1.1 FUNCTIONS

Key
management
functions

C_GenerateKey

generates a secret key

C_GenerateKeyPair

generates a public-key/private-key pair

C_WrapKey

wraps (encrypts) a key

C_UnwrapKey

unwraps (decrypts) a key

C_WrapKeyAuthenticated

Authenticated key Wrapping (encrypt) a key

C_UnWrapKeyAuthenticated

Authenticated key unwrapping (decrypt) a
key

C_DeriveKey

derives a key from a base key

1.2 (5.18) Key management functions

1.2.1 C WrapKevyAuthenticated

CK DECLARE FUNCTION (CK RV, C WrapKeyAuthenticated) (
CK SESSION HANDLE hSession,
CK MECHANISM PTR pMechanism,
CK OBJECT HANDLE hWrappingKey,
CK OBJECT HANDLE hKey,

CK VOID PTR pParameter,
CK ULONG ulParameterLen,
CK BYTE PTR pAssociatedData,

CK ULONG ulAssociatedDatalen,

CK BYTE PTR pWrappedKey,

CK ULONG PTR pulWrappedKeyLen
) i

C WranMessageKey wraps (i.e., encrypts) a private or secret key. hSession is the session’s handle;
pMechanism points to the wrapping mechanism; hWrappingKey is the handle of the wrapping key; hKey
is the handle of the key to be wrapped; pParameter and ulParameterLen specify any mechanism-specific
parameters for the message wrap operation; pAssociatedData and ulAssociatedDatalen specify the
associated data for an AEAD mechanism; pWrappedKey points to the location that receives the wrapped
key; and pulWrappedKeyLen points to the location that receives the length of the wrapped key.

C WrapKeyAuthenticated uses the convention described in Section on producing output.

The CKA WRAP attribute of the wrapping key, which indicates whether the key supports wrapping,
MUST be CK TRUE. The CKA EXTRACTABLE attribute of the key to be wrapped MUST also be
CK TRUE.

If the key to be wrapped cannot be wrapped for some token-specific reason, despite its having its

CKA EXTRACTABLE attribute setto CK_TRUE, then C WrapKeAuthenticated fails with error code
CKR_KEY NOT WRAPPABLE. Ifit cannot be wrapped with the specified wrapping key and mechanism
solely because of its length, then C WrapKeyAuthenticated fails with error code

CKR KEY SIZE RANGE.

C WrapKeyAuthenticated can be used in the following situations:

e To wrap any secret key with a public key that supports encryption and decryption.

e To wrap any secret key with any other secret key. Consideration MUST be given to key size and
mechanism strength or the token may not allow the operation.

e To wrap a private key with any secret key.
Of course, tokens vary in which types of keys can actually be wrapped with which mechanisms.

To partition the wrapping keys so they can only wrap a subset of extractable keys the attribute

CKA WRAP TEMPLATE can be used on the wrapping key to specify an attribute set that will be
compared against the attributes of the key to be wrapped. If all attributes match according to the

C _FindObject rules of attribute matching then the wrap will proceed. The value of this attribute is an
attribute template, and the size is the number of items in the template times the size of CK_ATTRIBUTE.
If this attribute is not supplied, then any template is acceptable. If an attribute is not present, it will not be
checked. If any attribute mismatch occurs on an attempt to wrap a keykey, then the function SHALL
return CKR_KEY HANDLE INVALID.

Return Values: CKR_ARGUMENTS BAD, CKR BUFFER TOO SMALL,

CKR _CRYPTOKI NOT INITIALIZED, CKR DEVICE ERROR, CKR DEVICE MEMORY,
CKR DEVICE REMOVED, CKR FUNCTION CANCELED, CKR FUNCTION FAILED,
CKR_GENERAL ERROR, CKR HOST MEMORY, CKR KEY HANDLE INVALID,

CKR KEY NOT WRAPPABLE, CKR KEY SIZE RANGE, CKR KEY UNEXTRACTABLE,
CKR_MECHANISM INVALID, CKR_MECHANISM PARAM_INVALID, CKR OK,

DBO
Cross-Out

DBO
Inserted Text
C_WrapKeyAuthenticated

CKR_OPERATION_ ACTIVE, CKR PIN EXPIRED, CKR_SESSION_CLOSED,
CKR_SESSION HANDLE INVALID, CKR USER NOT LOGGED IN,
CKR_WRAPPING KEY HANDLE INVALID, CKR WRAPPING KEY SIZE RANGE
CKR_WRAPPING KEY TYPE INCONSISTENT.

Example:

#define AUTH BUF SZ 100

CK BYTE auth[2] [AUTH BUF SZ];

CK SESSION HANDLE hSession;

CK OBJECT HANDLE hWrappingKey, hKey;
CK BYTE iv[12];

CK BYTE tagl[l6];

CK GCM MESSAGE PARAMS gcmParams = {

iv,

sizeof (iv) * 8,
96,
CKG GENERATE,

tag,
sizeof (tag) * 8
il

CK MECHANISM mechanism = {

CKM AES GCM, &gcmParams, sizeof (gcmParams)
)i
CK BYTE wrappedKey[32]; /* only the wrapped key returned*/
CK ULONG ulWrappedKeylen;
CK RV rv;

ulWrappedKeyLen = sizeof (wrappedKey) ;

rv = C WrapMessageKey (

hSession, &mechanism,

—hWrappingKey, hKey,

gcmParams, sizeof (gcmParams),

&auth[0][0], sizeof(auth[0]),

wrappedKey, &ulWrappedKeyLen) ;
if (rv == CKR OK) {

2

1.2.2 C UnwrapKeyAuthenticated

CK DECLARE FUNCTION (CK RV, C UnwrapMessageKey) (
CK SESSION HANDLE hSession,

CK MECHANISM PTR pMechanism,

CK OBJECT HANDLE hUnwrappingKey,
CK BYTE PTR pWrappedKey,

CK ULONG ulWrappedKeylLen,

CK ATTRIBUTE PTR pTemplate,

CK ULONG ulAttributeCount,

CK VOID PTR pParameter,
CK ULONG ulParameterLen,
CK BYTE PTR pAssociatedData,

CK ULONG ulAssociatedDatalen
CK OBJECT HANDLE PTR phKey
)i

C UnwrapKeyAuthenticated unwraps (i.e. decrypts) a wrapped key, creating a new private key or
secret key object. hSession is the session’s handle; pMechanism points to the unwrapping mechanism;
hUnwrappingKey is the handle of the unwrapping key; pWrappedKey points to the wrapped key;
ulWrappedKeyLen is the length of the wrapped key; pTemplate points to the template for the new key;
ulAttributeCount is the number of attributes in the template; pParameter and ulParameterLen specify any
mechanism-specific parameters for the message unwrap

operation; pAssociatedData and ulAssociatedDatalen specify the associated data for an AEAD
mechanism; phKey points to the location that receives the handle of the recevered key.

The CKA UNWRAP attribute of the unwrapping key, which indicates whether the key supports
unwrapping, MUST be CK TRUE.

The new key will have the CKA ALWAYS SENSITIVE attribute set to CK_FALSE, and the
CKA NEVER EXTRACTABLE attribute set to CK _FALSE. The CKA EXTRACTABLE attribute is by
default set to CK_TRUE.

Some mechanisms may modify, or attempt to modify. the contents of the pMechanism structure at the
same time that the key is unwrapped.

If a call to C UnwrapKeyAuthenticated cannot support the precise template supplied to it, it will fail and
return without creating any key object.

The key object created by a successful call to S—UnwrapKeyAuthenticted will have its CKA LOCAL
attribute set to CK FALSE. In addition, the object created will have a value for CKA UNIQUE ID
generated and assigned (See Section Error! Reference source not found.).

To partition the unwrapping keys so they can only unwrap a subset of keys the attribute

CKA UNWRAP TEMPLATE can be used on the unwrapping key to specify an attribute set that will be
added to attributes of the key to be unwrapped. If the attributes do not conflict with the user supplied
attribute template, in ‘pTemplate’, then the unwrap will proceed. The value of this attribute is an attribute
template and the size is the number of items in the template times the size of CK_ATTRIBUTE. If this
attribute is not present on the unwrapping key then no additional attributes will be added. If any attribute
conflict occurs on an attempt to unwrap a key then the function SHALL return

CKR_TEMPLATE INCONSISTENT.

Return values: CKR_ ARGUMENTS BAD, CKR ATTRIBUTE READ ONLY,

CKR _ATTRIBUTE TYPE INVALID, CKR ATTRIBUTE VALUE INVALID,

CKR BUFFER TOO SMALL, CKR CRYPTOKI NOT INITIALIZED,

CKR _CURVE NOT SUPPORTED, CKR DEVICE ERROR, CKR DEVICE MEMORY,

CKR DEVICE REMOVED, CKR DOMAIN PARAMS INVALID, CKR FUNCTION CANCELED,
CKR _FUNCTION FAILED, CKR GENERAL ERROR, CKR HOST MEMORY,
CKR_MECHANISM INVALID, CKR_ MECHANISM PARAM_INVALID, CKR OK,

CKR _OPERATION ACTIVE, CKR PIN EXPIRED, CKR SESSION CLOSED,

CKR SESSION HANDLE INVALID, CKR SESSION _READ ONLY, CKR TEMPLATE INCOMPLETE,
CKR TEMPLATE INCONSISTENT, CKR TOKEN WRITE PROTECTED,
CKR_UNWRAPPING KEY HANDLE INVALID, CKR UNWRAPPING KEY SIZE RANGE,
CKR_UNWRAPPING KEY TYPE INCONSISTENT, CKR USER NOT LOGGED IN,
CKR_WRAPPED KEY INVALID, CKR WRAPPED KEY LEN RANGE.

DBO
Cross-Out

DBO
Inserted Text
key

DBO
Cross-Out

DBO
Inserted Text
unwrapped

DBO
Cross-Out

DBO
Inserted Text
C_WrapKeyAuthenticated

DBO
Highlight

Example:

#define AUTH BUF SZ 100

CK BYTE auth([2] [AUTH BUF SZ];
CK SESSION HANDLE hSession;
CK OBJECT HANDLE hUnwrappingKey, hKey;
CK MECHANISM mechanism = {
CKM AES GCM, NULL PTR, O
i
CK BYTE wrappedKey[32] = {...};
CK OBJECT CLASS keyClass = CKO SECRET KEY;
CK KEY TYPE keyType = CKK AES;
CK BBOOL true = CK TRUE;
CK ATTRIBUTE template[] = {
{CKA CLASS, &keyClass, sizeofl (keyClass)},

{CKA KEY TYPE, é&keyType, sizeof (keyType) },

{CKA ENCRYPT, é&true, sizeof (true)},
{CKA DECRYPT, &true, sizeof (true)}

i
CK RV rv;
CK BYTE iv[] = {1 , 2, 3, 4, 5, o, 7, 8, 9, 10, 11, 12

}s

/*value from wrap

CKG GENERATE */
CK BYTE tag[l6];
CK GCM MESSAGE PARAMS gcmParams = {

iv,

sizeof (iv) * 8,

0, /* ignored */

CKG NO GENERATE, /* ignored */

tag, /* Tag returned from Wrap */

sizeof (tag) * 8

rv = C UnwrapKeyAuthenticated(

hSession, &mechanism, hUnwrappingKey,

gcmParams, sizeof (gcmParams),
&auth[0] [0], sizeof(auth[0]),
wrappedKey, sizeof (wrappedKey),

template, 4, &hKey);
if (rv == CKR OK) {

[~

1.3 (6.13) Additional AES Mechanisms

Table 1, Additional AES Mechanisms vs. Functions
Functions

Encrypt | Sign | SR Gen. | Wrap
Mechanism & & & | Digest | Key/ & Derive

Decrypt | Verify | VR? Key | Unwrap

Pair

CKM_AES_GCM v v
CKM_AES_CCM v v
CKM_AES_GMAC 4

1.3.1 Definitions

Mechan

isms:
CKM_AES_GCM
CKM_AES_CCM
CKM_AES_GMAC

Generator Functions:

CKG_NO_GENERATE
CKG_GENERATE
CKG_GENERATE_COUNTER
CKG_GENERATE_RANDOM
CKG_GENERATE_COUNTER_XOR

1.3.2 AES-GCM Authenticated Encryption / Decryption

Generic
(key) an

GCM mode is described in [GCM]. To set up for AES-GCM use the following process, where K
d AAD (additional authenticated data) are as described in [GCM]. AES-GCM uses

CK_GCM_PARAMS for Encrypt, Decrypt and CK_GCM_MESSAGE_PARAMS for MessageEncrypt and
MessageDecrypt.

Encrypt:

Decrypt:

Set the IV length ullvLen in the parameter block.
Set the IV data plv in the parameter block.

Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

Set the tag length ulTagBits in the parameter block.
Call C_Encryptinit() for CKM_AES_GCM mechanism with parameters and key K.

Call C_Encrypt(), or C_EncryptUpdate()*! C_EncryptFinal(), for the plaintext obtaining ciphertext
and authentication tag output.

1 “*” indicate:

s 0 or more calls may be made as required

Set the IV length ullvLen in the parameter block.
Set the IV data plv in the parameter block.

Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

Set the tag length ulTagBits in the parameter block.
Call C_Decryptlnit() for CKM_AES_GCM mechanism with parameters and key K.

Call C_Decrypt(), or C_DecryptUpdate()*! C_DecryptFinal(), for the ciphertext, including the
appended tag, obtaining plaintext output. Note: since CKM_AES_GCM is an AEAD cipher, no data
should be returned until C_Decrypt() or C_DecryptFinal().

MessageEncrypt:

Set the IV length ullvLen in the parameter block.

Set plv to hold the IV data returned from C_EncryptMessage() and C_EncryptMessageBegin(). If
ullvFixedBits is not zero, then the most significant bits of plV contain the fixed IV. If ivGenerator is
set to CKG_NO_GENERATE, plv is an input parameter with the full IV.

Set the ullvFixedBits and ivGenerator fields in the parameter block.
Set the tag length ulTagBits in the parameter block.

Set pTag to hold the tag data returned from C_EncryptMessage() or the final
C_EncryptMessageNext().

Call C_MessageEncryptinit() for CKM_AES_GCM mechanism key K.

Call C_EncryptMessage(), or C_EncryptMessageBegin() followed by C_EncryptMessageNext()*2.
The mechanism parameter is passed to all three of these functions.

Call C_MessageEncryptFinal() to close the message decryption.

MessageDecrypt:

Set the IV length ullvLen in the parameter block.
Set the IV data plv in the parameter block.

The ullvFixedBits and ivGenerator fields are ignored.

»—Set the tag length ulTagBits in the parameter block.

Set the tag data pTag in the parameter block before C_DecryptMessage() or the final
C_DecryptMessageNext().

Call C_MessageDecryptinit() for CKM_AES_GCM mechanism key K.

Call C_DecryptMessage(), or C_DecryptMessageBegin followed by C_DecryptMessageNext()*3.
The mechanism parameter is passed to all three of these functions.

Call C_MessageDecryptFinal() to close the message decryption.

In plv the least significant bit of the initialization vector is the rightmost bit. ullvLen is the length of the
initialization vector in bytes.

On MessageEncrypt, the meaning of ivGenerator is as follows: CKG_NO_GENERATE means the IV is
passed in on MessageEncrypt and no internal IV generation is done. CKG_GENERATE means that the
non-fixed portion of the IV is generated by the module internally. The generation method is not defined.

2 “*” indicates 0 or more calls may be made as required

3 " indicates 0 or more calls may be made as required

CKG_GENERATE_COUNTER means that the non-fixed portion of the IV is generated by the module
internally by use of an incrementing counter, the initial IV counter is zero.

CKG_GENERATE_COUNTER_XOR means that the non-fixed portion of the IV is xored with a counter.
The value of the non-fixed portion passed must not vary from call to call. Like
CKG_GENERATE_COUNTER, the counter starts at zero.

CKG_GENERATE_RANDOM means that the non-fixed portion of the IV is generated by the module
internally using a PRNG. In any case the entire 1V, including the fixed portion, is returned in plV.

Modules must implement CKG_GENERATE. Modules may also reject ullvFixedBits values which are too
large. Zero is always an acceptable value for ullvFixedBits.

In Encrypt and Decrypt the tag is appended to the cipher text and the least significant bit of the tag is the
rightmost bit and the tag bits are the rightmost ulTagBits bits. In MessageEncrypt the tag is returned in
the pTag field of CK_GCM_MESSAGE_PARAMS. In MesssageDecrypt the tag is provided by the pTag
field of CK_GCM_MESSAGE_PARAMS.

The key type for K must be compatible with CKM_AES_ECB and the
C_Encryptinit()/C_Decryptlnit()/C_MessageEncryptinit()/C_MessageDecryptlinit() calls shall behave, with
respect to K, as if they were called directly with CKM_AES_ECB, K and NULL parameters.

1.3.3 AES-GCM Authenticated Wrap / Unwrap

Generic GCM mode is described in [GCM]. To set up for AES-GCM use the following process, where wK
(wrapping key) and AAD (additional authenticated data) are as described in [GCM]. AES-GCM uses

CK GCM WRAP PARAMS for WrapKey, UnWrapkey and CK_ GCM MESSAGE PARAMS for
WrapMessageKey and Un\WrapMessageKey.

a

Set the 1V length ullvLen in the parameter block.

.-

Set plv to hold the 1V data returned from C Wrapkey() . If ullvFixedBits is not zero, then the most
significant bits of plV contain the fixed IV. If ivGenerator is set to CKG NO GENERATE, plv is an
input parameter with the full IV.

e Set the ullvFixedBits and ivGenerator fields in the parameter block.

e Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

e Set the tag length ulTagBits in the parameter block.

e Call C WrapKey() for CKM_AES GCM mechanism with parameters and wrapping key wK and
key to be wrapped K, obtaining a wrapped key and authentication tag output.

e Setthe IV length ullvLen in the parameter block.

e Setthe IV data plv in the parameter block.-

e The ullvFixedBits and ivGenerator fields are ignored.

e Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

e Set the tag length ulTagBits in the parameter block.

e Call C UnWrapKey() for CKM AES GCM mechanism with parameters and wrapping key K and
wrapped key+ authenticated tag output from wrap,; template for the new key, obtaining a key
handle.

DBO
Cross-Out

DBO
Inserted Text
WrapKeyAuthenticated

DBO
Cross-Out

DBO
Inserted Text
UnwrapKeyAuthenticated

WrapKeyAuthenticated:

e Set the IV length ullvLen in the parameter block.

e Set plv to hold the IV data returned from S \Wrapkev() . If ullvFixedBits is not zero, then the most
significant bits of plV contain the fixed IV. If ivGenerator is set to CKG_NO GENERATE, plv is an
input parameter with the full IV.

e Set the ullvFixedBits and ivGenerator fields in the parameter block.

e Set the tag length ulTagBits in the parameter block.

e Set pTag to hold the tag data returned from C_WrapKeyAuthenticated().

e Call C WrapMessageKey() for CKM_AES GCM mechanism wrapping key wK. wrapped key
mechanism, parameters and obtaining a wrapped key and authentication tag output in the
parameter block.

UnWrapKeyAuthenticated:

e Setthe IV length ullvLen in the parameter block.

e Setthe IV data plv in the parameter block.

e The ullvFixedBits and ivGenerator fields are ignored.

e Set the tag length ulTagBits in the parameter block.

e Set the tag data pTag in the parameter block

e Call C UnWrapKeyAuthenticated() for CKM_AES GCM mechanism, -wrapping key wK, Wrapped
key, parameter, template for the new key, obtaining a key handle.

In plv the least significant bit of the initialization vector is the rightmost bit. ullvLen is the length of the
initialization vector in bytes.

On WrapKeyAuthenticated, the meaning of ivGenerator is as follows: CKG_NO GENERATE means the IV
is passed in on MessageEncrypt and no internal 1V generation is done. CKG_GENERATE means that the
non-fixed portion of the |V is generated by the module internally. The generation method is not defined.

CKG_GENERATE COUNTER means that the non-fixed portion of the IV is generated by the module
internally by use of an incrementing counter, the initial IV counter is zero.

CKG GENERATE COUNTER XOR means that the non-fixed portion of the 1V is xored with a counter.
The value of the non-fixed portion passed must not vary from call to call. Like
CKG _GENERATE COUNTER, the counter starts at zero.

CKG_GENERATE RANDOM means that the non-fixed portion of the IV is generated by the module
internally using a PRNG. In any case the entire 1V, including the fixed portion, is returned in plV.

Modules must implement CKG _GENERATE. Modules may also reject ullvFixedBits values which are too
large. Zero is always an acceptable value for ullvFixedBits.

In Encrynt and Decrypt the tag is appended to the ciphertext and the least significant bit of the tag is the
rightmost bit and the tag bits are the rightmost ulTagBits bits. In MessageEnerypt the tag is returned in the
pTag field of CK_ GCM_MESSAGE PARAMS. In MesssageDecrypt the tag is provided by the pTag field
of CK GCM_MESSAGE PARAMS.

The key type for K must be compatible with CKM_AES ECB and the
C WrapKey()/C UNWrapKey()/C WrapMessageKey()/C UnWrapMessageKey() calls shall behave, with
respect to K, as if they were called directly with CKM AES ECB, K and NULL parameters.

1.3-31.3.4 AES-CCM authenticated Encryption / Decryption

For IPsec (RFC 4309) and also for use in ZFS encryption. Generic CCM mode is described in [RFC
3610].

DBO
Cross-Out

DBO
Inserted Text
C_WrapKeyAuthenticated

DBO
Cross-Out

DBO
Inserted Text
C_WrapKeyAuthenticated

DBO
Cross-Out

DBO
Inserted Text
WrapKeyAuthenticated

DBO
Cross-Out

DBO
Inserted Text
WrapKey

DBO
Cross-Out

DBO
Inserted Text
UnwrapKey

DBO
Cross-Out

DBO
Inserted Text
wrapped key

DBO
Cross-Out

DBO
Inserted Text
WrapKeyAuthenticated

DBO
Cross-Out

DBO
Inserted Text
UnwrapKeyAuthenticated

To set up for AES-CCM use the following process, where K (key), nonce and additional authenticated
data are as described in [RFC 3610]. AES-CCM uses CK_CCM_PARAMS for Encrypt and Decrypt, and
CK_CCM_MESSAGE_PARAMS for MessageEncrypt and MessageDecrypt.

Encrypt:
e Set the message/data length ulDatalen in the parameter block.
e Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block.

e Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

e Set the MAC length uIMACLen in the parameter block.
e Call C_Encryptlnit() for CKM_AES_CCM mechanism with parameters and key K.

e Call C_Encrypt(), C_EncryptUpdate(), or C_EncryptFinal(), for the plaintext obtaining the final
ciphertext output and the MAC. The total length of data processed must be ulDatalLen. The output
length will be ulDataLen + ulMACLen.

Decrypt:

e Set the message/data length ulDatalLen in the parameter block. This length must not include the
length of the MAC that is appended to the cipher text.

e Set the nonce length ulNoncelLen and the nonce data pNonce in the parameter block.

e Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if
ulAADLen is 0.

e Set the MAC length uIMACLen in the parameter block.
e Call C_Decryptinit() for CKM_AES_CCM mechanism with parameters and key K.

e Call C_Decrypt(), C_DecryptUpdate(), or C_DecryptFinal(), for the ciphertext, including the
appended MAC, obtaining plaintext output. The total length of data processed must be ulDatalLen
+ ulIMACLen. Note: since CKM_AES CCM is an AEAD cipher, no data should be returned until
C_Decrypt() or C_DecryptFinal().

MessageEncrypt:
e Set the message/data length ulDatalLen in the parameter block.
e Set the nonce length ulNonceLen.

e Set pNonce to hold the nonce data returned from C_EncryptMessage() and
C_EncryptMessageBegin(). If ulNonceFixedBits is not zero, then the most significant bits of pNonce
contain the fixed nonce. If nonceGenerator is set to CKG_NO_GENERATE, pNonce is an input
parameter with the full nonce.

¢ Set the ulNonceFixedBits and nonceGenerator fields in the parameter block.
e Set the MAC length uIMACLen in the parameter block.

e Set pMAC to hold the MAC data returned from C_EncryptMessage() or the final
C_EncryptMessageNext().

e Call C_MessageEncryptlnit() for CKM_AES_CCM mechanism key K.

e Call C_EncryptMessage(), or C_EncryptMessageBegin() followed by C_EncryptMessageNext()**.
The mechanism parameter is passed to all three functions.

e Call C_MessageEncryptFinal() to close the message encryption.

4 “*” indicates 0 or more calls may be made as required

e The MAC is returned in pMac of the CK_CCM_MESSAGE_PARAMS structure.
MessageDecrypt:

e Set the message/data length ulDatalen in the parameter block.

e Set the nonce length ulNonceLen and the nonce data pNonce in the parameter block
e The ulNonceFixedBits and nonceGenerator fields in the parameter block are ignored.
e Set the MAC length ulMACLen in the parameter block.

e Set the MAC data pMAC in the parameter block before C_DecryptMessage() or the final
C_DecryptMessageNext().

e Call C_MessageDecryptlnit() for CKM_AES_CCM mechanism key K.

e Call C_DecryptMessage(), or C_DecryptMessageBegin() followed by C_DecryptMessageNext()*>.
The mechanism parameter is passed to all three functions.

e Call C_MessageDecryptFinal() to close the message decryption.

In pNonce the least significant bit of the nonce is the rightmost bit. ulNoncelLen is the length of the nonce
in bytes.

On MessageEncrypt, the meaning of nonceGenerator is as follows: CKG_NO_GENERATE means the
nonce is passed in on MessageEncrypt and no internal MAC generation is done. CKG_GENERATE
means that the non-fixed portion of the nonce is generated by the module internally. The generation
method is not defined.

CKG_GENERATE_COUNTER means that the non-fixed portion of the nonce is generated by the module
internally by use of an incrementing counter, the initial IV counter is zero.

CKG_GENERATE_COUNTER_XOR means that the non-fixed portion of the IV is xored with a counter.
The value of the non-fixed portion passed must not vary from call to call. Like
CKG_GENERATE_COUNTER, the counter starts at zero.

CKG_GENERATE_RANDOM means that the non-fixed portion of the nonce is generated by the module
internally using a PRNG. In any case the entire nonce, including the fixed portion, is returned in pNonce.

Modules must implement CKG_GENERATE. Modules may also reject ulNonceFixedBits values which are
too large. Zero is always an acceptable value for ulNonceFixedBits.

In Encrypt and Decrypt the MAC is appended to the cipher text and the least significant byte of the MAC
is the rightmost byte and the MAC bytes are the rightmost ulMACLen bytes. In MessageEncrypt the MAC
is returned in the pMAC field of CK_CCM_MESSAGE_PARAMS. In MesssageDecrypt the MAC is
provided by the pMAC field of CK_CCM_MESSAGE_PARAMS.

The key type for K must be compatible with CKM_AES_ECB and the
C_Encryptinit()/C_Decryptinit()/C_MessageEncryptinit()/C_MessageDecryptinit() calls shall behave, with
respect to K, as if they were called directly with CKM_AES_ECB, K and NULL parameters.

1.3.5 AES-CCM Authenticated Wrap / Unwrap

To set up for AES-CCM use the following process, where K (key), nonce and additional authenticated
data are as described in [RFC 3610]. AES-CCM uses SK-CCM-WAP PARAMS for WrapKey and
UnWrapKey, and CK_ CCM_MESSAGE PARAMS for WrapKeyAuthenticated and
UnWrapKeyAuthenticated.

Wrap:
e Set the message/data length ulDatalLen in the parameter block.

5 “*” indicates 0 or more calls may be made as required

DBO
Cross-Out

DBO
Inserted Text
CK_CCM_WRAP_PARAMS

Set the nonce length ulNoncelLen and the nonce data pNonce in the parameter block.

Set pNonce to hold the nonce data returned from C_ WrapKey(). If ulNonceFixedBits is not zero,

then the most significant bits of pNonce contain the fixed nonce. If nonceGenerator is set to
CKG_NO GENERATE, pNonce is an input parameter with the full nonce.

Set the ulNonceFixedBits and nonceGenerator fields in the parameter block.

Set the MAC length ulIMACLen in the parameter block.

Call C WarpKey() for CKM_AES CCM mechanism with parameters wrapping key wK, key to be

wrapped mK, obtaining the final Wrappedkey output and the MAC. The total length of data
processed must be ulDataLen. The output length will be ulDatalLen + ulMACLen.

Set the message/data length ulDatalLen to Zero in the parameter block.This returns a key handle.

Set the nonce length ulNoncelLen and the nonce data pNonce in the parameter block.

The ulNonceFixedBits and nonceGenerator fields in the parameter block are ignored.

Set the AAD data pAAD and size ulAADLen in the parameter block. pAAD may be NULL if

ulAADLen is 0.
Set the MAC length ulMACLen in the parameter block.

Call C UnwrapKey() for CKM_AES CCM mechanism with parameters, unwrapping key wkK,

template, and wrapped key. Including the appended MAC, obtaining a gbtaininga-new key handle

WrapKeyAuthenticated:

Set the message/data length ulDatalLen in the parameter block.

Set the nonce length ulNoncelLen.

Set pNonce to hold the nonce data returned from C WrapKeyAuthenticated(). If ulNonceFixedBits

is not zero, then the most significant bits of pNonce contain the fixed nonce. If nonceGenerator is
setto CKG _NO GENERATE, pNonce is an input parameter with the full nonce.

Set the ulNonceFixedBits and nonceGenerator fields in the parameter block.

Set the MAC length ulMACLen in the parameter block.

Set pMAC to hold the MAC data returned from C_WrapkeyAuthenticated()

Call C WrapKeyAuthenticated() for CKM_AES CCM mechanism wrapping key wK the key to be

wrapped mK, parameter block
The MAC is returned in pMac of the CK CCM_ MESSAGE PARAMS structure.

UnWrapKeyAuthenicated:

Set the message/data length ulDatalLen to Zero as a key handle will be returned.

Set the nonce length ulNoncelLen and the nonce data pNonce in the parameter block

The ulNonceFixedBits and nonceGenerator fields in the parameter block are ignored.

Set the MAC length ulMACLen in the parameter block.

Set the MAC data pMAC in the parameter block before C_UnWrapKeyAuthenticated().

Call S UnWrapMaessagekey() for CKM AES CCM mechanism key wK, wrapped key mK,

parameter block and template, obtaining a new key handle.

In pNonce the least significant bit of the nonce is the rightmost bit. ulNonceLen is the length of the nonce

in bytes.

DBO
Cross-Out

DBO
Inserted Text
Wrap

DBO
Cross-Out

DBO
Inserted Text

DBO
Cross-Out

DBO
Inserted Text
C_WrapKeyAuthenticated

On MessageEncrypt the meaning of nonceGenerator is as follows: CKG _NO GENERATE means the
nonce is passed in on MessageEncrypt and no internal MAC generation is done. CKG _GENERATE
means that the non-fixed portion of the nonce is generated by the module internally. The generation
method is not defined.

CKG _GENERATE COUNTER means that the non-fixed portion of the nonce is generated by the module
internally by use of an incrementing counter, the initial IV counter is zero.

CKG_GENERATE COUNTER XOR means that the non-fixed portion of the 1V is xored with a counter.
The value of the non-fixed portion passed must not vary from call to call. Like
CKG_GENERATE COUNTER, the counter starts at zero.

CKG_GENERATE RANDOM means that the non-fixed portion of the nonce is generated by the module
internally using a PRNG. In any case the entire nonce, including the fixed portion, is returned in pNonce.

Modules must implement CKG_GENERATE. Modules may also reject ulNonceFixedBits values which are
too large. Zero is always an acceptable value for ulNonceFixedBits.

In Encrypt and Dacrypt the MAC is appended to the cipher text and the least significant byte of the MAC
is the rightmost byte and the MAC bytes are the rightmost ulMACLen bytes. In MessageEncrypt the MAC
is returned in the pMAC field of CK_ CCM_MESSAGE_PARAMS. In MesssageDecrynt the MAC is
provided by the pMAC field of CK CCM_MESSAGE PARAMS.

The key type for K must be compatible with CKM_AES ECB and the
C WrapKey()/C _UnWrapKey()/C WrapMessageKey()/C _UnWrapMessageKey() calls shall behave, with
respect to K, as if they were called directly with CKM AES ECB, K and NULL parameters

1.3:41.3.6 AES GCM and CCM Mechanism parameters

¢ CK_GENERATOR_FUNCTION

Functions to generate unigue IVs and nonces.

typedef CK ULONG CK_ GENERATOR FUNCTION;

¢ CK_GCM_PARAMS; CK_GCM_PARAMS_PTR

CK_GCM_PARAMS is a structure that provides the parameters to the CKM_AES_GCM mechanism
when used for Encrypt or Decrypt. It is defined as follows:
typedef struct CK GCM PARAMS ({
CK _BYTE PTR plv;

CK_ULONG ulIvlen;
CK_ULONG ulIvBits;
CK_BYTE PTR pAAD;
CK_ULONG ulAADLen;
CK_ULONG ulTagBits;

} CK_GCM_ PARAMS;

The fields of the structure have the following meanings:
plv pointer to initialization vector

ullvLen length of initialization vector in bytes. The length of the initialization
vector can be any number between 1 and (2*32) - 1. 96-bit (12
byte) IV values can be processed more efficiently, so that length is
recommended for situations in which efficiency is critical.

ullvBits length of initialization vector in bits. Do no use ullvBits to specify the
length of the initialization vector, but ullvLen instead.

DBO
Cross-Out

DBO
Inserted Text
C_WrapKeyAuthenticated

DBO
Cross-Out

DBO
Inserted Text
WrapKey and UnwrapKey

DBO
Cross-Out

DBO
Inserted Text
C_WrapKeyAuthenticated

DBO
Cross-Out

DBO
Inserted Text
C_UnwrapKeyAuthenticated

pAAD

ulAADLen

ulTagBits

pointer to additional authentication data. This data is authenticated
but not encrypted.

length of pAAD in bytes. The length of the AAD can be any humber
between 0 and (2/32) — 1.

length of authentication tag (output following cipher text) in bits. Can
be any value between 0 and 128.

CK_GCM_PARAMS_PTR is a pointer to a CK_GCM_PARAMS.

¢ CK_GCM_MESSAGE_PARAMS; CK_GCM_MESSAGE_PARAMS_PTR

CK_GCM_MESSAGE_PARAMS is a structure that provides the parameters to the CKM_AES _GCM
mechanism when used for MessageEncrypt or MessageDecrypt. It is defined as follows:
typedef struct CK GCM MESSAGE PARAMS {
CK_BYTE PTR pIv;
CK ULONG ulIvLen;
CK_ULONG ulIvFixedBits;
CK GENERATOR FUNCTION ivGenerator;
CK BYTE PTR pTag;
CK_ULONG ulTagBits;
} CK _GCM MESSAGE PARAMS;

The fields of the structure have the following meanings:

plv
ullvLen

ullvFixedBits

ivGenerator

pTag

ulTagBits

pointer to initialization vector

length of initialization vector in bytes. The length of the initialization
vector can be any number between 1 and (2732) - 1. 96-bit (12 byte)
IV values can be processed more efficiently, so that length is
recommended for situations in which efficiency is critical.

number of bits of the original IV to preserve when generating an
new IV. These bits are counted from the Most significant bits (to the
right).

Function used to generate a new IV. Each IV must be unique for a
given session.

location of the authentication tag which is returned on
MessageEncrypt, and provided on MessageDecrypt.

length of authentication tag in bits. Can be any value between 0 and
128.

CK_GCM_MESSAGE_PARAMS_PTR is a pointer to a CK_GCM_MESSAGE_PARAMS.

¢ CK GCM WRAP PARAMS; CK GCM WRAP PARAMS PTR

CK _GCM MESSAGE PARAMS is a structure that provides the parameters to the CKM_AES GCM

mechanism when used for C_ WrapKey to provide return a token generated IV for input into

C _UnWrapKey. ltis defined as follows:

typedef struct CK GCM WRAP PARAMS ({

CK BYTE PTR plv;

CK ULONG ulIvlLen;

CK ULONG ulIvFixedBits;

DBO
Cross-Out

DBO
Inserted Text

CK GENERATOR FUNCTION ivGenerator;
CK BYTE PTR PAAD;
CK ULONG ulAADLen;
CK ULONG ulTagBits;
} CK GCM WRAP PARAMS;

The fields of the structure have the following meanings:

plv pointer to initialization vector
ullvLen length of initialization vector in bytes. The length of the initialization
vector can be any number between 1 and (2°32) - 1. 96-bit (12 byte)
IV values can be processed more efficiently, so that length is
recommended for situations in which efficiency is critical.
ullvFixedBits number of bits of the original IV to preserve when generating an
new V. These bits are counted from the Most significant bits (to the
right).
ivGenerator Function used to generate a new |V. Each IV must be unigue for a
given session.
pAAD pointer to additional authentication data. This data is authenticated
but not encrypted.
ulAADLen length of pAAD in bytes. The length of the AAD can be any nhumber
between 0 and (2°32) — 1.
ulTagBits length of authentication tag in bits. Can be any value between 0 and

128.

CK _GCM WRAP PARAMS PTR s a pointer to a CK GCM WRAP PARAMS.

¢ CK_CCM_PARAMS; CK_CCM_PARAMS_PTR

CK_CCM_PARAMS is a structure that provides the parameters to the CKM_AES_CCM mechanism
when used for Encrypt or Decrypt. It is defined as follows:

typedef struct CK CCM PARAMS ({

CK_ULONG ulDatalen; /*plaintext or ciphertext*/
CK_BYTE PTR pNonce;

CK_ULONG ulNoncelen;

CK_BYTE PTR pAAD;

CK ULONG ulAADLen;

CK_ULONG ulMACLen;

} CK _CCM PARAMS;

The fields of the structure have the following meanings, where L is the size in bytes of the data length’s

length (2 <L <8):
ulDatalLen
pNonce
ulNoncelLen
pAAD

ulAADLen

length of the data where O < ulDatalLen < 2~(8L).
the nonce.
length of pNonce in bytes where 7 < ulNonceLen < 13.

Additional authentication data. This data is authenticated but not
encrypted.

length of pAAD in bytes where 0 < ulAADLen < (2°32) - 1.

ulMACLen length of the MAC (output following cipher text) in bytes. Valid
values are 4, 6, 8, 10, 12, 14, and 16.

CK_CCM_PARAMS_PTR is a pointer to a CK_CCM_PARAMS.

¢ CK_CCM_MESSAGE_PARAMS; CK_CCM_MESSAGE_PARAMS_PTR

CK_CCM_MESSAGE_PARAMS is a structure that provides the parameters to the CKM_AES_CCM
mechanism when used for MessageEncrypt or MessageDecrypt. It is defined as follows:

typedef struct CK CCM MESSAGE PARAMS {

CK_ULONG ulDatalen; /*plaintext or ciphertext*/
CK BYTE PTR pNonce;

CK_ULONG ulNonceLen;

CK_ULONG ulNonceFixedBits;

CK GENERATOR FUNCTION nonceGenerator;
CK BYTE PTR pMAC;
CK ULONG ulMACLen;

} CK _CCM MESSAGE PARAMS;

The fields of the structure have the following meanings, where L is the size in bytes of the data length’s
length (2 <L <8):

ulDatalLen length of the data where 0 < ulDatalLen < 27(8L).
pNonce the nonce.
ulNonceLen length of pNonce in bytes where 7 < ulNoncelLen < 13.

ulNonceFixedBits number of bits of the original nonce to preserve when generating a
new nonce. These bits are counted from the Most significant bits (to
the right).

nonceGenerator Function used to generate a new nonce. Each nonce must be
unique for a given session.

pMAC location of the CCM MAC returned on MessageEncrypt, provided on
MessageDecrypt

ulIMACLen length of the MAC (output following cipher text) in bytes. Valid
values are 4, 6, 8, 10, 12, 14, and 16.

CK_CCM_MESSAGE_PARAMS_PTR is a pointer to a CK_CCM_MESSAGE_PARAMS.

¢ CK CCM WRAP PARAMS; CK CCM WAP PARAMS PTR

CK _CCM PARAMS is a structure that provides the parameters to the CKM_AES CCM mechanism
when used for C_ WrapKey only to provide a token generated nonce and the number of bits to preservse.
It is defined as follows:

typedef struct CK CCM PARAMS {

CK ULONG ulDatalen; /*wrappedkey data*/
CK BYTE PTR pNonce;

CK ULONG ulNoncelen;

CK ULONG ulNonceFixedBits;

CK GENERATOR FUNCTION nonceGenerator;
CK BYTE PTR pAAD;

DBO
Cross-Out

DBO
Inserted Text
preserve

CK ULONG ulAADLen;

CK ULONG ulMACLen;

} CK CCM PARAMS;

The fields of the structure have the following meanings, where L is the size in bytes of the data length’s

length (2 <L <£8):

ulDatalLen length of the data where 0 < ulDatalLen < 2°(8L).
pNonce the nonce.
ulNonceLen length of pNonce in bytes where 7 < ulNoncelLen < 13.

ulNonceFixedBits

number of bits of the original nonce to preserve when generating a

new nonce. These bits are counted from the Most significant bits (to

the right).

nonceGenerator Function used to generate a new nonce. Each nonce must be
unique for a given session.
pAAD Additional authentication data. This data is authenticated but not
wrapped.
ulAADLen length of pAAD in bytes where 0 < ulAADLen < (2°32) - 1.
ulMACLen length of the MAC (output following cipher text) in bytes. Valid

values are 4, 6, 8, 10, 12, 14, and 16.

CK CCM WRAP PARAMS PTR s a pointerto a CK CCM WRAP PARAMS

