

1.1 FUNCTIONS

Key C_GenerateKey generates a secret key

management C_GenerateKeyPair generates a public-key/private-key pair

functions C_WrapKey wraps (encrypts) a key

 C_UnwrapKey unwraps (decrypts) a key

C_WrapKeyAuthenticated Authenticated key Wrapping (encrypt) a key

C_UnWrapKeyAuthenticated Authenticated key unwrapping (decrypt) a
key

C_DeriveKey derives a key from a base key

4

1.2 (5.18) Key management functions

1.2.1 C_WrapKeyAuthenticated

CK_DECLARE_FUNCTION(CK_RV, C_WrapKeyAuthenticated)(

 CK_SESSION_HANDLE hSession,

 CK_MECHANISM_PTR pMechanism,

 CK_OBJECT_HANDLE hWrappingKey,

 CK_OBJECT_HANDLE hKey,

 CK_VOID_PTR pParameter,

 CK_ULONG ulParameterLen,

 CK_BYTE_PTR pAssociatedData,

 CK_ULONG ulAssociatedDataLen,

 CK_BYTE_PTR pWrappedKey,

 CK_ULONG_PTR pulWrappedKeyLen

);

C_WrapMessageKey wraps (i.e., encrypts) a private or secret key. hSession is the session’s handle;
pMechanism points to the wrapping mechanism; hWrappingKey is the handle of the wrapping key; hKey
is the handle of the key to be wrapped; pParameter and ulParameterLen specify any mechanism-specific
parameters for the message wrap operation; pAssociatedData and ulAssociatedDataLen specify the
associated data for an AEAD mechanism; pWrappedKey points to the location that receives the wrapped
key; and pulWrappedKeyLen points to the location that receives the length of the wrapped key.

C_WrapKeyAuthenticated uses the convention described in Section on producing output.

The CKA_WRAP attribute of the wrapping key, which indicates whether the key supports wrapping,
MUST be CK_TRUE. The CKA_EXTRACTABLE attribute of the key to be wrapped MUST also be
CK_TRUE.

If the key to be wrapped cannot be wrapped for some token-specific reason, despite its having its
CKA_EXTRACTABLE attribute set to CK_TRUE, then C_WrapKeAuthenticated fails with error code
CKR_KEY_NOT_WRAPPABLE. If it cannot be wrapped with the specified wrapping key and mechanism
solely because of its length, then C_WrapKeyAuthenticated fails with error code
CKR_KEY_SIZE_RANGE.

C_WrapKeyAuthenticated can be used in the following situations:

• To wrap any secret key with a public key that supports encryption and decryption.

• To wrap any secret key with any other secret key. Consideration MUST be given to key size and
mechanism strength or the token may not allow the operation.

• To wrap a private key with any secret key.

Of course, tokens vary in which types of keys can actually be wrapped with which mechanisms.

To partition the wrapping keys so they can only wrap a subset of extractable keys the attribute
CKA_WRAP_TEMPLATE can be used on the wrapping key to specify an attribute set that will be
compared against the attributes of the key to be wrapped. If all attributes match according to the
C_FindObject rules of attribute matching then the wrap will proceed. The value of this attribute is an
attribute template, and the size is the number of items in the template times the size of CK_ATTRIBUTE.
If this attribute is not supplied, then any template is acceptable. If an attribute is not present, it will not be
checked. If any attribute mismatch occurs on an attempt to wrap a keykey, then the function SHALL
return CKR_KEY_HANDLE_INVALID.

Return Values: CKR_ARGUMENTS_BAD, CKR_BUFFER_TOO_SMALL,
CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED,
CKR_GENERAL_ERROR, CKR_HOST_MEMORY, CKR_KEY_HANDLE_INVALID,
CKR_KEY_NOT_WRAPPABLE, CKR_KEY_SIZE_RANGE, CKR_KEY_UNEXTRACTABLE,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,

DBO
Cross-Out

DBO
Inserted Text
C_WrapKeyAuthenticated

CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN,
CKR_WRAPPING_KEY_HANDLE_INVALID, CKR_WRAPPING_KEY_SIZE_RANGE,
CKR_WRAPPING_KEY_TYPE_INCONSISTENT.

Example:

#define AUTH_BUF_SZ 100

CK_BYTE auth[2][AUTH_BUF_SZ];

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hWrappingKey, hKey;

CK_BYTE iv[12];

CK_BYTE tag[16];

CK_GCM_MESSAGE_PARAMS gcmParams = {

 iv,

 sizeof(iv) * 8,

 96,

 CKG_GENERATE,

 tag,

 sizeof(tag) * 8

};

CK_MECHANISM mechanism = {

 CKM_AES_GCM, &gcmParams, sizeof(gcmParams)

};

CK_BYTE wrappedKey[32]; /* only the wrapped key returned*/

CK_ULONG ulWrappedKeyLen;

CK_RV rv;

.

.

.

ulWrappedKeyLen = sizeof(wrappedKey);

rv = C_WrapMessageKey(

 hSession, &mechanism,

 hWrappingKey, hKey,

 gcmParams, sizeof(gcmParams),

 &auth[0][0], sizeof(auth[0]),

 wrappedKey, &ulWrappedKeyLen);

if (rv == CKR_OK) {

 .

 .

}

1.2.2 C_UnwrapKeyAuthenticated

CK_DECLARE_FUNCTION(CK_RV, C_UnwrapMessageKey)(

 CK_SESSION_HANDLE hSession,

 CK_MECHANISM_PTR pMechanism,

 CK_OBJECT_HANDLE hUnwrappingKey,

 CK_BYTE_PTR pWrappedKey,

 CK_ULONG ulWrappedKeyLen,

 CK_ATTRIBUTE_PTR pTemplate,

 CK_ULONG ulAttributeCount,

 CK_VOID_PTR pParameter,

 CK_ULONG ulParameterLen,

 CK_BYTE_PTR pAssociatedData,

 CK_ULONG ulAssociatedDataLen

 CK_OBJECT_HANDLE_PTR phKey

);

C_UnwrapKeyAuthenticated unwraps (i.e. decrypts) a wrapped key, creating a new private key or
secret key object. hSession is the session’s handle; pMechanism points to the unwrapping mechanism;
hUnwrappingKey is the handle of the unwrapping key; pWrappedKey points to the wrapped key;
ulWrappedKeyLen is the length of the wrapped key; pTemplate points to the template for the new key;
ulAttributeCount is the number of attributes in the template; pParameter and ulParameterLen specify any
mechanism-specific parameters for the message unwrap
operation; pAssociatedData and ulAssociatedDataLen specify the associated data for an AEAD
mechanism; phKey points to the location that receives the handle of the recovered key.

The CKA_UNWRAP attribute of the unwrapping key, which indicates whether the key supports
unwrapping, MUST be CK_TRUE.

The new key will have the CKA_ALWAYS_SENSITIVE attribute set to CK_FALSE, and the
CKA_NEVER_EXTRACTABLE attribute set to CK_FALSE. The CKA_EXTRACTABLE attribute is by
default set to CK_TRUE.

Some mechanisms may modify, or attempt to modify. the contents of the pMechanism structure at the
same time that the key is unwrapped.

If a call to C_UnwrapKeyAuthenticated cannot support the precise template supplied to it, it will fail and
return without creating any key object.

The key object created by a successful call to C_UnwrapKeyAuthenticted will have its CKA_LOCAL
attribute set to CK_FALSE. In addition, the object created will have a value for CKA_UNIQUE_ID
generated and assigned (See Section Error! Reference source not found.).

To partition the unwrapping keys so they can only unwrap a subset of keys the attribute
CKA_UNWRAP_TEMPLATE can be used on the unwrapping key to specify an attribute set that will be
added to attributes of the key to be unwrapped. If the attributes do not conflict with the user supplied
attribute template, in ‘pTemplate’, then the unwrap will proceed. The value of this attribute is an attribute
template and the size is the number of items in the template times the size of CK_ATTRIBUTE. If this
attribute is not present on the unwrapping key then no additional attributes will be added. If any attribute
conflict occurs on an attempt to unwrap a key then the function SHALL return
CKR_TEMPLATE_INCONSISTENT.

Return values: CKR_ARGUMENTS_BAD, CKR_ATTRIBUTE_READ_ONLY,
CKR_ATTRIBUTE_TYPE_INVALID, CKR_ATTRIBUTE_VALUE_INVALID,
CKR_BUFFER_TOO_SMALL, CKR_CRYPTOKI_NOT_INITIALIZED,
CKR_CURVE_NOT_SUPPORTED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY,
CKR_DEVICE_REMOVED, CKR_DOMAIN_PARAMS_INVALID, CKR_FUNCTION_CANCELED,
CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION_HANDLE_INVALID, CKR_SESSION_READ_ONLY, CKR_TEMPLATE_INCOMPLETE,
CKR_TEMPLATE_INCONSISTENT, CKR_TOKEN_WRITE_PROTECTED,
CKR_UNWRAPPING_KEY_HANDLE_INVALID, CKR_UNWRAPPING_KEY_SIZE_RANGE,
CKR_UNWRAPPING_KEY_TYPE_INCONSISTENT, CKR_USER_NOT_LOGGED_IN,
CKR_WRAPPED_KEY_INVALID, CKR_WRAPPED_KEY_LEN_RANGE.

DBO
Cross-Out

DBO
Inserted Text
key

DBO
Cross-Out

DBO
Inserted Text
unwrapped

DBO
Cross-Out

DBO
Inserted Text
C_WrapKeyAuthenticated

DBO
Highlight

Example:

#define AUTH_BUF_SZ 100

CK_BYTE auth[2][AUTH_BUF_SZ];

CK_SESSION_HANDLE hSession;

CK_OBJECT_HANDLE hUnwrappingKey, hKey;

CK_MECHANISM mechanism = {

 CKM_AES_GCM, NULL_PTR, 0

};

CK_BYTE wrappedKey[32] = {...};

CK_OBJECT_CLASS keyClass = CKO_SECRET_KEY;

CK_KEY_TYPE keyType = CKK_AES;

CK_BBOOL true = CK_TRUE;

CK_ATTRIBUTE template[] = {

 {CKA_CLASS, &keyClass, sizeof1(keyClass)},

 {CKA_KEY_TYPE, &keyType, sizeof(keyType)},

 {CKA_ENCRYPT, &true, sizeof(true)},

 {CKA_DECRYPT, &true, sizeof(true)}

};

CK_RV rv;

CK_BYTE iv[] = {1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; /*value from wrap

CKG_GENERATE */

CK_BYTE tag[16];

CK_GCM_MESSAGE_PARAMS gcmParams = {

 iv,

 sizeof(iv) * 8,

 0, /* ignored */

 CKG_NO_GENERATE, /* ignored */

 tag, /* Tag returned from Wrap */

 sizeof(tag) * 8

};

.

.

rv = C_UnwrapKeyAuthenticated(

 hSession, &mechanism, hUnwrappingKey,

 gcmParams, sizeof(gcmParams),

 &auth[0][0], sizeof(auth[0]),

 wrappedKey, sizeof(wrappedKey),

 template, 4, &hKey);

if (rv == CKR_OK) {

 .

 .

}

1.3 (6.13) Additional AES Mechanisms

Table 1, Additional AES Mechanisms vs. Functions

 Functions

Mechanism

Encrypt

&

Decrypt

Sign

&

Verify

SR

&

VR1

Digest

Gen.

Key/

Key

Pair

Wrap

&

Unwrap

Derive

CKM_AES_GCM ✓ ✓

CKM_AES_CCM ✓ ✓

CKM_AES_GMAC ✓

1.3.1 Definitions

Mechanisms:

CKM_AES_GCM

CKM_AES_CCM

CKM_AES_GMAC

Generator Functions:

 CKG_NO_GENERATE

 CKG_GENERATE

 CKG_GENERATE_COUNTER

 CKG_GENERATE_RANDOM

CKG_GENERATE_COUNTER_XOR

1.3.2 AES-GCM Authenticated Encryption / Decryption

Generic GCM mode is described in [GCM]. To set up for AES-GCM use the following process, where K
(key) and AAD (additional authenticated data) are as described in [GCM]. AES-GCM uses
CK_GCM_PARAMS for Encrypt, Decrypt and CK_GCM_MESSAGE_PARAMS for MessageEncrypt and
MessageDecrypt.

Encrypt:

• Set the IV length ulIvLen in the parameter block.

• Set the IV data pIv in the parameter block.

• Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

• Set the tag length ulTagBits in the parameter block.

• Call C_EncryptInit() for CKM_AES_GCM mechanism with parameters and key K.

• Call C_Encrypt(), or C_EncryptUpdate()*1 C_EncryptFinal(), for the plaintext obtaining ciphertext
and authentication tag output.

Decrypt:

1 “*” indicates 0 or more calls may be made as required

• Set the IV length ulIvLen in the parameter block.

• Set the IV data pIv in the parameter block.

• Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

• Set the tag length ulTagBits in the parameter block.

• Call C_DecryptInit() for CKM_AES_GCM mechanism with parameters and key K.

• Call C_Decrypt(), or C_DecryptUpdate()*1 C_DecryptFinal(), for the ciphertext, including the
appended tag, obtaining plaintext output. Note: since CKM_AES_GCM is an AEAD cipher, no data
should be returned until C_Decrypt() or C_DecryptFinal().

MessageEncrypt:

• Set the IV length ulIvLen in the parameter block.

• Set pIv to hold the IV data returned from C_EncryptMessage() and C_EncryptMessageBegin(). If
ulIvFixedBits is not zero, then the most significant bits of pIV contain the fixed IV. If ivGenerator is
set to CKG_NO_GENERATE, pIv is an input parameter with the full IV.

• Set the ulIvFixedBits and ivGenerator fields in the parameter block.

• Set the tag length ulTagBits in the parameter block.

• Set pTag to hold the tag data returned from C_EncryptMessage() or the final
C_EncryptMessageNext().

• Call C_MessageEncryptInit() for CKM_AES_GCM mechanism key K.

• Call C_EncryptMessage(), or C_EncryptMessageBegin() followed by C_EncryptMessageNext()*2.
The mechanism parameter is passed to all three of these functions.

• Call C_MessageEncryptFinal() to close the message decryption.

MessageDecrypt:

• Set the IV length ulIvLen in the parameter block.

• Set the IV data pIv in the parameter block.

• The ulIvFixedBits and ivGenerator fields are ignored.

• Set the tag length ulTagBits in the parameter block.

• Set the tag data pTag in the parameter block before C_DecryptMessage() or the final
C_DecryptMessageNext().

• Call C_MessageDecryptInit() for CKM_AES_GCM mechanism key K.

• Call C_DecryptMessage(), or C_DecryptMessageBegin followed by C_DecryptMessageNext()*3.
The mechanism parameter is passed to all three of these functions.

• Call C_MessageDecryptFinal() to close the message decryption.

In pIv the least significant bit of the initialization vector is the rightmost bit. ulIvLen is the length of the
initialization vector in bytes.

On MessageEncrypt, the meaning of ivGenerator is as follows: CKG_NO_GENERATE means the IV is
passed in on MessageEncrypt and no internal IV generation is done. CKG_GENERATE means that the
non-fixed portion of the IV is generated by the module internally. The generation method is not defined.

2 “*” indicates 0 or more calls may be made as required

3 “*” indicates 0 or more calls may be made as required

CKG_GENERATE_COUNTER means that the non-fixed portion of the IV is generated by the module
internally by use of an incrementing counter, the initial IV counter is zero.

CKG_GENERATE_COUNTER_XOR means that the non-fixed portion of the IV is xored with a counter.
The value of the non-fixed portion passed must not vary from call to call. Like
CKG_GENERATE_COUNTER, the counter starts at zero.

CKG_GENERATE_RANDOM means that the non-fixed portion of the IV is generated by the module
internally using a PRNG. In any case the entire IV, including the fixed portion, is returned in pIV.

Modules must implement CKG_GENERATE. Modules may also reject ulIvFixedBits values which are too
large. Zero is always an acceptable value for ulIvFixedBits.

In Encrypt and Decrypt the tag is appended to the cipher text and the least significant bit of the tag is the
rightmost bit and the tag bits are the rightmost ulTagBits bits. In MessageEncrypt the tag is returned in
the pTag field of CK_GCM_MESSAGE_PARAMS. In MesssageDecrypt the tag is provided by the pTag
field of CK_GCM_MESSAGE_PARAMS.

The key type for K must be compatible with CKM_AES_ECB and the
C_EncryptInit()/C_DecryptInit()/C_MessageEncryptInit()/C_MessageDecryptInit() calls shall behave, with
respect to K, as if they were called directly with CKM_AES_ECB, K and NULL parameters.

1.3.3 AES-GCM Authenticated Wrap / Unwrap

Generic GCM mode is described in [GCM]. To set up for AES-GCM use the following process, where wK
(wrapping key) and AAD (additional authenticated data) are as described in [GCM]. AES-GCM uses
CK_GCM_WRAP_PARAMS for WrapKey, UnWrapkey and CK_GCM_MESSAGE_PARAMS for
WrapMessageKey and UnWrapMessageKey.

Wrap:

• Set the IV length ulIvLen in the parameter block.

• Set pIv to hold the IV data returned from C_Wrapkey() . If ulIvFixedBits is not zero, then the most
significant bits of pIV contain the fixed IV. If ivGenerator is set to CKG_NO_GENERATE, pIv is an
input parameter with the full IV.

• Set the ulIvFixedBits and ivGenerator fields in the parameter block.

• Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

• Set the tag length ulTagBits in the parameter block.

• Call C_WrapKey() for CKM_AES_GCM mechanism with parameters and wrapping key wK and
key to be wrapped K, obtaining a wrapped key and authentication tag output.

UnWrap:

• Set the IV length ulIvLen in the parameter block.

• Set the IV data pIv in the parameter block..

• The ulIvFixedBits and ivGenerator fields are ignored.

• Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

• Set the tag length ulTagBits in the parameter block.

• Call C_UnWrapKey() for CKM_AES_GCM mechanism with parameters and wrapping key K and
wrapped key+ authenticated tag output from wrap,, template for the new key, obtaining a key
handle.

DBO
Cross-Out

DBO
Inserted Text
WrapKeyAuthenticated

DBO
Cross-Out

DBO
Inserted Text
UnwrapKeyAuthenticated

WrapKeyAuthenticated:

• Set the IV length ulIvLen in the parameter block.

• Set pIv to hold the IV data returned from C_Wrapkey() . If ulIvFixedBits is not zero, then the most
significant bits of pIV contain the fixed IV. If ivGenerator is set to CKG_NO_GENERATE, pIv is an
input parameter with the full IV.

• Set the ulIvFixedBits and ivGenerator fields in the parameter block.

• Set the tag length ulTagBits in the parameter block.

• Set pTag to hold the tag data returned from C_WrapKeyAuthenticated().

• Call C_WrapMessageKey() for CKM_AES_GCM mechanism wrapping key wK. wrapped key
mechanism, parameters and obtaining a wrapped key and authentication tag output in the
parameter block.

•

UnWrapKeyAuthenticated:

• Set the IV length ulIvLen in the parameter block.

• Set the IV data pIv in the parameter block.

• The ulIvFixedBits and ivGenerator fields are ignored.

• Set the tag length ulTagBits in the parameter block.

• Set the tag data pTag in the parameter block

• Call C_UnWrapKeyAuthenticated() for CKM_AES_GCM mechanism, wrapping key wK, Wrapped
key, parameter, template for the new key, obtaining a key handle.

In pIv the least significant bit of the initialization vector is the rightmost bit. ulIvLen is the length of the
initialization vector in bytes.

On WrapKeyAuthenticated, the meaning of ivGenerator is as follows: CKG_NO_GENERATE means the IV
is passed in on MessageEncrypt and no internal IV generation is done. CKG_GENERATE means that the
non-fixed portion of the IV is generated by the module internally. The generation method is not defined.

CKG_GENERATE_COUNTER means that the non-fixed portion of the IV is generated by the module
internally by use of an incrementing counter, the initial IV counter is zero.

CKG_GENERATE_COUNTER_XOR means that the non-fixed portion of the IV is xored with a counter.
The value of the non-fixed portion passed must not vary from call to call. Like
CKG_GENERATE_COUNTER, the counter starts at zero.

CKG_GENERATE_RANDOM means that the non-fixed portion of the IV is generated by the module
internally using a PRNG. In any case the entire IV, including the fixed portion, is returned in pIV.

Modules must implement CKG_GENERATE. Modules may also reject ulIvFixedBits values which are too
large. Zero is always an acceptable value for ulIvFixedBits.

In Encrypt and Decrypt the tag is appended to the cipher text and the least significant bit of the tag is the
rightmost bit and the tag bits are the rightmost ulTagBits bits. In MessageEncrypt the tag is returned in the
pTag field of CK_GCM_MESSAGE_PARAMS. In MesssageDecrypt the tag is provided by the pTag field
of CK_GCM_MESSAGE_PARAMS.

The key type for K must be compatible with CKM_AES_ECB and the
C_WrapKey()/C_UNWrapKey()/C_WrapMessageKey()/C_UnWrapMessageKey() calls shall behave, with
respect to K, as if they were called directly with CKM_AES_ECB, K and NULL parameters.

1.3.31.3.4 AES-CCM authenticated Encryption / Decryption

For IPsec (RFC 4309) and also for use in ZFS encryption. Generic CCM mode is described in [RFC
3610].

DBO
Cross-Out

DBO
Inserted Text
C_WrapKeyAuthenticated

DBO
Cross-Out

DBO
Inserted Text
C_WrapKeyAuthenticated

DBO
Cross-Out

DBO
Inserted Text
WrapKeyAuthenticated

DBO
Cross-Out

DBO
Inserted Text
WrapKey

DBO
Cross-Out

DBO
Inserted Text
UnwrapKey

DBO
Cross-Out

DBO
Inserted Text
wrapped key

DBO
Cross-Out

DBO
Inserted Text
WrapKeyAuthenticated

DBO
Cross-Out

DBO
Inserted Text
UnwrapKeyAuthenticated

To set up for AES-CCM use the following process, where K (key), nonce and additional authenticated
data are as described in [RFC 3610]. AES-CCM uses CK_CCM_PARAMS for Encrypt and Decrypt, and
CK_CCM_MESSAGE_PARAMS for MessageEncrypt and MessageDecrypt.

Encrypt:

• Set the message/data length ulDataLen in the parameter block.

• Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block.

• Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

• Set the MAC length ulMACLen in the parameter block.

• Call C_EncryptInit() for CKM_AES_CCM mechanism with parameters and key K.

• Call C_Encrypt(), C_EncryptUpdate(), or C_EncryptFinal(), for the plaintext obtaining the final
ciphertext output and the MAC. The total length of data processed must be ulDataLen. The output
length will be ulDataLen + ulMACLen.

Decrypt:

• Set the message/data length ulDataLen in the parameter block. This length must not include the
length of the MAC that is appended to the cipher text.

• Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block.

• Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

• Set the MAC length ulMACLen in the parameter block.

• Call C_DecryptInit() for CKM_AES_CCM mechanism with parameters and key K.

• Call C_Decrypt(), C_DecryptUpdate(), or C_DecryptFinal(), for the ciphertext, including the
appended MAC, obtaining plaintext output. The total length of data processed must be ulDataLen
+ ulMACLen. Note: since CKM_AES_CCM is an AEAD cipher, no data should be returned until
C_Decrypt() or C_DecryptFinal().

MessageEncrypt:

• Set the message/data length ulDataLen in the parameter block.

• Set the nonce length ulNonceLen.

• Set pNonce to hold the nonce data returned from C_EncryptMessage() and
C_EncryptMessageBegin(). If ulNonceFixedBits is not zero, then the most significant bits of pNonce
contain the fixed nonce. If nonceGenerator is set to CKG_NO_GENERATE, pNonce is an input
parameter with the full nonce.

• Set the ulNonceFixedBits and nonceGenerator fields in the parameter block.

• Set the MAC length ulMACLen in the parameter block.

• Set pMAC to hold the MAC data returned from C_EncryptMessage() or the final
C_EncryptMessageNext().

• Call C_MessageEncryptInit() for CKM_AES_CCM mechanism key K.

• Call C_EncryptMessage(), or C_EncryptMessageBegin() followed by C_EncryptMessageNext()*4..
The mechanism parameter is passed to all three functions.

• Call C_MessageEncryptFinal() to close the message encryption.

4 “*” indicates 0 or more calls may be made as required

• The MAC is returned in pMac of the CK_CCM_MESSAGE_PARAMS structure.

MessageDecrypt:

• Set the message/data length ulDataLen in the parameter block.

• Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block

• The ulNonceFixedBits and nonceGenerator fields in the parameter block are ignored.

• Set the MAC length ulMACLen in the parameter block.

• Set the MAC data pMAC in the parameter block before C_DecryptMessage() or the final
C_DecryptMessageNext().

• Call C_MessageDecryptInit() for CKM_AES_CCM mechanism key K.

• Call C_DecryptMessage(), or C_DecryptMessageBegin() followed by C_DecryptMessageNext()*5.
The mechanism parameter is passed to all three functions.

• Call C_MessageDecryptFinal() to close the message decryption.

In pNonce the least significant bit of the nonce is the rightmost bit. ulNonceLen is the length of the nonce
in bytes.

On MessageEncrypt, the meaning of nonceGenerator is as follows: CKG_NO_GENERATE means the
nonce is passed in on MessageEncrypt and no internal MAC generation is done. CKG_GENERATE
means that the non-fixed portion of the nonce is generated by the module internally. The generation
method is not defined.

CKG_GENERATE_COUNTER means that the non-fixed portion of the nonce is generated by the module
internally by use of an incrementing counter, the initial IV counter is zero.

CKG_GENERATE_COUNTER_XOR means that the non-fixed portion of the IV is xored with a counter.
The value of the non-fixed portion passed must not vary from call to call. Like
CKG_GENERATE_COUNTER, the counter starts at zero.

CKG_GENERATE_RANDOM means that the non-fixed portion of the nonce is generated by the module
internally using a PRNG. In any case the entire nonce, including the fixed portion, is returned in pNonce.

Modules must implement CKG_GENERATE. Modules may also reject ulNonceFixedBits values which are
too large. Zero is always an acceptable value for ulNonceFixedBits.

In Encrypt and Decrypt the MAC is appended to the cipher text and the least significant byte of the MAC
is the rightmost byte and the MAC bytes are the rightmost ulMACLen bytes. In MessageEncrypt the MAC
is returned in the pMAC field of CK_CCM_MESSAGE_PARAMS. In MesssageDecrypt the MAC is
provided by the pMAC field of CK_CCM_MESSAGE_PARAMS.

The key type for K must be compatible with CKM_AES_ECB and the
C_EncryptInit()/C_DecryptInit()/C_MessageEncryptInit()/C_MessageDecryptInit() calls shall behave, with
respect to K, as if they were called directly with CKM_AES_ECB, K and NULL parameters.

1.3.5 AES-CCM Authenticated Wrap / Unwrap

To set up for AES-CCM use the following process, where K (key), nonce and additional authenticated
data are as described in [RFC 3610]. AES-CCM uses CK_CCM_WAP_PARAMS for WrapKey and
UnWrapKey, and CK_CCM_MESSAGE_PARAMS for WrapKeyAuthenticated and
UnWrapKeyAuthenticated.

Wrap:

• Set the message/data length ulDataLen in the parameter block.

5 “*” indicates 0 or more calls may be made as required

DBO
Cross-Out

DBO
Inserted Text
CK_CCM_WRAP_PARAMS

• Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block.

• Set pNonce to hold the nonce data returned from C_WrapKey(). If ulNonceFixedBits is not zero,
then the most significant bits of pNonce contain the fixed nonce. If nonceGenerator is set to
CKG_NO_GENERATE, pNonce is an input parameter with the full nonce.

• Set the ulNonceFixedBits and nonceGenerator fields in the parameter block.

• Set the MAC length ulMACLen in the parameter block.

• Call C_WarpKey() for CKM_AES_CCM mechanism with parameters wrapping key wK, key to be
wrapped mK, obtaining the final Wrappedkey output and the MAC. The total length of data
processed must be ulDataLen. The output length will be ulDataLen + ulMACLen.

UnWrap:

• Set the message/data length ulDataLen to Zero in the parameter block.This returns a key handle.

• Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block.

• The ulNonceFixedBits and nonceGenerator fields in the parameter block are ignored.

• Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

• Set the MAC length ulMACLen in the parameter block.

• Call C_UnwrapKey() for CKM_AES_CCM mechanism with parameters, unwrapping key wK,
template, and wrapped key. Including the appended MAC, obtaining a obtaining a new key handle

WrapKeyAuthenticated:

• Set the message/data length ulDataLen in the parameter block.

• Set the nonce length ulNonceLen.

• Set pNonce to hold the nonce data returned from C_WrapKeyAuthenticated(). If ulNonceFixedBits
is not zero, then the most significant bits of pNonce contain the fixed nonce. If nonceGenerator is
set to CKG_NO_GENERATE, pNonce is an input parameter with the full nonce.

• Set the ulNonceFixedBits and nonceGenerator fields in the parameter block.

• Set the MAC length ulMACLen in the parameter block.

• Set pMAC to hold the MAC data returned from C_WrapkeyAuthenticated()

• Call C_WrapKeyAuthenticated() for CKM_AES_CCM mechanism wrapping key wK the key to be
wrapped mK, parameter block

• The MAC is returned in pMac of the CK_CCM_MESSAGE_PARAMS structure.

UnWrapKeyAuthenicated:

• Set the message/data length ulDataLen to Zero as a key handle will be returned.

• Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block

• The ulNonceFixedBits and nonceGenerator fields in the parameter block are ignored.

• Set the MAC length ulMACLen in the parameter block.

• Set the MAC data pMAC in the parameter block before C_UnWrapKeyAuthenticated().

• Call C_UnWrapMessageKey() for CKM_AES_CCM mechanism key wK, wrapped key mK,
parameter block and template, obtaining a new key handle.

In pNonce the least significant bit of the nonce is the rightmost bit. ulNonceLen is the length of the nonce
in bytes.

DBO
Cross-Out

DBO
Inserted Text
Wrap

DBO
Cross-Out

DBO
Inserted Text

DBO
Cross-Out

DBO
Inserted Text
C_WrapKeyAuthenticated

On MessageEncrypt, the meaning of nonceGenerator is as follows: CKG_NO_GENERATE means the
nonce is passed in on MessageEncrypt and no internal MAC generation is done. CKG_GENERATE
means that the non-fixed portion of the nonce is generated by the module internally. The generation
method is not defined.

CKG_GENERATE_COUNTER means that the non-fixed portion of the nonce is generated by the module
internally by use of an incrementing counter, the initial IV counter is zero.

CKG_GENERATE_COUNTER_XOR means that the non-fixed portion of the IV is xored with a counter.
The value of the non-fixed portion passed must not vary from call to call. Like
CKG_GENERATE_COUNTER, the counter starts at zero.

CKG_GENERATE_RANDOM means that the non-fixed portion of the nonce is generated by the module
internally using a PRNG. In any case the entire nonce, including the fixed portion, is returned in pNonce.

Modules must implement CKG_GENERATE. Modules may also reject ulNonceFixedBits values which are
too large. Zero is always an acceptable value for ulNonceFixedBits.

In Encrypt and Decrypt the MAC is appended to the cipher text and the least significant byte of the MAC
is the rightmost byte and the MAC bytes are the rightmost ulMACLen bytes. In MessageEncrypt the MAC
is returned in the pMAC field of CK_CCM_MESSAGE_PARAMS. In MesssageDecrypt the MAC is
provided by the pMAC field of CK_CCM_MESSAGE_PARAMS.

The key type for K must be compatible with CKM_AES_ECB and the
C_WrapKey()/C_UnWrapKey()/C_WrapMessageKey()/C_UnWrapMessageKey() calls shall behave, with
respect to K, as if they were called directly with CKM_AES_ECB, K and NULL parameters

1.3.41.3.6 AES GCM and CCM Mechanism parameters

 CK_GENERATOR_FUNCTION

Functions to generate unique IVs and nonces.

typedef CK_ULONG CK_GENERATOR_FUNCTION;

 CK_GCM_PARAMS; CK_GCM_PARAMS_PTR

CK_GCM_PARAMS is a structure that provides the parameters to the CKM_AES_GCM mechanism
when used for Encrypt or Decrypt. It is defined as follows:

typedef struct CK_GCM_PARAMS {

 CK_BYTE_PTR pIv;

 CK_ULONG ulIvLen;

 CK_ULONG ulIvBits;

 CK_BYTE_PTR pAAD;

 CK_ULONG ulAADLen;

 CK_ULONG ulTagBits;

} CK_GCM_PARAMS;

The fields of the structure have the following meanings:

 pIv pointer to initialization vector

 ulIvLen length of initialization vector in bytes. The length of the initialization
vector can be any number between 1 and (2^32) - 1. 96-bit (12
byte) IV values can be processed more efficiently, so that length is
recommended for situations in which efficiency is critical.

 ulIvBits length of initialization vector in bits. Do no use ulIvBits to specify the
length of the initialization vector, but ulIvLen instead.

DBO
Cross-Out

DBO
Inserted Text
C_WrapKeyAuthenticated

DBO
Cross-Out

DBO
Inserted Text
WrapKey and UnwrapKey

DBO
Cross-Out

DBO
Inserted Text
C_WrapKeyAuthenticated

DBO
Cross-Out

DBO
Inserted Text
C_UnwrapKeyAuthenticated

 pAAD pointer to additional authentication data. This data is authenticated
but not encrypted.

 ulAADLen length of pAAD in bytes. The length of the AAD can be any number
between 0 and (2^32) – 1.

 ulTagBits length of authentication tag (output following cipher text) in bits. Can
be any value between 0 and 128.

CK_GCM_PARAMS_PTR is a pointer to a CK_GCM_PARAMS.

 CK_GCM_MESSAGE_PARAMS; CK_GCM_MESSAGE_PARAMS_PTR

CK_GCM_MESSAGE_PARAMS is a structure that provides the parameters to the CKM_AES_GCM
mechanism when used for MessageEncrypt or MessageDecrypt. It is defined as follows:

typedef struct CK_GCM_MESSAGE_PARAMS {

 CK_BYTE_PTR pIv;

 CK_ULONG ulIvLen;

 CK_ULONG ulIvFixedBits;

 CK_GENERATOR_FUNCTION ivGenerator;

 CK_BYTE_PTR pTag;

 CK_ULONG ulTagBits;

} CK_GCM_MESSAGE_PARAMS;

The fields of the structure have the following meanings:

 pIv pointer to initialization vector

 ulIvLen length of initialization vector in bytes. The length of the initialization
vector can be any number between 1 and (2^32) - 1. 96-bit (12 byte)
IV values can be processed more efficiently, so that length is
recommended for situations in which efficiency is critical.

 ulIvFixedBits number of bits of the original IV to preserve when generating an
new IV. These bits are counted from the Most significant bits (to the
right).

 ivGenerator Function used to generate a new IV. Each IV must be unique for a
given session.

 pTag location of the authentication tag which is returned on
MessageEncrypt, and provided on MessageDecrypt.

 ulTagBits length of authentication tag in bits. Can be any value between 0 and
128.

CK_GCM_MESSAGE_PARAMS_PTR is a pointer to a CK_GCM_MESSAGE_PARAMS.

 CK_GCM_WRAP_PARAMS; CK_GCM_WRAP_PARAMS_PTR

CK_GCM_MESSAGE_PARAMS is a structure that provides the parameters to the CKM_AES_GCM
mechanism when used for C_WrapKey to provide return a token generated IV for input into
C_UnWrapKey. It is defined as follows:

typedef struct CK_GCM_WRAP_PARAMS {

 CK_BYTE_PTR pIv;

 CK_ULONG ulIvLen;

 CK_ULONG ulIvFixedBits;

DBO
Cross-Out

DBO
Inserted Text

 CK_GENERATOR_FUNCTION ivGenerator;

 CK_BYTE_PTR pAAD;

 CK_ULONG ulAADLen;

 CK_ULONG ulTagBits;

} CK_GCM_WRAP_PARAMS;

The fields of the structure have the following meanings:

 pIv pointer to initialization vector

 ulIvLen length of initialization vector in bytes. The length of the initialization
vector can be any number between 1 and (2^32) - 1. 96-bit (12 byte)
IV values can be processed more efficiently, so that length is
recommended for situations in which efficiency is critical.

 ulIvFixedBits number of bits of the original IV to preserve when generating an
new IV. These bits are counted from the Most significant bits (to the
right).

 ivGenerator Function used to generate a new IV. Each IV must be unique for a
given session.

 pAAD pointer to additional authentication data. This data is authenticated
but not encrypted.

 ulAADLen length of pAAD in bytes. The length of the AAD can be any number
between 0 and (2^32) – 1.

 ulTagBits length of authentication tag in bits. Can be any value between 0 and
128.

CK_GCM_WRAP_PARAMS_PTR is a pointer to a CK_GCM_WRAP_PARAMS.

 CK_CCM_PARAMS; CK_CCM_PARAMS_PTR

CK_CCM_PARAMS is a structure that provides the parameters to the CKM_AES_CCM mechanism
when used for Encrypt or Decrypt. It is defined as follows:

typedef struct CK_CCM_PARAMS {

 CK_ULONG ulDataLen; /*plaintext or ciphertext*/

 CK_BYTE_PTR pNonce;

 CK_ULONG ulNonceLen;

 CK_BYTE_PTR pAAD;

 CK_ULONG ulAADLen;

 CK_ULONG ulMACLen;

} CK_CCM_PARAMS;

The fields of the structure have the following meanings, where L is the size in bytes of the data length’s
length (2 ≤ L ≤ 8):

 ulDataLen length of the data where 0 ≤ ulDataLen < 2^(8L).

 pNonce the nonce.

 ulNonceLen length of pNonce in bytes where 7 ≤ ulNonceLen ≤ 13.

 pAAD Additional authentication data. This data is authenticated but not
encrypted.

 ulAADLen length of pAAD in bytes where 0 ≤ ulAADLen ≤ (2^32) - 1.

 ulMACLen length of the MAC (output following cipher text) in bytes. Valid
values are 4, 6, 8, 10, 12, 14, and 16.

CK_CCM_PARAMS_PTR is a pointer to a CK_CCM_PARAMS.

 CK_CCM_MESSAGE_PARAMS; CK_CCM_MESSAGE_PARAMS_PTR

CK_CCM_MESSAGE_PARAMS is a structure that provides the parameters to the CKM_AES_CCM
mechanism when used for MessageEncrypt or MessageDecrypt. It is defined as follows:

typedef struct CK_CCM_MESSAGE_PARAMS {

 CK_ULONG ulDataLen; /*plaintext or ciphertext*/

 CK_BYTE_PTR pNonce;

 CK_ULONG ulNonceLen;

 CK_ULONG ulNonceFixedBits;

 CK_GENERATOR_FUNCTION nonceGenerator;

 CK_BYTE_PTR pMAC;

 CK_ULONG ulMACLen;

} CK_CCM_MESSAGE_PARAMS;

The fields of the structure have the following meanings, where L is the size in bytes of the data length’s
length (2 ≤ L ≤ 8):

 ulDataLen length of the data where 0 ≤ ulDataLen < 2^(8L).

 pNonce the nonce.

 ulNonceLen length of pNonce in bytes where 7 ≤ ulNonceLen ≤ 13.

 ulNonceFixedBits number of bits of the original nonce to preserve when generating a
new nonce. These bits are counted from the Most significant bits (to
the right).

 nonceGenerator Function used to generate a new nonce. Each nonce must be
unique for a given session.

 pMAC location of the CCM MAC returned on MessageEncrypt, provided on
MessageDecrypt

 ulMACLen length of the MAC (output following cipher text) in bytes. Valid
values are 4, 6, 8, 10, 12, 14, and 16.

CK_CCM_MESSAGE_PARAMS_PTR is a pointer to a CK_CCM_MESSAGE_PARAMS.

 CK_CCM_WRAP_PARAMS; CK_CCM_WAP_PARAMS_PTR

CK_CCM_PARAMS is a structure that provides the parameters to the CKM_AES_CCM mechanism
when used for C_WrapKey only to provide a token generated nonce and the number of bits to preservse.
It is defined as follows:

typedef struct CK_CCM_PARAMS {

 CK_ULONG ulDataLen; /*wrappedkey data*/

 CK_BYTE_PTR pNonce;

 CK_ULONG ulNonceLen;

 CK_ULONG ulNonceFixedBits;

 CK_GENERATOR_FUNCTION nonceGenerator;

 CK_BYTE_PTR pAAD;

DBO
Cross-Out

DBO
Inserted Text
preserve

 CK_ULONG ulAADLen;

 CK_ULONG ulMACLen;

} CK_CCM_PARAMS;

The fields of the structure have the following meanings, where L is the size in bytes of the data length’s
length (2 ≤ L ≤ 8):

 ulDataLen length of the data where 0 ≤ ulDataLen < 2^(8L).

 pNonce the nonce.

 ulNonceLen length of pNonce in bytes where 7 ≤ ulNonceLen ≤ 13.

 ulNonceFixedBits number of bits of the original nonce to preserve when generating a
new nonce. These bits are counted from the Most significant bits (to
the right).

 nonceGenerator Function used to generate a new nonce. Each nonce must be
unique for a given session.

 pAAD Additional authentication data. This data is authenticated but not
wrapped.

 ulAADLen length of pAAD in bytes where 0 ≤ ulAADLen ≤ (2^32) - 1.

 ulMACLen length of the MAC (output following cipher text) in bytes. Valid
values are 4, 6, 8, 10, 12, 14, and 16.

CK_CCM_WRAP_PARAMS_PTR is a pointer to a CK_CCM_WRAP_PARAMS

