	
	
	

	Technical Report

DNV IQM
Supplementary Guidelines for Reference Data Development
Report No. REF OurRef
Revision No. 01
	Date of first issue:
	Project No.:

	22.11.2005
	

	Approved by:
	Organisational unit:

	

	Information Quality Management

	Client:
	Client ref.:

	Company
	

	Summary:

	This document is meant to give supplementary guidelines for development of Reference data.
The guidelines are developed by DNV in a DEX development project for the Norwegian Armed Forces. This project extends the existing OASIS PLCS Reference Data Library (RDL) with classes explicitly stated within the development process of DEXes.

	

	Report No.:
	Subject Group:
	
	

	
	
	
	Indexing terms

	Report title:
	
	Key words
	Service Area

	Supplementary Guidelines for Reference Data Development
	
	
	

	
	
	
	Market Sector

	
	
	
	

	Work carried out by:
	
	

	Fredrik Lied Larsen
Per Myrseth
	
	 FORMCHECKBOX

No distribution without permission from the client or responsible organisational unit (however, free distribution for internal use within DNV after 3 years)
 FORMCHECKBOX

No distribution without permission from the client or responsible organisational unit.
 FORMCHECKBOX

Strictly confidential

 FORMCHECKBOX

Unrestricted distribution

	Work verified by:
	
	

	
	
	

	Date of this revision:
	Rev. No.:
	Number of pages:
	
	

	22.11.2005
	01
	10
	
	

	

	© 2002 Det Norske Veritas AS

All rights reserved. This publication or parts thereof may not be reproduced or transmitted in any form or by any means, including photocopying or recording, without the prior written consent of Det Norske Veritas AS.

Table of Content
Page

11
Purpose

2
Introduction
1
3
Process overview
2
3.1
Local and initial harmonization check
3
3.2
Local spell check
3
3.3
Graph depth analysis
3
3.4
Formal reference data review
3
3.5
Finalize spreadsheet
3
3.6
Relation to figure 1
4
4
Detailed guidelines for reference data library development
4
4.1
Naming classes
4
4.2
Definition
5
4.3
Annotation properties
6
4.4
Raise issues
7
4.5
Versioning classes
7
4.6
Versioning OWL files
8
4.7
The meaning of a class in OASIS PLCS RDL
8
4.8
Leaf classes or node classes
8
4.9
Classes as relations
9
5
References
10

1 Purpose

This document is meant to give supplementary guidelines for development of Reference data.
The guidelines are developed by DNV in a DEX development project for the Norwegian Armed Forces. This project extends the existing OASIS PLCS Reference Data Library (RDL) with classes explicitly stated within the development process of DEXes.

2 Introduction

The Reference Data Library (RDL) developed by OASIS as a joint project is based on ISO 10303-239. Development of a RDL is complicated and therefore a common set of guidelines have been written. This set of guidelines is documented in DEXLib under the help section for developers. The “PLCS Guide for Reference Data Developers” explains how Protègè is used to model an RDL.

This document is an extension of the “PLCS Guide for Reference Data Developers” document explaining supplementary guidelines on how DNV have modelled Reference Data (RD) for their ongoing DEX development project. The supplements are mainly related to:

· Naming conventions for class names

· Guidelines for building class structures (parent - child)

· How definitions should be described

· Alignment to other ISO standards

Further we have also identified a set of semantic challenges to the existing structure. These challenges are related to what are the alternative meanings of a parent child relationship. And what is the meaning of being sibling classes.

Some of the guidelines, we have concluded on late in our process. This means that some of our classes with dc:version 1.0 or dc:version 1.1 are not fully according to our own suggested guidelines. This is part of a traditional iterative development cycle, but we would like to improve our classes in later versions.

3 Process overview

[image: image1.emf]Check for exisitng

class name

Does not exist Exists

Check definition

against

spreadsheet

Adequate

Not adequate

Add Next

class

Raise internal

issue

Identify path in owl

structure

Create class

Add annotation

properties

Check other

classes for

adequate

definition

Not found

Found

All classes added

Developer review

Update RD

spreadsheet

Joint developer

review

Formal review

Add Class

Master Spreadsheet

Checklist

RD spreadsheet

Figure 1 – The process of adding a new class to the Reference Data Library

Figure 2 shows the process of adding a new class to the library of reference data classes. First the class name and path is identified from the master spread sheet in the DEX specification. This information is used to check Protègè for existing classes with the same name or definition. If exiting classes covers the identified business function then those are used, otherwise a new class is needed. A new class is added to the structure according to the identified path, class name and definition, implied that no other class covers the same definition. A spreadsheet is used to track decisions during the adding of a new class to the RDL.

3.1 Local and initial harmonization check

After classes have been added to our local OWL file, we use the dexlib RDL => OWL classes menu to check for naming collisions between our classes and other RD developer’s classes. We also check if the dexlib scripts respond any errors on our RD.
3.2 Local spell check

Based on own XML style sheet we make an html presentation of all the data in our OWL file and uses spell check in Word on definitions and class names. The process also provides visual inspection of the annotation properties of all classes.
3.3 Graph depth analysis

Some classes located in neighbour sub graphs should be at a balanced level in the graph. If RD having a relations to each other are located at to different levels of conceptual abstraction their relationship may become unclear. This activity needs thoroughly understanding OWL, RDL and PLCS. So far we have had a hard time practising this quality check.
3.4 Formal reference data review

The classes developed by the modellers are reviewed by the team comprising the modeller who developed the reference data, a business user from the DEX team and at least one other modeller not involved in the development of that class.

3.5 Finalize spreadsheet

The master spreadsheet containing the DEX specification is modified throughout the RDL development process with some extra columns. These extra columns are added to track the RD development for each business function. Reference data class names that are associated with a business function are stated in the modified spreadsheet together with extra comments if there are any.

During the review process it is important to make sure that the modified spreadsheet is in conformance with the actual contents of the OWL file. That means that all the business functions in the master spreadsheet are assigned an RD class, and that all the RD classes mentioned in the modified spreadsheet are present, as specified, in the OWL structure. It is also necessary to make sure that the spreadsheets are in conformance with each other. This means that if two business functions in different DEXes refer to the same RD class then this property is maintained in the modified spreadsheet and the OWL structure.
3.6 Relation to figure 1

The three different review processes shown in figure 3 are associated with the chapters 3.1 to 3.5. The “Local and initial harmonization check” is together with the “Local spell check” the first tests done by the initial developer, referred to as “Developer Review in figure 1.

The “Joint Developer Review” involves “Graph depth analysis” and testing by the developer and an additional modeller familiar with the RDL. The review examines all classes added by the developer, and also pays special mind to the issues logged during the initial phase.

The “Formal Review” is covered by “Formal reference data review” and “Finalize spreadsheet”.
4 Detailed guidelines for reference data library development

Each reference data class shall be described in a consistent manner according to the guidelines set forth in “PLCS Guide for Reference Data Developers”.

4.1 Naming classes

“PLCS Guide for Reference Data Developers” gives guidelines for the creation of new reference data classes:

The class names must be unique within Reference Data Library. Given that the practice in the ontology community is to give meaningful names (i.e. URI fragment identifiers) for classes, the PLCS RD class names follow that practice.

As the class names are also part of a URI in the OWL language, they may not contain spaces or special characters. The convention for the name is that the first character of the first word is upper case and all other characters are lower case. Words in the class name are separated by the underscore character.

Other general guidelines/practices include the following.

· It is not recommended to put the word class or category or classification in the name of the class. (e.g. a subclass of "Activity" is not "Maintenance_task_class" but "Maintenance_task").

The name of the class is set by the OWL rdf:ID construct. E.g.

 <owl:Class rdf:ID="activity"/>

Alternative labels can be provided for the OWL rdfs:label construct. These labels can be used to provide a name for the class in multiple languages. E.g.

 <owl:Class rdf:ID="Activity">

 <rdfs:label xml:lang="fr">Activité</rdfs:label>

 </owl:Class>

In addition to the guidelines from “PLCS Guide for Reference Data Developers” we suggest the following guidelines on naming classes:

· Class name shall be in singular. Exception is words with no singular form e.g. scissors, binoculars. (related guidelines in ISO 704)

· Extend parent class name with an appropriate prefix. (in accordance with UN/CEFACT ebXML technical specification 2.01 and OASIS Univeral Business Language.)

· grand parent: Identification_code

· parent:Organization_identification_code

· child: Cage_code.

To avoid large class names we must allow truncation. Example: Cage_code could have been Cage_organization_identification_code.

Class path naming:

In some sub graphs (e.g. identification assignment and property assignment) of the RDL there is a need for repeating the entity type a class is related to. If you choose to not repeat the entity type, there seems to be a sibling explosion with a little degree of relations between the siblings. We suggest the following guideline example based on entity type Maintenance_task:

· Include Entity type used in either class name or parent class name. Example:

· grandparent:rd-prp:Identification_code
· Parent:Maintenance_task_code
· Child:Lowest_recommended_maintenance_level
· Child:Maintenance_evolution_sequencer
· Child:Maintenance_task_sequencer
· Child:Recommended_maintenance_level
In this example the parent class points to the Entity type used.

We believe this path design problem could be avoided if all RD where using OWL properties for handling relations. Since OWL properties have not been used as a modelling construct in proposed or schema parts of the RDL, we have found it hard to start using properties in our additional RDL classes.

4.2 Definition

Each new class must have a definition in order to be understood. The definition is set by the rdfs:comment annotation property. In addition to the requirements to definitions described in “PLCS Guide for Reference Data Developers” we suggest the following guidelines for writing definitions:

· Begin with a lower case letter and drop period if definition is only one sentence.

· Not include OWL class names in OWL syntax e.g. Xnnn_ynnn_znnn

· State what the concept is, not only what it is not

· Contain only commonly known abbreviations

· Not contain spelling errors

· Be stated as a descriptive phrase or sentence(s)

· Prioritize essential characteristics of the concept

· Use the same terminology and consistent logical structure for related definitions (check both parent and siblings for consitance)

Recommended textual form for a definition is either:

· Intentional definitions “wxy with vwx and uvw.” or

· Extensional definitions “wxy or a vwx or a uvw.” (enumeration)
Supplementary guidelines can be found in ISO 704, ISO 11179 and ISO 15926 part 6.

4.3 Annotation properties
Annotation properties are used to give information concerning the origin of the RD class. The table below is taken from “PLCS Guide for Reference Data Developers” and identifies all the different annotation properties that can be used in Protègè when developing the RDL. The table also classifies when to use the different properties.

	Annotation Property
	Brief Description
	On Ontology
	On Class
	On Property

	dc:creator (http://dublincore.org/documents/dcmi-terms/#creator)
	person and organization
	Required
	Required
	Required

	dc:modified (http://dublincore.org/documents/dcmi-terms/#modified)
	last date modified YYYY-MM-DD
	Required
	Required
	Required

	dc:created (http://dublincore.org/documents/dcmi-terms/#created)
	date created YYYY-MM-DD
	Required
	Required
	Required

	dc:abstract (http://dublincore.org/documents/dcmi-terms/#abstract)
	brief summary of content
	Required
	No
	No

	dc:title (http://dublincore.org/documents/dcmi-terms/#title)
	formal name
	Required
	No
	No

	dc:source (http://dublincore.org/documents/dcmi-terms/#source)
	standard or resource from which element was taken, use multiple dc:source annotations if required
	Optional
	Required
	Optional

	owl:versionInfo (http://www.w3.org/TR/owl-ref/#versionInfo-def)
	version and subversion identifier n.nn (e.g. 0.1 or 1.1 or 2.43). Will be automatically set to 1.0 upon official publication of full RDL.
	Required
	Required
	Required

	rdfs:label (http://www.w3.org/TR/rdf-schema/#ch_label)
	multi-language label
	No
	Optional
	Optional

	dc:references (http://dublincore.org/documents/dcmi-terms/#references)
	Refers to any standard or other document referenced in the definition of the Reference Data item. use multiple dc:references annotations if required
	No (or will be set automatically upon RDL publication)
	Optional
	Optional

	dc:dateAccepted (http://dublincore.org/documents/dcmi-terms/#dateAccepted)
	The date the Reference Data item reached the "Registered" status in the PLCS RDL.
	No.
	Required when Registered
	Required when Registered

	dc:subject (http://dublincore.org/documents/dcmi-terms/#subject)
	Add keywords or classification codes to classify a RD item. Use multiple dc:subject annotations if required
	No.
	Optional
	Optional

	dc:issued (http://dublincore.org/documents/dcmi-terms/#issued)
	Automatically added date of publication of entire PLCS RDL version.
	Automated
	Automated
	Automated

	dcterms:rightsHolder (http://dublincore.org/documents/dcmi-terms/#rightsHolder)
	Used with rights to define any IPR
	Optional
	Optional
	Optional

Table 1 – List of annotation properties from “PLCS Guide for Reference Data Developers”

[image: image2.jpg]© wiaterial_ist_tem_weight

(nstance of owClass)

acceleration equal o free falintht reference system

N | [} Annotations
[Veteril_ist_tem_weight 1@ Property [Value
5 decrestor Per Hyrseth, DIV
e o | |macae 20050807
decomment I3 desource 150 15026
the wedht of a body, i a materil st i specifc eference systemis] | | owversioninto b
the force which, when appied o the body, woud give tan I v saiiiat R F————

Asserted

erred |

Asserted Conditions

fdee

1 rkprp:Quanified_property

NECESSARY & SUFFICIENT
NECESSARY

=

W properties Wlmm &g

Figure 2 Example of an RD class with annotation properties in Protègè

4.4 Raise issues

All issues uncovered while developing RD shall be logged in the XML structure for such issues, as defined in “PLCS Guide for Reference Data Developers”. (../../data/refdata/plcs_owl/dvlp/issues.xml)

In addition to the common issue list for the RDL the NDLO project has established internal issue lists for the development process of DEX specifications and RD. These issue lists have been used to solve internal RD modelling issues.

4.5 Versioning classes

How to use version on classes is described in “PLCS Guide for Reference Data Developers”.

4.6 Versioning OWL files

The “PLCS Guide for Reference Data Developers” document describes the process for each separate developer to work on a local copy of the RDL. In addition to these guidelines we have used CVS to store our latest version of the OWL file and have given these versions tags for identification. When one DEX has been entered into the RDL then a new tag is assigned to the OWL file with a baseline version and the name of the DEX.
4.7 The meaning of a class in OASIS PLCS RDL

By analyzing the current RDL we have found that a class can be one of the following candidate modelling constructions:

· Root node

· example: schema:PLCS-ARM-LF-ENTITY
· Child meaning inheritance/specialisation (in object-oriented terminology).

· Example: Property => Qualified_property

· Child meaning a characteristic of parent

· Document => Document_category
· Class meaning that there should be an OWL property (relation) between two classes.

· Document_identification_code. Definition: A Document_identification_code is an Idenitification_code that identifies a Document. This class could have been substituted by an OWL property (relation) between Document and Identification_code. For more on classes as relations see below (chapter 4.9 and figure 3).

· A parent is the composition of its children (no example good enough as illustration found at the moment). Could be quite like enumeration, where the enumerated siblings do not inherit parent.

· Multiple inheritance. A few examples of multiple inheritance exists in the RDL.

· Example: Property inherit (is a child of) from Activity_property & Assigned_property & Resource_property. Property now has a graph of children which we believe may conflict with some of its parent. When we have added classes to the Property structure we have not taken into account such conflicts at a higher parent level.

As a consequence siblings are not true siblings according to the intention of OWL.

If possible we have preferred to use a parent – child relationship as inheritance. Our experience though is that we too often have been forced to add OWL classes meaning OWL properties.

An important challenge of the OASIS PLCS RDL is how it should be interpreted and how its semantics should be understood. At the time being much of the semantics and definitions still remains in the Dexlib and the PLCS express model. OASIS PLCS RDL in OWL can not be understood without knowledge of the PLCS express model and dexlib definitions.

4.8 Leaf classes or node classes

Data in the designed DEXes could be related to leaf classes or to node classes.

· Leaf class: a class with no children.

· Node class: class located somewhere in the directed graph of classes possible with children.

We believe that a singular data, exchanged in a DEX instance should have the opportunity to refer to either a node class or leaf class. According to our knowledge this may conflict with PLCS system implementation practice. If this is a conflict, either RD design guidelines should reflect such a demand and be updated or implementation practice should change.
4.9 Classes as relations

Apart from modelling classes from the PLCS model, the RDL also models relations between classes. A relation between two classes is modelled as a separate class that can be located as a child for one of the parts of the relation, or as an individual class elsewhere in the OWL structure. As shown in chapter 4.7 classes can have different meaning in the RDL. This modelling decision leads to possible misinterpretation of the RDL for people without knowledge of the PLCS model.

Relation classes links classes in the OWL hierarchy without explicitly stating this relationship. These classes are modelled along side other children of the parent class. The result is that all siblings are not true siblings in the way stated in the OWL specification. This will be explained further below.

Figure 3 below shows a relation between a document and the identification of that document. This example is described in chapter 4.7.

[image: image3.emf]Document STRING

Id [1:1]

Figure 3 Document identification example

References

	/1/

	ISO 704 : Terminology work — Principles and methods

	/2/

	ISO 11179, Information technology – Metadata registries Part 4 Formulation of data definitions.

	/3/

	ISO 15926 Integration of life-cycle data for oil and gas production facilities. Part 6. (draft version): Scope and methodology for developing additional reference data

	/4/
	OASIS Universal Business Language http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl

	/5/
	UN/CEFACT Core Components Technical specification 2.01 / ISO 15000

	/6/
	OWL (Web ontology language) http://www.w3.org/2004/OWL/

	/7/
	RDF (Resource Description Framework) http://www.w3.org/RDF/

	/8/
	UML (Unified Modelling Language) http://www.uml.org/

Please do not delete the Bookmark named “numPages” on this last page in the report.

- o0o -[image: image4][image: image5][image: image6]
1
Det Norske Veritas

_1194168383.vsd
Checklist

Add Class

Check for exisitng class name

Does not exist

Exists

Check definition against spreadsheet

RD spreadsheet

Adequate

Not adequate

Add Next class

Master Spreadsheet

Raise internal issue

Identify path in owl structure

All classes added

Create class

Add annotation properties

Check other classes for adequate definition

Not found

Found

Developer review

Update RD spreadsheet

Joint developer review

Formal review

_1194172251.vsd
￼

LOGICAL

BOOLEAN

BINARY

INTEGER

NUMBER

REAL

STRING

￼

