, CKT_TRUSTED_DELEGATOR, CKT_NOT_TRUSTED, CKT_TRUST_MUST_VERIFY_TRUST, or CKT_TRUST_UNKNOWN.
1.1.2 [bookmark: _Toc72656075][bookmark: _Toc235002293][bookmark: _Toc370633997][bookmark: _Toc391468788][bookmark: _Toc395183784][bookmark: _Toc7432303][bookmark: _Toc29976573]Overview
Trust objects (object class CKO_TRUST) bind trusted usages to individual certificates. Trust objects for a given certificate are accessed with the CKA_ISSUER and CKA_SERIAL_NUMBER. The corresponding certificate does not necessarily have to exist in the same token as it’s trust object. Multiple trust objects for the same certificate can exist in different tokens, but each token should have only one trust object for a given certificate. 	Comment by Michael Markowitz: What if issuer and serial number are empty… can hash be used? There should be some statement about minimal set of non-empty attributes for use to make sense	Comment by Michael Markowitz:
[bookmark: _Ref383948332][bookmark: _Toc383864515][bookmark: _Toc405794978][bookmark: _Toc225305955]Table 1, Common Certificate Trust Object Attributes
	Attribute
	Data type
	Meaning

	CKA_ISSUER1
	Byte Array
	DER-encoding of the attribute certificate's issuer field. This is distinct from the CKA_ISSUER attribute contained in CKC_X_509 certificates because the ASN.1 syntax and encoding are different. (default empty)

	CKA_SERIAL_NUMBER1
	Byte Array
	DER-encoding of the certificate serial number. (default empty)

	CKA_HASH_OF_CERTIFICATE2
	Byte array
	SHA-1 hash of the certificate (default empty). Hash algorithm is defined by CKA_NAME_HASH_ALGORITHM

	CKA_NAME_HASH_ALGORITHM2
	CK_MECHANISM_TYPE
	Defines the mechanism used to calculate CKA_HASH_OF_SUBJECT_PUBLIC_KEY and CKA_HASH_OF_ISSUER_PUBLIC_KEY. If the attribute is not present then the type defaults to SHA-1.

	CKA_TRUST_SERVER_AUTH3
	CK_TRUST
	Trusted for authenticating a server in a client/server module (example TLS/SSL/SSH)

	CKA_TRUST_CLIENT_AUTH3
	CK_TRUST
	Trusted for authenticating a client in a client/server module (example TLS/SSL/SSH)

	CKA_TRUST_CODE_SIGNING3
	CK_TRUST
	Trusted for authenticating a code fragment

	CKA_TRUST_EMAIL_PROTECTION3
	CK_TRUST
	Trusted for authenticating an email user.

	CKA_TRUST_IPSEC_IKE3
	CK_TRUST
	Trusted for IPSEC

	CKA_TRUST_TIME_STAMPING3
	CK_TRUST
	Trusted for Timestamping

	CKA_TRUST_OCSP_SIGNING3
	CK_TRUST
	Trusted for OCSP Signing

1MUST be specified when the object is created.
2MUST be specified when the object is created unless all trust attributes are CKT_TRUST_UNKNOWN, or CKT_NOT_TRUSTED.
3 Missing CKA_TRUST_XXX attributes are treated as CKT_TRUST_UNKNOWN.

CKA_TRUST_XXX attributes map roughly to Certificate EKU values, and carry the same semantics. If CKA_MODIFIABLE is not set in the template, the it defaults to CK_TRUE, if CKA_PRIVATE is not set in the template, it defaults to CK_FALSE.

 To obtain the effective trust attributes for a given certificate, a typical aApplications will:
1. identify the tokens containing a [matching] trust object (with matching CKA_HASH_OF_CERTIFICATE ???),
2. determine which of those tokens should be processed (presumably according to an established security policy), and
3. arrange those tokens in a list sorted in order of increasing choose which tokens can supply trust objects, and what priority those trust objects are processed.

An initial working set of attributes is obtained from the matching Trust object in the first (lowest priority) token in the list. Applications process Trust objects starting with the object from the lowest priority token. The matching Trust objects of successive tokens are then iteratively merged into the working set as follows: The given certificate must match the CKA_HASH_OF_CERTIFICATE if CKA_TRUSTED, CKA_TRUSTED_DELEGATOR, or CKA_TRUST_MUST_VERIFY is to be accepted for any trust attribute. The next token in priority is checked (including the hash if necessary). If the trust object exists, it is merged with the first trust object as follows.

· iIf the value of athe trust attribute value of in the new current object is CKT_TRUST_UNKNOWN, the value of the corresponding trust attribute is left unchangedvalue of the original trust object becomes the trust attribute value of the merged trust object.,
· oOtherwise the value of that trust attribute is replaced by the value in the current objectof the new object becomes the trust attribute value of the merged trust object.

The merged trust object becomes the original trust object and the next token in priority is processed. The final effective set of final trust object attribute values are to be interpreted as can then be used when evaluating a certificate. The meaning of the final attributes are as follows:

	CKT_TRUSTED
	the certificate is trusted for the operation associated with the trust attribute

	CKT_TRUSTED_DELEGATOR
	the certificate is trusted as a root signing certificate for chain validation of a cert that is trusted for the operation associated with the trust attribute; this applies even if the certificate is not self-signed, or if the certificate does not have the proper attributes to be CA certificate

	CKT_NOT_TRUSTED
	t certificate is explicitly not trusted for the operation associated with the trust attribute, noher can trust chain through the certificate to an otherwise trusted root; this attribute can be used to ‘revoke’ intermediate CA certificates that have been compromised without removing trust from the parent certificate

	CKT_TRUST_MUST_VERIFY_TRUST
	the certificate is treated as having no trust attributes; this is like CKT_TRUST_UNKNOWN, except a higher priority token can use this attribute to remove trust or distrust from a certificate set by a lower priority token

	CKT_TRUST_UNKNOWN
	The certificate is neither trusted nor untrusted; this is the default if no trust attributes are attached to the certificate.

CKT_TRUSTED – the certificate is trusted for the particular operation associated with the trust attribute directly.
CKT_TRUSTED_DELEGATOR –
CKT_NOT_TRUSTED:
CK_TRUST_MUST_VERIFY_TRUST:
CKT_TRUST_UNKNOWN:.

In the final set, CKT_TRUST_MUST_VERIFY_TRUST and CKT_TRUST_UNKNOWN have the same effect.

Note that when When processing a certificate chain, aApplications may use the various Trust objects to override trust attribute values that would otherwise be associated with each certificate based solely on the EKUs or and other extensions found encountered in along the chain certs. Trust objects override the extension values of the direct certificate associated with the trust object.

The following is a sample template for creating an X.509 certificate object:
CK_OBJECT_CLASS class = CKO_CERTIFICATE;
CK_UTF8CHAR label[] = “A certificate object”;
CK_BYTE issuer[] = {...}; // matches certificate’s issuer
CK_BYTE serialNumber[] = {...}; // matches certificate’s serialNumber
CK_BYTE certificate[] = {...};
CK_BBOOL true = CK_TRUE;
CK_TRUST trustedDelegator = CKT_TRUSTED_DELEGATOR;
CK_TRUST notTrusted = CKT_NOT_TRUSTED;
CK_MECHANISM_TYPE hashMec = CKM_SHA265
CK_ATTRIBUTE template[] = {
 {CKA_CLASS, &class, sizeof(class)},
 {CKA_TOKEN, &true, sizeof(true)},
 {CKA_LABEL, label, sizeof(label)-1},
 {CKA_ISSUER, issuer, sizeof(issuer)},
 {CKA_SERIAL_NUBMER, serialNumber, sizeof(serialNumber)},
 {CKA_HASH_OF_CERTIIFICATE, hash(hashnec,certificate, sizeof(certificate),hashLen(hashMec)},
 {CKA_NAME_HASH_ALGORITHM, &hashMech, sizeof(hashMech)},
 {CKA_TRUST_SERVER_AUTH, &trustedDelegator, sizeof(trustedDelegator) },
 {CKA_TRUST_OBJECT_SIGNING, ¬Trusted, sizeof(notTrusted) }
 // other attributes are CKT_TRUST_UNKNOWN if not included here.
};
1.1.3 [bookmark: _Toc29976575][bookmark: _Toc7432305][bookmark: _Toc395183786][bookmark: _Toc391468790][bookmark: _Toc370633999][bookmark: _Toc235002295][bookmark: _Toc72656077]WTLS public key certificate objects

NOTES: not part off the spec.
1. NSS currently has Vendor specific defines for CKO_TRUST, CKA_TRUST_XXX and CKT_TRUST_XXX.
2. NSS has defines for CKA_TRUST_IPSEC_END_SYSTEM, CKA_TRUST_IPSEC_USER, CKA_TRUST_IPSEC_TUNNEL. These EKU’s are marked deprecated in the RFC’s and NSS never stored or red them.
3. NSS has defines for CKA_TRUST_TIME_STAMPING, but hasn’t used them (will in the future).
4. NSS does not have a define for CKA_TRUST_OCSP_SIGNING.
5. NSS has a define for CKA_TRUST_STEP_UP_APPROVED which is an obsolute trust value which says the CA can issue certificates that would connect using strong crypto for clients that can only do weak crypto. I’ve dropped it from this proposal since this no longer applies in the real world.
6. NSS has defined CKA_CERT_SHA1_HASH and CKA_CERT_MD5_HASH. I’ve replaced those in this proposal with a single hash and a hash mechanism models after the subject public key hash attribute.
7. NSS only accepts trust objects that don’t match the hash mechanism if the trust object has CKT_TRUST_UNKNOWN or CKT_NOT_TRUSTED for all trust attributes NSS processes.
8. NSS uses trust priority to override fixed builtin sources of trust which are not modifiable (read only tokens) with it’s database. This allows the fixed builtin sources to be changed on software update without perturbing the user’s own configuration.
9. On RHEL, ca-certificates export the NSS private trust objects using pk11-kit, which replaces the normal nss buildins module (libckbi.so). Ca-certificates uses pk11-kit to also build certlists consumable by openssl and other applications that don’t use trust objects.

image1.wmf

Object

Class

Storage

Token

Private

Label

Modifiable

Hardware feature

Feature type

Mechanism

Mechanism type

Data

Application

Object Identifier

Value

Certificate

Key

Domain

parameters

Mechanism type

Profile

Profile ID

oleObject1.bin

Profile

Profile ID

Mechanism

Mechanism type

Domain parameters

Mechanism type

Key

Certificate

Storage

Token

Private

Label

Modifiable

Hardware feature

Feature type

Object

Class

Data

Application

Object Identifier

Value

