PLCS Information pages from DEXlib 2005-11-23 : 14.56

	PLCS DEX Information Pages
	Info T.O.C.

Welcome to the PLCS DEX Information Pages

The purpose of these pages is to provide information concerning the OASIS PLCS Data EXchange Specifications and related technology. DEX Specifications are aiming at establishing structured data exchange and sharing to support complex engineered assets throughout their total life cycle. These Data Exchange Specifications are based upon the ISO 10303 (STEP) Application Protocol 239 (Product Life Cycle Support).

[image: image1.png]
Figure 1 — OASIS - Organization for the Advancement of Structured Information Standards.

The OASIS PLCS TC is responsible for defining, developing, testing and publishing of OASIS PLCS DEX Specifications, and for liaison with ISO TC 184/SC4. More information can be found in the OASIS section. The source for this information resides electronically in DEXlib. If you have a menu on the left hand side of the screen, and a navigation bar at the top, then you're in DEXlib! Read more about this environment in the section named DEXlib. These information pages are maintained by the OASIS PLCS TC.

What information can be found where?

The PLCS DEX Information Pages are divided up into different sections.

· If you're new to this, the Business Overview and Technical Description sections will give you a good start.

· If you're taking part, or plan to take part in the development of existing or new DEX Specifications, the Developers Information section is where you should go.

· If you're about to implement DEX Specifications, you'll probably find what you're looking for in the Implementers Information section.

For a complete overview on this documentation, have a look at the table of contents by clicking this link, or 'Info' in the top navigation bar.

	Table of Contents
	Info T.O.C.

This index will hopefully assist you in finding a section that answers your questions. If you have any other questions or suggestions, please don't hesitate to post them to anyone of the OASIS PLCS TC staff. You'll find their names and other contact information in the OASIS PLCS TC section.
· Data Exchange Specifications
· Business overview
· Technical Description
· ISO 10303 parts
· EXPRESS modelling language
(EXPRESS, EXPRESS-G, EXPRESS-I)

· File transfer formats
(ASCII and XML)

· Application Modules
· Application Protocol 239
· DEX Specifications
· Capabilities
· Capability Templates
· Business Concept Specifications
· Reference data
· OWL - Web Ontology Language
· Ontology meta data - Dublin Core
· Exchange Contract
· Implementers Information
· Introduction
· Modelling approach
· Setting attribute values
· Testing
· Developers Information
· Development process
· Developing DEX Specifications
· EXPRESS long forms
· Developing Capabilities
· Developing Business Concept Specifications
· Developing Reference Data
· Raising and managing issues
· Reviewing
· Capability Review Template
· Testing
· Additional information
· Description of XML tags
· Administration of development output
· OASIS PLCS TC
· Organisation and tasks
· Overall development process
· Contact information
· Aliason and related standards

· ISO 15926 - Oil and gas
· ISO 13584 - Parts Library
· PDM Schema
· DEXlib
· CVS access guide
· Developer download
· Navigation instructions
· The DEXlib directory structure
· Publishing HTML
· FAQ - Frequently Asked Questions about DEXlib
· Software
· Graphical Express
· PuTTY
· WinCVS
· Protégé

· Instance diagram tools

· Graphical Instance
· Instance Explorer
· Ant
· Saxon
· Java RE/VM
	Data Exchange Specifications - Business overview
	Info T.O.C.

Introduction

--- THIS PAGE IS NOT COMPLETED! ---

The ISO standard 10303-239:2005 (PLCS - Product Life Cycle Support) specifies an information model that defines what information can be exchanged and represented to support a product through life. Examples of such information are,

· information for defining a complex product and its support solution

· information required to maintain a complex product

· information required for through life configuration change management of a product and its support solution

Main concepts

In order to make the PLCS information model suited for many different business contexts, and appropriate for future contexts, it is deliberately generic. The model can therefore be made more precise with business specific terms. The model term 'identifier' can be classified as e.g. 'product number', if this is the term used by the sending or receiving organisation. This technique is referred to as "Reference Data".

Although the model is generic, it is still quite large. In order to support existing data exchange needs, the DEX Specifications has been created. The needs were identified during the initial activity modelling session when the standard was created, and each one is technically detailed in the DEX Specifications. Examples of information that needs to be exchanged are product structures, maintenance plans and work requests.

Capabilities are building blocks from which a DEX specification is constructed. They are used to accelerate DEX development and to avoid different interpretations of equivalent concepts in different DEX Specifications. Capabilities ensure a common interpretation of PLCS, avoid multiple dialects of PLCS, and reduce the amount of documentation in these information pages.

These main concepts are all further explained in the Technical description section.

The role of a DEX Specification

The information model defined by ISO 10303-239 (PLCS) has a scope that is wider than most applications or any single data exchange. So it is unlikely that any piece of software will be able to declare compliance to PLCS as PLCS covers more than the software can handle. It is also going to be difficult to contract for data to be provided according to ISO 10303-239 as the scope is so large.

Reason for restricting the scope of the information model...

The DEX Specifications (Data EXchange Specifications) aim to address this problem by providing a way of narrowing down the scope of the information model to be used in any given exchange.

[image: image2.png]
Figure 1 — Information exchange using a DEX File.
A data package conforming to a DEX Specification is known as a DEX file.

Benefits

Benefits of applying PLCS DEX specifications to your data exchange... (look at the Business concept section for example text...)

The path-xxx must be reset.

More...

Exchange contracts

How a DEX specification can act as an Exchange Contract... (Detailed description in the Tech section)

How do I use a DEX specification

(principles for selecting and implementing) How and when to create a new DEX specification; - refining an existing one - defining a new DEX specification (company, domain, language, etc)

Development organisations

The PLCS standard was developed by the SC4-TC184 Further information on this Technical Committee and their other areas of work can be found at their web site (http://www.tc184-sc4.org/). The work on the DEX Specification and other areas concerning the application of PLCS is carried out under the flag of the OASIS PLCS TC.

	Technical description
	Info T.O.C.

Introduction

ISO 10303-239 (PLCS) specifies an information model that defines what information can be exchanged and represented to support a product through life. This definition is achieved using the EXPRESS information modelling language.

The basic data structures that are exchanged are defined by EXPRESS Entities. For example in PLCS there are entities defining Parts, versions of parts (Part_versions) people (Person). Each entity may have attributes that provide further information about the thing being represented by an entity. For example, a person has a first name and last name. These are attributes of a Person.

The information model defined by ISO 10303-239 (PLCS) has a scope that is wider than most applications or any single data exchange. So it is unlikely that any piece of software will be able to declare compliance to PLCS as PLCS covers more than the software can handle. It is also going to be difficult to contract for data to be provided according to ISO 10303-239 as the scope is so large.

The DEXs (Data EXchange Set) aim to address this problem by providing a way of narrowing down the scope of the information model to be used in any given exchange.

In addition to narrowing the scope of information exchanged, the DEXs aim to provide usage guidance as to how the entitles should be used.

There are a number of parts of the PLCS model that will be common to many DEXs. (e.g. date and time). Rather than each DEX replicating the usage guidance for these, they are packaged into chapters called "Capabilities" that are reused across different DEXs. So a DEX is constructed from a set of capabilities and each capability describes the set of PLCS entities that are required to represent a particular concept.

As DEX reuses capabilities different interpretations of equivalent concepts in different DEXs are avoided.

The information model defined by ISO 10303-239 (PLCS) is quite generic. It hold no business specific terms, which means that the model enteties in some way must achive this semantic. This is done through classification with so called Reference data.

In summary:

· A DEX defines a subset of the ISO 10303-239 (PLCS) information model against which software can claim conformance and data exchange contracts can be written.

· A DEX uses capabilities to provide guidance on how the information model should be used. In other capabilities words describes how the entities are to be used to represent a given concept.

· Entities are the atomic structures that are used to define PLCS.

· Reference data adds business specific semantics to the entities.

DEX architecture

The DEX architecture is shown in Figure 1, and comprises:

· DEX Specifications;

· Capabilities;

· Business concepts;

· Reference data;

· Data Exchange agreements.

These are described in the following sections.

[image: image3.png]
Figure 1 — Relations between DEXs, Capabilities, Business Concept and Reference Data.
Conventions in DEXlib

Reference data

Model diagrams

Instance diagrams

Instance diagrams shows instances (denoted by the lower-right triangle with instance number, for example '#510') of EXPRESS entities. Each rectangular box denotes an instance of an entity. The lines between the boxes represent attributes which form relationships from one to the other (in the direction of the line ending in a small open circle ---o). Some entities are abstract and are only instantiated through their subtypes, which inherit any attributes present in the supertype. On the diagram, this is indicated by supertype=> i.e. the name of the supertype followed by the symbols = and >. The name of the subtype instantiated has no symbols following the name. The basic attributes shown are in italic font in the format attribute name=value where the name of the attribute is followed by it's value. An empty string is denoted by single quote marks ' ', while an un-populated attribute is denoted by the symbol $.

Relationship to PDM Schema

	Technical description - DEX Specifications
	Info T.O.C.

About DEX Specifications

A PLCS DEX Specifcation is a selected subset of the PLCS Integrated Data Model designed to support efficient exchange of information between IT systems or organizations. The DEXs are defined to support specific business processes. A DEX may support a part of, one or several arrows from the PLCS Activity Model. The PLCS DEXs can be used to:

· Automate the process of populating one single Life Cycle PDM system.

· Automate an ongoing exchange of data between different IT systems that are PLCS compliant and share the same information management rules.

· Demonstrate compliance of a software application to an agreed set of information management rules, based on the PLCS standard.

The index to the left lists the available Data Exchange Sets (DEXs). Each DEX contains:

· an introduction, explaining the nature and purpose of the exchange set.

· a scope statement, defining the permitted information content.

· a business context for the data exchange, including an extract from the AP239 Application Activity Model coloured to show the information flows (arrows) that the DEX supports.

· an overview of the DEX information model.

· reference to the individual Capabilities used by the DEX to specify its contents.

· identification of the AP239 Implementation Module from which the DEX Long form is derived.

· a list of subordinate modules and entities used by the DEX.

Identification of a DEX Specification

Each DEX Specification is identified by a number, an identifier and a name, e.g.

· number — D001

· identifier — product_breakdown_for_support

· name — Product Breakdown for Support

These are assigned to the DEX Specification in the initial development process , when the need for the DEX Specification has been established.

Relationship between different DEX Specifications

Different DEX Specifications are used in the products different life cycle stages. How they relate to each other is explained in figure 1.

[image: image4.png]
Figure 1 — How DEX Specifications relate to each other.
	Technical description - Capability
	Info T.O.C.

About PLCS Capabilities

The Capabilities are the building blocks from which a DEX is constructed. Capabilities perform a similar function to Modules within STEPmod although there is not a one-to-one correspondance. They are used to accelerate DEX development and to avoid different interpretations of equivalent concepts in different DEX Specifications.

[image: image5.png]
Figure 1 — Structure of a capability.
The structure of the capability is as shown in Figure 1 and comprises:

· an introduction, explaining the nature and purpose of the capability.

· a business overview.

· a description of the information model used by the capability, with examples of its use.

· a full specification of the information model used by the capability, derived from the relevant AP239 Implementation Module.

A capability is a portion of the PLCS data model that is reused in instantiations of the information model. A Capability is independent of business context and domain of the instantiations. Reusability is solely based on the structural similarity of the instantiations; a Capability consists of a fixed set of entities, relationships, and internal, fixed-value attributes. A Capability may be regarded as a macro-entity with a set of parameters. Its purpose is not in data modelling, but in describing typical instantiations of a portion of a data model.

Why Capabilities:

· To ensure a common interpretation of PLCS.

· To avoid multiple dialects of PLCS.

· To reduce the amount of documentation for the PLCS usage guide.

· To simplify instantiation of the PLCS data model.

A capability can be identified as one of three types/families:

· Representing - A full data set describing and classifying the target This would always include the provision of a referencing function.

· Referencing - Enabling a DEX to identify a target without the need to send the complete representation. This would always include an identification function.

· Assigning - The ability to attach routine pieces of additional information, as required, to elements within a representation. (The use of "Assigning" as the introductory verb to the capability is not always appropriate and is therefore not mandated.)

What is a Capability

A capability identifies a subset of the information model that can be used to define a particular business term. For example rerpesenting a part.

Each capability provides a definition of the information model and usage guidance on the model.

Each capability defines a set of templates. These are patterns that define precisely which entities are to be instantiated in order to represent a given business term. A template may use other templates in its definition.

Identification of a Capability

Each Capability is identified by a number, an identifier and a name, e.g.

· number — C001

· identifier — assigning_identifiers

· name — Assigning Identifiers

These are assigned to the Capability in the initial development process , when the need for the capability has been established.

	Technical description - Capability Templates
	Info T.O.C.

Introduction

This section describes Capability templates. First the concept of a template is introduced, then an overview of how a template is defined in a capability.

A template represents a named abstraction of a grouping of ISO 10303-239 entities that are to be instantiated in order to represent the concept. A template is analogous to a procedure in procedural programming languages.

The template will define:

· What entities to instantiate;

· What attribute values to set on the entities;

· What reference data to be assigned (Both mandatory and optional classification).

This will be represented both graphically and textually.

About Capability Templates

A capability template defines a pattern that identifies precisely which parts of the information model is to be instantiated to represent a given business term. For example, to specify how to assign an organization to something such as a part in a role such as the design authority.

The pattern defined by the template is described both graphically and textually.

Each template can then be used in other templates.

Reading Capability Templates

An example of how a Capability Template works can be made by looking at the Capability "assigning_reference_data", which represents the assignment of a class (...explanation...) to something. The EXPRESS-G model diagram showing the entities that are to be instantiated are shown in Figure 1 below. A pattern like this is used throughout ISO 10303-239 to assign reference data. Therefor a number of EXPRESS-G and instance diagrams will have to repeat this pattern again and again, which will lead to complex and cluttered diagrams. Consequently a template can be created that provides an abbreviation for this pattern. This is what is called a Capability Template.

[image: image6.png]
Figure 1 — Entities to be instantiated by assigning_reference_data template
As well as specifying the group of entities to be instantiated, the template can also specify values for the entity attributes. These values may be mandatory, in other words the attribute always has a given value, or may be specified when the template is used. For example, the External_class_library description attribute shall always be set to '/IGNORE' wherever it is used. The Class name attribute however may be specified when the template is used. For example, when identifying a part number reference data is assigned to an Identification_assignment entity and the Class name attribute is set of 'Part_identification_code'. The values are set on the attributes by defining parameters on the template, which are set when the template is used. This is analogous to arguments in procedures in procedural programming languages.

There may be situations in which it is necessary to assign an entity to an entity defined in the template. For example, the template "assigning_identification" specifies that the entity Identification_assignment should be instantiated to assign the identifier. There are cases when a date should be assigned to the Identification_assignment entity. For example to represent when the identifier was assigned. A template can therefore have a reference parameter which is used to mark a particular entity in a template as being referenceable from outside the template. This is analogous to a global variable in procedural programming languages.

A template can be used in an information model (EXPRESS-G diagram) to show a named abstraction of EXPRESS entities to be instantiated, (See Figure 2 and 3 for an example) and can be used an instance diagram to show an example of a template being used (See Figure 4 for an example).

Templates for Information models - Graphical representation

The graphical representation of a template used in a DEX information model includes:

1. A blue rectangle shaded yellow indicating a template;

2. The name of the template is in bold text in the rectangle;

3. If the rectangle has dashed lines then the use of the template is optional - otherwise the template is mandatory;

4. The parameters of the template are included in the rectangle. If the parameter is to be set to a particular value, then it shall be assigned in the parameter call, e.g. date_class_name='Start_date';

5. If any entity in the template is an assigning entity, i.e. it has an attribute whose type is another entity, the assignment is represented by an arrow from the template rectangle. (For example the blue arrows with "items" text in Figure 2 below).

6. Templates or entities can be assigned to an entity "in" the template. This is represented by an arrow pointing at the template. In order to identify which entity in the template is being referenced, a reference parameter would have been set up and is listed next to the arrow head, prefixed by ^. An example is provided below in Figure 2 and 4.

As the graphic for the template may be large, a miniaturised symbol can be used for the template. This comprises:

1. A blue rectangle shaded yellow indicating a template;

2. A short name for the template in bold text in the rectangle;

3. If the rectangle has dashed lines then the use of the template is optional;

An example of the graphical form for templates for use in a model diagram is shown in Figure 2.

The diagram shows an EXPRESS-G diagram representing the entities to be instantiated to assign an organization. The diagram shows a number of templates that are assigning entities. For example, the mandatory template "assigning_reference_data" is assigning to the entity "Organization_or_person_in_organization_assignment". The optional template "assigning_calendar_date" is assigning a date to the same entity.

The diagram also shows the Organization and Organization_or_person_in_organization_assignment entities being being marked as reference parameters (^organization and ^organization_assgn respectively) that can be referenced from outside the template. An example of the reference parameters being assigned to is given below in Figure 4.

[image: image7.png]
Figure 2 — Graphical representation of assigning_organization template
The same example using miniaturised templates is shown in Figure 3.

[image: image8.png]
Figure 3 — Graphical representation of assigning_reference_data template
An example showing the assignment of an entity to an entity "in" the template is given in Figure 4 below. The template "assigning_calendar_date" is being assigned to the reference parameter ^organization_assgn on the "assigning_organization" template. The reference parameter ^organization_assgn is bound to the Organization_or_person_in_organization_assignment entity in the "assigning_organization" template.

[image: image9.png]
Figure 4 — Graphical representation of assigning a template to an entity in a template
Templates for Instance Diagrams - Graphical representation

Instance diagrams show example instantiations of the model, i.e. instances of entities. The diagrams have been extended to include a graphic representing the template showing the instantiation of the template. It includes:

1. A rounded rectangle indicating an instantiated template;

2. An identification of the instantiated template in the diagram, prefixed by @;

3. The name of the template being instantiated;

4. The values passed as parameters to the template;

5. An assignment of the template to other instances (the arrow).

As the graphic for the instantiated template may be large, a miniaturised symbol can be used for the template. This comprises:

1. A rounded rectangle indicating an instantiated template;

2. The object identifier (OID) of the instantiated template, prefixed by @;

3. The short name of the template being instantiated;

Where miniaturised templates are used, there may be a table below the instance diagram showing the values of the parameters used.

An example of the graphical form for templates for use in an instance diagram is shown in Figure 5. The figure shows an instance diagram showing the entities instantiated to represent an organization owning a bicycle. The 'BikeHire Limited' organization is assigned to a bicycle (represented as a Product_as_realized) in the role of "Owner_of". The diagram shows two instantiated templates. @1assigning_classified_identification and @16assigning_reference_data.

[image: image10.png]
Figure 5 — Graphical representation of instantiated templates

The same example using miniaturised instantiated templates is shown in Figure 6.

[image: image11.png]
Figure 6 — Graphical representation of miniaturised instantiated templates
The following templates are instantiated in the diagram:

	Template
	Parameters

	@3
	asg_cls_id
	items=
#17
	org_id=
BikeHire Limited
	org_class_name=
Organization_name
	org_ecl_id=
http://www.plcs.org/rdl

	@16
	asg_rd
	items=
#18
	class_name=
Owner_of
	ecl_id=
http://www.plcs.org/rdl
	

Templates definition

Templates are defined within a capability. This section describes the various section in the template definition.

Each template has a name, a description, a set of restrictions, a set of input and reference parameters and an instantiation path, where the instantiation path defines the EXPRESS entities that are to be instantiated. The template also includes Model diagrams and Instance diagrams.

Template name

The name provides an identifier for the template that is unique to DEXlib.

Template description

The description of the template is a free text description of the purpose of the templates.

Template restrictions

The template restrictions describe any constraints on the usage of the template. E.g. State when the template should not be used.

Template input parameters

Each template will define a set of input parameters. These allow values to be passed to the template when used in an instantiation path. The values can then be set to attributes in entities specified in the instantiation path.

Input parameters are passed into the template and their use in the path is indicated by @<param name>.

Each parameter may be marked as optional, indicating whether a value must be provided for the parameter.

A default value may be provided for the parameter.

The type of the parameter value may be specified as follows:

· STRING, NUMBER, INTEGER, REAL,

· BOOLEAN (which has values TRUE FALSE)

· LOGICAL (which has values TRUE UNKNOWN FALSE)

· CLASS indicating that the type must a class defined in reference data. The possible classification are defined by classification element.

· URN, URL (Strings that are URNs or URLs)

· ENTITY (an ENTITY - the actual entity is defined by the attribute entity_type)

· SELECT (a SELECT - the actual select is defined by the attribute select_type)

NOTE Where the type is a class, then a possible set of classes can be identified. These may the super classes i.e. the class and its sub classes are valid values, or an individual class, in which case just the individual class is valid.

Template reference parameters

EXPRESS entities specified in the instantiation path can be bound to reference parameters. The reference parameter can then be used elsewhere in the instantiation path, in effect providing local variables.

The binding of an entity in a instantiation path to a reference parameter is done by enclosing the reference parameter, marked by ^ and the entity in %%. For example the entity External_class, can be bound to the reference parameter ^ext_class as follows:

%^ext_class = External_class%

The External_class can then be used elsewhere in the path by the use of ^ext_class.

If these entities are to be referenced when the template is used in the instantiation path of another template, then they are declared in the template heading as reference parameters.

Template instantiation path

The instantiation path defines the set of entities that are to be instantiated by the template. It specifies:

· entities to be instantiated;

· the binding of an instantiated entity to a parameter;

· values assigned to attributes on an entity where the values are default values or values passed to the template via template parameters;

· the instantiation of any entity assigned an entity already instantiated;

· the invocation of templates to instantiate the entities defined by that template;

NOTE The signature for invocation is the name of the template, plus the parameters. When using the template in a instantiation path, the signature is enclosed in //. E.g.
/assigning_reference_data (items=^this, class_name=@date_class_name, ecl_id=@date_ecl_id)/
· Single line comments;

NOTE comments are on one line and prefixed by --, where the comment is terminated by the end of that line.

The instantiation path is derived from the ISO 10303 SC4 reference path syntax (SC4 Document: QCN241) so must follow an EXPRESS instantiation.

The instantiation path may invoke other templates.

The following notational conventions apply for the definition of instantiation paths:

	||
	enclosed section constrains the supertype entity;

	->
	the attribute, whose name precedes the -> symbol, references the entity or select type whose name follows the -> symbol;

	<-
	the entity or select type, whose name precedes the <- symbol, is referenced by the entity attribute whose name follows the <- symbol;

	[i]
	the attribute, whose name precedes the [i] symbol, is an aggregate; any element of that aggregate is referred to;

	[n]
	the attribute, whose name precedes the [n] symbol, is an ordered aggregate; member n of that aggregate is referred to;

	=>
	the entity, whose name precedes the => symbol, is a supertype of the entity whose name follows the => symbol;

	<=
	the entity, whose name precedes the <= symbol, is a subtype of the entity whose name follows the <= symbol;

	=
	the string, select, or enumeration type is constrained to a choice or value;

	\
	the instantiation path expression continues on the next line;

	--
	the text following is a comment;

	//
	Enclosed section invokes a template. The word following the / is the name of the template. The parameters to the template are name value pairs defined in () . E.g.
/assigning_reference_data (items=^this, class_name=@date_class_name, ecl_id=@date_ecl_id)/

	@
	The text following the @ is the name of a parameter that has been passed into the template. E.g.
External_class.name = @class_name

	%%
	Enclosed section specifies that the entity is bound to a parameter, indicated by ^, that can be referenced from outside the template. E.g.
%^ext_class = External_class%

	^
	The text following the ^ is the name of a reference parameter that can be referenced from outside the template.

	$
	The text following the $ identifies a reference parameter in the preceding template call. The syntax is $<template_name>.<reference_parameter>, where <template_name> is the name of the template and <reference_parameter> is the name of a reference parameter for that template. E.g.
/assigning_organization(items=^part, org_assgn_class_name='Owner_of', org_id_class_name='CAGE')/
%^org_assgn = $assigning_organization.organization_assgn%
The template assigning_organization has a reference parameter ^organization_assgn. This is identified by $assigning_organization.organization_assgn and has been bound to the local reference parameter ^org_assgn.

Table 1 — Instantiation path syntax
Template example

Figure 6 shows a template assigning_organization. The template has 5 input parameters:

· org_id
The name or identifier of the organization.

· org_id_class_name
The name of the class being used to classify the identification (Identification_assignment) of the organization. This provides the role or reason for the identification. For example CAGE code.

· org_id_ecl_id
The idenitifier of the External_class_library storing the definition of the class referenced by the parameter @org_id_class_name class.

· org_assgn_class_name
The name of the class being used to classify the assignment of the organization. (Organization_or_person_in_organization_assignment) This provides the role or reason for the assignment. For example 'Owner_of'.

· org_assgn_ecl_id
The identifier of the External_class_library storing the definition of the class referenced by the parameter @org_assgn_id_class_name.

· items
The items to which the organization is assigned.

These are shown in the diagram in bold blue italic text. The digram also shows how the parameters are used to set values on the instantiated entities.

The template has two reference parameters:

· organization which is bound the instantiated entity "Organization".

· organization_assgn which is bound the instantiated entity "Organization_or_person_in_organization_assignment".

The reference parameters are shown in the diagram in bold blue text prefixed by a ^.

[image: image12.png]
Figure 7 — Graphical representation of miniaturised instantiated templates
The template path for the assigning_organization template shown above in Figure 7, is as below. The comments (lines starting with --) describes each line.

 -- Instantiate an Organization

 -- NOTE - an organization entity should only be instantiated once for

 -- any organization

 Organization

 -- Bind the Organization to the parameter ^organization.

 -- The parameter is a reference parameter so the Organization

 -- entity can be referred to when this template is used.

 %^organization = Organization%

 -- Set the Organization attributes id and name to be ignored

 Organization.id = '/IGNORE'

 Organization.name = '/IGNORE'

 -- Identify the Organization

 /assigning_classified_identification(items=^organization,

 id=@org_id,

 id_class_name=@org_id_class_name,

 id_ecl_id=@org_id_ecl_id)/

 -- Instantiate an Organization_or_person_in_organization_assignment

 Organization_or_person_in_organization_assignment

 -- Bind the Organization_or_person_in_organization_assignment

 -- to the parameter ^organization_assgn

 -- The parameter is a reference parameter so the

 -- Organization_or_person_in_organization_assignment entity can be

 -- referred to when this template is used.

 %^organization_assgn = Organization_or_person_in_organization_assignment%

 -- Set the Organization_or_person_in_organization_assignment

 -- role attribute to be ignored

 Organization_or_person_in_organization_assignment.role = '/IGNORE'

 -- Assign the organization to the

 -- Organization_or_person_in_organization_assignment

 Organization_or_person_in_organization_assignment.assigned_entity -> ^organization

 -- classify the Organization_or_person_in_organization_assignment

 /assigning_reference_data(items=^organization_assgn,

 class_name=@org_assgn_class_name,

 ecl_id=@org_assgn_ecl_id)/

 -- Assign the Organization_or_person_in_organization_assignment.items

 -- to the instances passed into the template through the @items

 -- input parameter

 Organization_or_person_in_organization_assignment.items -> @items

	Technical description - Business Concept Specifications
	Info T.O.C.

About PLCS Business Concepts

The PLCS DEXs are defined using standard terminology and support activities defined in the ISO 10303-239 activity model. Whilst this provides a definition of a data exchange that satisfies a particular business need, it is still too generic for defining a contractual data exchange agreement. In particular:

· the DEX is defined to satisfy a high level business activity, not necessarily the precise business process that is required by the data exchange;

· the DEX may not be expressed in terms that are used by the business, instead standard PLCS terms are used;

· the DEX will not include the reference data required for the business;

· the DEX specifies how to represent something, not what is to be included in the exchange.

Consider for example, a maintenance feedback form for reporting on aircraft repair and maintenance. This form will define exactly what information is required to be exchanged. A PLCS DEX will however specify "how" to represent the information on the form. However, this will be in general terms and is likely to be able to represent a lot of information that is not required on the form. Furthermore, the PLCS DEX does not make explicit what is to be recorded, namely all of the entries in the Form.

The approach is therefore to define the business term and explain how this is represented (mapped) into PLCS. This is done via a "business concept" which provides a definition of the business term and a description of the PLCS model that is used to represent it. This representation is defined by referring to capabilities and templates.

In addition to defining the business concept, it is important to identify the context in which the business concept has been defined as a business term may be used in many different contexts to mean different things. Examples of the context are a project, a company, or a business process.

In order to define a data exchange, the business concepts are collected together to form a "Business DEX". In addition, the PLCS reference data is extended to incorporate the business reference data.

The set of business concepts then provide a library of mappings from business terms to PLCS that can be reused.

A business concept consists of:

· Free text description/definition of the business concept:

· What is the business concept

· In which context is it used

· What are the distinguishing characteristics

· What makes it different from similar business concepts used in positive terms

· Textual mapping to the capability/capabilities that represent the concept. Informal textual mappings between business concepts and PLCS concepts shall include the entities and capabilities that describe their general usage.

· Description of the applicable reference data

· Constraints, if needed

· Instance diagram

· Relation to other business concepts:

· Synonyms (different word for the same concept)

· Homonyms (same word used for different concepts)

· Similar to (similar concepts, e.g. Initial_provision_spare_part_list, allowance_part_list)

· Identification of the source for the definition/description of the business concept

· Informal textual mapping to the capability/capabilities that represent the concept

· Identify entities and ref data used

· Optional: formal mapping

· Listing of the applicable reference data

· The default reference data should automatically be extracted from the capability

· The business concept may identify the reference data to be used to classify entities. If that reference data is to be used it shall be subclasses of standard reference data identified in the capability. For example a Part may be classified as a Parts list. This will be identified in the relevant capability. In the business concept an Allowance parts list which is a sub-class of Parts list

· Rules

· Format
Textually description (structured English) of all rules to be written in structured English (e.g. Gellish). Source of structured English: www.simplifiedenglish-aecma.org

· Optional: Formal documentation of rules.

· Rule types

· Characterizations for the business concept

· Constraining values

· Instance diagram

· Style:
Complete instantiation of all entities except entities included in the core capabilities. Within each core capability we shall define a macro/template that specifies a pattern of instantiated entities and identify the attributes for which values need to be provided (the parameters of the template). The template will be represented as a box plus parameters which will then be reused throughout in other capabilities and business concepts.

· Hyperlinks to other business concepts, capabilities, synonyms, homonyms etc.

	Technical description - Reference data
	Info T.O.C.

About PLCS Reference data

In order that the PLCS information model can be used in many different business contexts, it is deliberately generic. In other words EXPRESS entities are provided for representing constructs such as parts and properties. More precise semantic definition of constructs such as a safety critical part, or the number of gun firings property are not represented directly in the ISO 10303-239 standard. Instead provision is made to enable the same precision by classifying the basic constructs so refining or augmenting the meaning of the entity.

For example, there are many different types of properties associated with components that are relevant to product life cycle support. The information model allows the properties that can be associated with parts to be classified. Such classification is then used to specify the specific type of property. Any set of specific property types, such as mean time to failure that could have been provided by explicit modelling in the standard is likely to be incomplete. Furthermore, as business practices change, different properties are likely to be required over time and these can be introduced by means of a new class.

This approach relies on the use of a common set of classes between partners in a data exchange, together with a shared understanding of what each class means. This is referred to as "Reference Data". Reference data is defined to be life-cycle data that represents information about classes or individuals which are common to many facilities, or of interest to many users.

The Reference data classes are held in a shared class library referred to as a "Reference Data Library". A Reference Data Library (RDL) is a managed collection of reference data. Reference data is a key success factor for consistent sharing and integration of data, i.e. to ensure consistent meaning of data. The reference data add semantics to the AP239 model.

· PLCS Reference data
The standardized PLCS Reference Data is created and published using the W3C Web Ontology Language called OWL which became a W3C Recommendation in February 2004. While OWL may have any of several formats, the OWL XML syntax is used for the PLCS Reference Data. This allows the use of XML-related languages and tools for the creation and management of the Reference Data.

The develpment process is described in the Devlopers information section.

· Business specific reference data

These reference data are business specific and will not be subject to standardization through OASIS.

Overview

The standardized PLCS Reference Data is made up of several related datasets:

· a representation of the PLCS EXPRESS schema;

· the use of a subset of the Dublin Core meta-data elements and terms for internal management of the Reference Data (e.g. creator and date modified);

· the Reference Data itself, which may include Classes, a Class hierarchy, Properties of the Classes and Instances or Individuals based on the Classes and relationships that specify which Reference Data elements are applicable for which PLCS EXPRESS schema elements;

· an overarching Reference Data Library dataset that combines the other datasets constituting the complete library.

Types of Reference Data

There are two types of Reference Data applicable to PLCS DEX usage scenarios:

1. PLCS standard Reference Data published through the OASIS PLCS Technical Committee. This is the Reference Data that all PLCS implementations must be able to support and that is the basis for the second type of Reference Data.

2. Extensions to the standard Reference Data. These may be shared, and perhaps standardized, across an industry sector, or may be project-, contract- or company-specific.

Each organization or project may extend the standardized Reference Data. Extensions are defined by importing the complete Reference Data Library and adding organization- or project-specific Subclasses of the standardized Reference Data Classes. Extensions are intended to be managed in separate datasets and only merged back into the standardized PLCS Reference Data as part of a harmonization, integration and revision process.

Information Technology for Publishing the Reference Data

The standardized PLCS Reference Data is created and published using the W3C Web Ontology Language called OWL. OWL became a W3C Recommendation in February 2004. Each dataset making up the standardized Reference Data is an OWL ontology itself. Each OWL ontology imports other ontologies as required. The Reference Data Library OWL ontology simply imports all the other ontologies, grouping them together in order to make extension simple. It is intended that organization- or project-specific extensions to the standardized Reference Data are created in their own OWL ontologies.

While OWL may have any of several formats, the OWL XML syntax is used for the PLCS Reference Data. This allows the use of XML-related languages and tools for the creation and management of the Reference Data.

OWL is by-design a Web-enabled techology and so publication of the standardized PLCS Reference Data is simply making the OWL files available on the Web. References to the Reference Data are made using Uniform Resource Identifiers (URIs). A Web address (or URL) is a specific kind of URI.

A Reference Data Development Tool

The PLCS DEX Reference Data OWL ontologies are developed using an open-source software application called Protégé Read more about Protégé in the Software section.

	Technical description - OWL for Reference data development
	Info T.O.C.

Introduction

The OWL language has many capabilities. This section is a brief overview of the subset of the OWL language used for defining the PLCS Reference Data and does not attempt to cover the entire language. OWL is an XML application layered over RDF (Resource Description Framework) each adding specific capabilities:

· XML – the syntax for publication and exchange of OWL

· XML Schema – the datatypes for OWL literal values

· Resource Description Framework (RDF) – a language for relating descriptions to Web resources, whose underlying model is a “Resource-Property-Value” triple where Resources are specified using a Uniform Resource Identifier (URI) and a Value may be a literal or URI. The Resouce-Proprety-Value triple is formally specified as the Subject-Predicate-Object triple in the RDF standard. Resource-Property-Value is just simpler terminology.

· Resource Description Framework Schema (RDFS) – adds concepts like Class and Generalization RDF for defining simple vocabularies.

OWL then pulls together the bits from these other W3C standards and adds more powerful concepts for defining vocabularies, set theory concepts, individuals and the rest. Because of this layering, the XML Namespaces associated with these other standards appear in OWL XML documents.

Which OWL do I use?

As a kind of conformance class or to allow levels of implementation, there are three kinds of OWL specified in the standard: OWL Lite, OWL DL and OWL Full. OWL DL builds on OWL Lite, and OWL Full builds on OWL Full. For the purposes of created Reference Data, OWL DL is the kind of OWL we would like to use. The “DL” in OWL DL is “Description Logic”. There are reasoners and inference engines that understand DL but far fewer understand OWL Full. Therefore, the decision to use OWL DL is a purely practical choice. The software tools supporting OWL can report whether the ontology is DL or not.

OWL concepts

The core concepts in OWL used for specifying the PLCS Reference Data are:

· Ontology– a representation of knowledge about things in the world and their relationships. An ontology also defines a namespace (in both the general sense of a domain within which names are unique and in the XML sense of a URI and a prefix). An ontology is fundamentally the same concept as a model or schema.

· Class– a concept in a domain. Classes may have members.

· subClassOf– relates a more specific Class to a more general Class. All members of the more specific Class, or Subclass, are also members of the more general Class.

· ObjectProperty– a property that is a relationship between Classes. The domain of an ObjectProperty a Class that has the property and the range is the Class that is the type of the property.

· DatatypeProperty– a property with a simple datatype. The domain of a DatatypeProperty is the Class that has the property and the range is the XML Schema datatype that is the type of the property.

· AnnotationProperty– properties not of the Ontology, Classes, etc. but metadata used for the management of the Ontology, Classes, etc. (e.g. a version identifier).

· Individual– a member of one or more Classes. An Individual has the properties of all the Classes of which it is a member, including those inherited through the Class hierarchy defined by the subClassOf relationship. Each property of an Individual may be assigned a literal value or may refer to a resource (e.g. Individual).

· import– the mechanism by which one Ontology uses another. Imported Ontologies cannot be changed in the importing Ontology and the entire Ontology is included. Terms from the imported Ontology are distinguised from terms in the importing Ontology by the use of the XML Namespace associated with the imported Ontology.

How do I say that in OWL?

This section explains how to specify some typical modeling concepts using OWL. While OWL is similar in nature to other languages such as EXPRESS or UML, it has its own focus. Therefore, every concept modelers use in those languages is not necessarily available in OWL.

· Mutually Exclusive Subclasses (EXPRESS 'ONEOF') – owl:disjoint is the relationship used in OWL to specify that a set of subclasses are mutually exclusive.

· Abstract Class (EXPRESS 'ABSTRACT SUPERTYPE') – OWL has no built-in capability to specify that a Class is abstract.

· Complete Set Of Subclasses (EXPRESS 'TOTALOVER') – In order to specify that all of the possible subclasses of a Class have been defined, the superclass is defined to be the Union of the subclasses. This does not take the place of also specifying that the subclasses using the owl:subClassOf relationship.

· <owl:Class rdf:about="#HumanBeing">

· <owl:equivalentClass>

· <owl:Class>

· <owl:unionOf rdf:parseType="Collection">

· <owl:Class rdf:about="#MalePerson"/>

· <owl:Class rdf:about="#FemalePerson"/>

· </owl:unionOf>

· </owl:Class>

· </owl:equivalentClass>

· </owl:Class>

· <owl:Class rdf:about="#MalePerson">

· <rdfs:subClassOf rdf:resource="#HumanBeing"/>

· <owl:disjointWith rdf:resource="#FemalePerson"/>

· </owl:Class>

· <owl:Class rdf:about="#FemalePerson">

· <rdfs:subClassOf rdf:resource="#HumanBeing"/>

· <owl:disjointWith rdf:resource="#MalePerson"/>

· </owl:Class>
References
OWL Web Ontology Language Guide (http://www.w3.org/TR/owl-guide/)
OWL Web Ontology Language Reference Guide (http://www.w3.org/TR/owl-ref/)
OWL Web Ontology Language Overview (http://www.w3.org/TR/owl-features/)
	Guidance for PLCS RDL Developers
	Info T.O.C.

Introduction

This section explains details of how to go about annotating the PLCS Reference Data.

Use of Annotation Properties

[image: image13.png]
The Dublin Core is an industry standard for data about Web resources managed by the Dublin Core Metadata Initiative (DCMI). Quoting from their Web site:

“The Dublin Core Metadata Initiative is an open forum engaged in the development of interoperable online metadata standards that support a broad range of purposes and business models. DCMI's activities include consensus-driven working groups, global workshops, conferences, standards liaison, and educational efforts to promote widespread acceptance of metadata standards and practices.”
For annotating PLCS Reference Data elements, only a subset of the Dublin Core Elements and Terms are required. However, every Dublin Core Element or Term is not applicable to every PLCS Reference Data element. For use in OWL, these terms are provided as OWL Annotation Properties. An annotation property does not affect the semantics of the Ontology, Class or Property. For PLCS RDL, annotation properties are used as part of the process of managing the library itself.

In addition to the Dublin Core, the OWL language has built-in Annotation Properties that Reference Data developers can use.

The following matrix shows what OWL Annotation Properties and Dublin Core Elements and Terms to apply. The properties are hyperlinked to the resources on the Web where you will find their formal defintions.

	Annotation Property
	Brief Description
	On Ontology
	On Class
	On Property

	dc:creator (http://dublincore.org/documents/dcmi-terms/#creator)
	person and organization
	Required
	Required
	Required

	dc:modified (http://dublincore.org/documents/dcmi-terms/#modified)
	last date modified YYYY-MM-DD
	Required
	Required
	Required

	dc:created (http://dublincore.org/documents/dcmi-terms/#created)
	date created YYYY-MM-DD
	Required
	Required
	Required

	dc:abstract (http://dublincore.org/documents/dcmi-terms/#abstract)
	brief summary of content
	Required
	No
	No

	dc:title (http://dublincore.org/documents/dcmi-terms/#title)
	formal name
	Required
	No
	No

	dc:source (http://dublincore.org/documents/dcmi-terms/#source)
	standard or resource from which element was taken, use multiple dc:source annotations if required
	Optional
	Required
	Optional

	owl:versionInfo (http://www.w3.org/TR/owl-ref/#versionInfo-def)
	version and subversion identifier n.nn (e.g. 0.1 or 1.1 or 2.43). Will be automatically set to 1.0 upon official publication of full RDL.
	Required
	Required
	Required

	rdfs:label (http://www.w3.org/TR/rdf-schema/#ch_label)
	multi-language label
	No
	Optional
	Optional

	dc:references (http://dublincore.org/documents/dcmi-terms/#references)
	Refers to any standard or other document referenced in the definition of the Reference Data item. use multiple dc:references annotations if required
	No (or will be set automatically upon RDL publication)
	Optional
	Optional

	dc:dateAccepted (http://dublincore.org/documents/dcmi-terms/#dateAccepted)
	The date the Reference Data item reached the "Registered" status in the PLCS RDL.
	No.
	Required when Registered
	Required when Registered

	dc:subject (http://dublincore.org/documents/dcmi-terms/#subject)
	Add keywords or classification codes to classify a RD item. Use multiple dc:subject annotations if required
	No.
	Optional
	Optional

	dc:issued (http://dublincore.org/documents/dcmi-terms/#issued)
	Automatically added date of publication of entire PLCS RDL version.
	Automated
	Automated
	Automated

	dcterms:rightsHolder (http://dublincore.org/documents/dcmi-terms/#rightsHolder)
	Used with rights to define any IPR
	Optional
	Optional
	Optional

Table 1 — Use of Dublin Core
dc:creator is The PLCS Modeller who created RD

The Dublin Core term "creator" is the annotation to be used to define the person and organization who added the class to the RD Library. The form of the dc:creator value should be first name, last name, comma, and then organization name (e.g Rob Bodington, Eurostep).

dc:created is is the date creator added RD

The Dublin Core term "created" is the annotation to be used to define the date that the creator added the RD to their work space (e.g. YYYY-MM-DD).

dc:modified is date of most recent change to RD item

The Dublin Core term "modified" is the annotation to be used to define the date of the most recent change to the Reference Data item (e.g. YYYY-MM-DD).

dc:source is The original source of the RD

The Dublin Core term "source" is the annotation to be used to define any standard or organization that originally created the class and is responsible for publishing it and controlling its development. A unique name for any dc:source must be agreed by the RD developers.

If the RD is entirely new, created by the PLCS modeller, then the dc:source should be set to read "PLCS RDL n.n" where "n.n" is the version of the PLCS Reference Data Library in which the RD first appeared (e.g. PLCS RDL 1.0).

At the time of publication of each version of the PLCS RDL, any RD that does not have a dc:source set will have that value set with the applicable "PLCS RDL n.n" by default.

dc:dateAccepted is date Registered with PLCS

The Dublin Core term "dateAccepted" is the annotation to be used to define the date that the RD item reached the Registered status in the PLCS RD development process. The user is expected to set this date. (e.g. YYYY-MM-DD)

dc:issued is date of OASIS Publication of the specified version of the RD item

The Dublin Core term "issued" is the annotation to be used to define the date that the Reference Data item version was published as part of an official OASIS PLCS RDL version being published. This date is not changed if the item did not change between PLCS RDL version n.nn and n.nn+1.

This will be automatically set when a version of the PLCS RDL is published.

dc:language is the natural language

The Dublin Core term "language" is the annotation to be used to define the natural language in which a label, definition or comment is made (e.g. "en" for English).

The two letter codes specified in ISO 629-2 shall be used (http://www.loc.gov/standards/iso639-2/langcodes.html)
dc:publisher is OASIS PLCS TC

The Dublin Core term "publisher" is the annotation to be used to define that OASIS PLCS TC published the RDL. This will be set automatically upon official OASIS publication of a version of the RDL.

dc:references is reference to another standard or document

The Dublin Core term "references" is the annotation to be used to define any reference to another standard or document that appears as part of the definition of the RD item. (e.g. "ISO 10303-41").

dc:rightsHolder is IPR holder

The Dublin Core term "rightsHolder" is the annotation to be used to define who owns the Intellectual Property Rights, etc. related to an RD item. It is used in conjunction with "rights".

dc:rights is IPR

The Dublin Core term "rights" is the annotation to be used to define the Intellectual Property Rights, etc. related to the RD. It is used in conjunction with "rightsHolder".

dc:subject is used for keywords and classification of RD

The Dublin Core term "subject" is the annotation to be used to define the keywords or classifications codes (e.g. class of class) related to an RD item. Each keyword or classification code should be created in separate instances of "subject". (e.g. "Aircraft maintenance")

dc:title is the title of an OWL ontology in the RD

The Dublin Core term "title" is the annotation to be used to provide the title for an OWL ontology that is part of the RDL.

References

Dublin Core Metadata Initiative (http://dublincore.org/)
DCMI Metadata Terms (http://dublincore.org/documents/dcmi-terms/)
	Technical description - Exchange Contracts
	Info T.O.C.

Introduction

The exchange of data between two parties must often be agreed upon in a formal manner. The Exchange contract is a help for doing this. As for now, the specification of Exchange contracts are still much in the concept phase. One possible solution is that a part of the contract is XML Schema based. This would make automated verifications of data deliveries possible.

Contents of an Exchange Contract

An Exchange Contract defines what information is required in a specific data exchange. This list contains some of what must be specified:

· Identification of the DEX and its version

· Identification of the relevant conformance class (documented in the DEX)

· Identification of business concepts (which again refer to business specific sets of reference data)

· Identification of Reference data library or other Reference data sources

· Bounding scope of reference data

· Data representation rules and constraints (for data validation)

· Explanation of how that information is represented is defined in the capabilities

	Implementers information - Introduction
	Info T.O.C.

Basics

The DEXs are intended to specify a set of information that is to be exchanged to support a particular business process. The information specified by a DEX is a subset of the STEP standard: "ISO 10303-239:2005(E) Industrial automation systems and integration - Product data representation and exchange Part 239: Application protocol: Product life cycle support"

This can be down loaded from: ()
Information model

Explanation of EXPRESS-G and instance diagrams goes here

Data exchange formats

Explanation of part 21 / part 28 goes here

Reading DEXs

Explanation of DEXs goes here.

Reading Capabilities

There are a number of parts of the PLCS model that will be common to many DEXs. (e.g. date and time). Rather than each DEX replicating the usage guidance for these, they are packaged into chapters called "Capabilities" that are reused across different DEXs. So a DEX is constructed from a set of capabilities and each capability describes the set of PLCS entities that are required to represent a particular concept. For example the representation of a part, an assignment of an identifier. The reuse of a capability in multiple DEXs ensures the same concept is interpreted consistently in the different DEXs. E.g. A date is assignment to a person and a product in the same way in all DEXs.

The information model that the capability uses is presented as an EXPRESS-G diagram. This has been extracted from ISO 10303-239 ().

From an implementation perspective, the capability defines a data pattern that any implementation must support if the concept covered by the capability is in the scope of the implementation. This pattern will be reused in every DEX that use the capability. Such patterns are formalised in a Capability as Templates. These are described in the section Capability Templates .

Capability Characterization

A capability describes how to represent a particular concept, such as the representation of a part. For every concept there is additional information that can be associated with it, such as the assignment of a date, the assignment of an organization. This is referred to as characterization, and each capability will have a section describing the characterization of the concept.

	Implementors Information - Modelling approach
	Info T.O.C.

Introduction

This section provides general guidance and background on the modelling constructs used in the DEXs. More detail is provided in the capabilities.

Overall approach

Product life cycle support implies holding information about products through their life. This leads to the need to manage change of that information over time. This has the following modelling consequences when compared to supporting the exchange of data sets that reflect a short period in time.

1. Use of explicit attributes of an entity, such as x.id where x is an entity data type and id is an identifier, is discouraged. For the example of x.id, assigning an identifier to x by means of an assignment entity is preferred as this allows for different identifiers over time to be recorded;

2. Allowance has to be made for holding multiple values of properties that have been used or apply over different time periods, such as where a new value is available based on experience rather than estimation. Not only is it necessary to be able to hold more than one value, for example, for a given property, it then becomes necessary to associate other data with these values, such as recording who provided the values and when. Where an entity has a value associated by an explicit attribute this is not possible;

3. The set of requirements for the model are not completely known and new requirements will arise during the period of its use and during the life time of a product for which the model is being used. Therefore many of the modules used allow for classification of entities, where such classification is used to augment the definitions provided in this part of ISO 10303 and the parts of ISO 10303 referenced by it.

Specific cases of these consequences are described in the following sections.

Use of classification

The domain covered by ISO 10303-239 is large and includes many specific requirements that have not been explicitly modelled in the information model. Instead of providing explicit subtypes for many of the entities, the entity has been made a target for Classification_assignment. Thus one or more classes can be associated with any instance of the entity concerned. These classes refine or augment the meaning of the entity. This is described further in the capability C010: assigning_reference_data.

For example, there are many different types of properties associated with components that are relevant to product life cycle support. The model allows the properties that can be associated with parts to be classified. Such classification is then used to specify the specific type of property. Any set of specific property types, such as mean time to failure, that could have been provided by explicit modelling in the model, is likely to be incomplete. Furthermore, as business practices change, different properties are likely to be required over time and these can be introduced by means of a new class.

Similarly, if it is required to make an assertion about something, this can be achieved by classification. For example, a Task_method that involves risk to the persons who carry out the method can be asserted to be safety critical by means of classification.

This approach relies on the use of a common set of classes between partners in a data exchange, together with a shared understanding of what each class means. It is anticipated that classes will be held in a shared class library.

Classification_assignment provides the principal mechanism for associating classes with items. However, an additional mechanism is provided for products, that is Product_category. See the Product categorization and Product identification modules. Product_category is used to distinguish between the different subtypes of Product defined in this part of ISO 10303. Examples are: Part, Requirement and Document. This approach is used by other ISO 10303 Application Protocol parts. More specific types of products, such as Oil filter as a type of Part should be specified by means of Classification_assignment, thus allowing the use of a class library via External_class.

General use of assignment entities

The information model defines a set of assignment entities. Examples include:

1. Activity_method_assignment;

2. Applied_activity_assignment;

3. Applied_state_assignment;

4. Applied_state_definition_assignment;

5. Selected_item_assignment.

Such entities have a role attribute that can be used to define the specific meaning of each assignment. Where such assignment entities have a role attribute of type STRING and the entity is also included in the classification_item select, classification is the preferred means by which to assert the meaning of the assignment. The role attribute is then instanced with the value set either to be an empty (zero-length) string or to be '/IGNORE'. The use of '/IGNORE' is recommended.

NOTE In general, attribute values are set to '/IGNORE' when the information that could be held be the attribute is instead assigned to the instance of the entity.

Use of identification assignment

For historical reasons, the information model specified in ISO 10303-239 contains multiple identifier attributes, typically modelled as x.id where x is the entity name. This implies that there is only one identifier for the entity and either it does not change or the model does not allow for any means of recording change except by over-writing the value.

In practice, identifiers can change over time and also there may be more than one identifier that applies to something. The latter case typically arises where organizations assign their own identifiers to things. A consequence of this is that an identifier as a string of characters is not useful without knowing more. At a minimum it is necessary to know which organization is responsible for the identifier.

Therefore all requirements for identifiers are met using the basic structure shown in the Figure 1 below. See capability C001: assigning_identifiers for further details.

Note that both Organization_or_person_in_organization_assignment and Identification_assignment have role attributes that have been given the string '/IGNORE'. The respective roles are 'Id_owner' and, given that the thing being identified in the example is a Part, 'Part_type_code'. These are specified by using Classification_assignment.

A number of entities have a name attribute in addition to the id attribute. Where this is being used to assign a name, then the name should be treated as an identifier and assigned using Identification_assignment using the same basic structure shown in Figure 1 below. See capability C001: assigning_identifiers for further details.

[image: image14]
Figure 1 — Identification assignment example
Assignment of names

Assignment of descriptions

AP239 select matrix

A matrix showing all the population of all the EXPRESS selects in AP239 is available as an EXCEL spreadsheet(../../docs/ap239/ap239_select_matrix.xls).

	Implementors Information - Setting attribute values
	Info T.O.C.

Introduction

This section describes how to set entities and attributes that are specified in the information model, but not handled by importing / exporting systems.

NOTE This section has been derived from the "PDM Schema usage guide" (http://www.pdm-if.org/pdm_schema/)
The following string values are used for attributes, as described below and in section General use of assignment entities
	Value
	Description

	''
	indicates user data managed by the sending system but not provided for data exchange.

	'/NULL'
	indicates user data in a mandatory attribute that is not managed by the sending system or currently not known.

	'$'
	$ is used in the physical file, if an optional attribute is not instantiated.

	'/IGNORE'
	Attribute values are set to '/IGNORE' when the information that could be held by the attribute is instead assigned to the instance of the entity.

Table 1 — Attribute values
Entities and attributes not supported by the exporter

For various reasons, there may be some entities that cannot be completely exported by an exporter. Sometimes an application may not maintain all the information that is anticipated for the data exchange. Other times, the information may be maintained by a sending system but not included in the data exchange. Never the less, the exporter must provide values for all mandatory attributes in an exchange file. For mandatory string attribute values, the null (empty) string '' has often been used when a exporter can provide no real user data. The default string value '/NULL' may be used for this purpose, as recommended by the European automotive industry. When no data is provided by a sending system for a string value, the exporter should use '/NULL' or the empty string ''. To further indicate the reason why no data is provided, the following convention may be used:

· Empty string '' indicates user data managed by the sending system but not provided for data exchange.

· String '/NULL' indicates user data in a mandatory attribute that is not managed by the sending system or currently not known.

· $ is used in the physical file, if an optional attribute is not instantiated.

It is generally not recommended to use the empty null string '' or the default string '/NULL' as valid user data.

Entities and attributes not supported by the importer

For various reasons, there may be some entities that cannot be completely imported by the importer. The import translator implementation simply may not support the import of the entity. The receiving system may not maintain the information that is carried by an entity or attribute, or it may require specific attribute values that are not present in the input data. Entities and attributes not imported should list a reason in a history log file. Entities and attributes not supported by the receiving system should not cause a system failure. The minimum acceptable behavior should be to ignore the unsupported constructs.

Unspecified and optional attribute values

Optional attributes without specific recommended values, such as the description attribute, are available on many entities in the information model. In general, use of this type of attribute is given the following recommendation:

Exporter - first, follow the usage guide as much as is possible - if some specific common harmonized user requirement has been documented in the usage guide for the attribute, try to adapt this requirement to those you have identified (i.e., map the standard into your user domain). If no specific common harmonized user requirement has been documented in the usage guide, in general, such an optional attribute should not be instantiated. However, these attributes may be used in some bilateral agreements between exchange partners. Importer - any optional attribute with no specific mapping specified, in general, cannot be specifically interpreted in an interoperable way. While these types of attributes are in general not recommended to be instantiated, the postprocessor should gracefully handle any data that is exchanged using these attributes. A robust, interoperable PDM Schema processor will generally provide user access to the values exchanged.

Derived attributes

In general, derived attributes are not given with the description and recommendations for entities in the information model. This is consistent with the STEP part 21 specification where derived attributes are not represented in an exchange file. Only in certain cases where special attention is required will such an attribute be presented and explained in this usage guide.

Implementation project specific values

Attribute values recommended in this usage guide should be supported by systems conforming to the PDM Schema. Other values negotiated between exchange partners in specific projects may be used where the interpretation of their meaning does not contradict definitions provided in this usage guide. However, these agreements will not generally be interoperable solutions. Leading and trailing blanks in STRING values: all white space within the single quote delimiters of a STRING value should be considered valid user data.

	Developer information
	Info T.O.C.

Introduction

DEXlib and STEPmod are developed on Sourceforge.net (http://www.sourceforge.net). Sourceforge.net is a free Open Source software and standards development website.

The different development activities are described at the Development process page.

General development instructions

In order to take part in the development of DEX Specifications and related technics, you need to have access to the DEXlib CVS at Sourceforge.net. How this is achieved is explained in the CVS access guide .

A description of the XML elements (tags) that are used when writing an XML file for use in DEXlib are described here .

If you're unsure about where in DEXlib (which folders) images, visio drawings and other files you've created should be placed, have a look at the DEXlib directory structure page.

Working with STEPmod and DEXlib

The information in the sections below is an abstract from the 'WinCvs Daily Use Guide' found at. (http://www.thathost.com/wincvs-howto/). It is a useful source of CVS help. It's highly recommended to visit this page if you have any CVS related questions.
Check in modified files to STEPmod and DEXlib

This section describes how you upload your local changes, into CVS on Sorceforge.net. Making local modifications available in the Sourceforge CVS repository, is known as 'committing' the changes.

1. In order not to corrupt DEXlib, it's important to make sure that created or edited XML files are well-formed. Open the XML file with Internet Explorer. If there are any errors in the file, it will not display properly.

2. Before committing, you should do an update to make sure there are no conflicts. See 'Getting Other People's Changes from CVS' on the 'wincvs-howto' page.

3. Select the directory, file or files that you want to commit.

4. Click the right mouse button on the selection, and choose the Commit selection menu item. Or, chose 'Commit...' (Ctrl+M) from the Modify meny.

5. In the Commit settings dialog, enter a log message. This step is optional, but it is highly recommended that you take some time to shortly describe what was changed.

6. Press the OK button.

Please note that committing changes will not automatically add new files that you have created to the repository. See 'Adding Files and Directories' in the WinCvs Daily Use Guide for a description of doing that and the section below.

Check in new files to STEPmod and DEXlib

This section describes how a new file is added to CVS.

1. Select the directory, file or files that you want to add.

2. Click the right mouse button on the selection, and choose the 'Add selection' or 'Add selection binary' menu item. These menu items can also be found in the Modify menu. Use binary for non-text files, otherwise the files will be corrupted by CVS!

3. As the files are only marked for addition, you have to commit them to enter them in the repository.

If your local new file isn't shown in WinCVS, make sure all view filters are turned off. You find the filter settings under 'File filter' on the View menu.

Delete files in STEPmod and DEXlib

This section describes how a file can be removed from CVS.

1. Select the file or files that you want to remove.

2. Click the right mouse button on the selection, and choose the 'Remove selection' menu item. These menu items can also be found in the Modify menu.

3. As the files are only marked for removal, you have to commit them to remove them from the repository.

The file is not actually removed from STEPmod and DEXlib on Sourceforge, but it is placed in the 'Attic'. This means it is possible to undo the deletion, but you should still be careful when deleting files.

Rename files in STEPmod and DEXlib

This section describes how you change the name of a file in CVS

It is not possible to add a new file with the same name as one which preaviously existed in the same folder. The filename 'Image.PNG' is the same as 'image.png' as far as CVS is concerned. Renaming is actually a deletion followed by adding a new file. In order to remove the capital letters from 'Image.PNG', it should first be copied and given a new name, e.g. 'image1.png', and then 'Image.PNG' should be deleted. Make sure to only use small letters in file names. Capital letters cause problems to... (???)

Undo incorrect changes in STEPmod and DEXlib

How an edit is undone is (will be...) described in this section.

Specific development instructions

Specific instruction on how to develop DEX Specifications, Business Concepts, Reference data etc., are described at separate pages. You find them using the links below or the Contents page.

· Development process
· Developing DEX Specifications
· Developing Business Concept Specifications
· Developing Capabilities
· Developing Reference Data
	Developer information - Development process
	Info T.O.C.

Introduction

...

The DEX Specifications development process

The image below shows the development process for the PLCS DEX Specifications.

[image: image15.png]
Figure 1 — The development process
	Developer information - Developing a DEX
	Info T.O.C.

Introduction

...

How to define a DEX

The list below describes the steps necessary to perform in order to create a DEX.

· Identify the business need to be supported by a DEX.

· Send a request to the organisation or person who is responsible for the management of the DEXs. The request should contain,

· The business needs, which should be the basis for the scope statement.

· Context.

· Life cycle stage.

· Request responsible.

· Investigate whether the business need is covered, or partly covered, of an existing DEX. Compare business needs with business needs already covered by DEXs. All needs must be supported by capabilities. Investigate if existing capabilities are relevant for the business needs.

· If a new DEX has to be defined, a new unique number is allocated to the DEX in addition to a short name and a long name. If the business need is partly covered by an existing DEX it has to be considered if a new DEX shall be defined.

· Create a new DEX in DEXLIB.

· Run '\dexlib\utils\dex\mk_DEX.wsf' to create DEX XML outline.

· Update '\dexlib\dex_index.xml' with the DEX short name.

· Perform the capability dependence check in DEXlib.

· Write the introduction statement.

· Write the scope statements.

· Describe the business process. All PLCS DEXs should be related to the AAM model.

· Establish a DEX longform.

· Establish test plans.

· Perform testing. Reference should be made to separate document for testing of DEXs and capabilities

· Quality assurance, see separate check list...

	Developers Information - DEX Long forms
	Info T.O.C.

Overview

Each DEX is made up of a series of capabilities. Each capability will specify the subset of the ISO 10303-239 (PLCS) EXPRESS model that is required. The EXPRESS models are defined in the ARM of a STEP module. This is shown in Figure 1 below.

[image: image16.png]
Figure 1 — DEX architecture
The capability specifies the EXPRESS using the <usage> element. This identifies whether an EXPRESS entity is to be included or excluded from the capability EXPRESS.

Long form files

Each DEX has two normative files that specify the long form:

dex_lf.exp

The EXPRESS long form.

dex_lf.xsd

The XML Schema P28 long form derived from dex_lf.exp.

Long form algorithm

The DEX long form is build by pruning the long form specified in the PLCS AP module long form - ap239_product_life_cycle_support (the AP long form). The approach used is as follows:

1. All the EXPRESS entities identified in the capabilities are copied from the AP long form and added to the DEX long form. If any entity is removed by one capability and added by another, the addition takes precedence.

2. All of the EXPRESS types used by the identified EXPRESS entities are copied from the AP long form to the DEX long form. I.e. used in an attribute of an entity.

3. The domains of any select type in the DEX long form are then pruned so that they only contain entities that are defined in the DEX long form.

4. All EXPRESS functions that are required by any entity in the DEX long from is then copied from the AP long from.

Long form generation process

The process for building a long form is as follows:

1. Display the EXPRESS code for the DEX as shown in Figure 2. This will dynamically extract the EXPRESS defined by the capabilities.

Menu: models->EXPRESS
[image: image17.png]
Figure 2 — EXPRESS code
2. Copy the complete schema and paste it to the file dex_lf.exp.

3. Convert the dex_lf.exp to the EXPRESS XML representation. One way that this can be done is by using the Eurostep Express Parser (EEP) available from (http://www.eurostep.com).

c:/apps/eep/Eep.exe -t -i -w -x dex_lf.exp

This will produce Model.XML which should be copied to dex_lf.xml

4. Display dex_lf.xml as an XML Schema (Part 28) file and paste this to dex_lf.xsd. Menu: Development views -> dex_lf.xml as XML Schema

	Developer information - Developing a Capability
	Info T.O.C.

Process for developing a capability

The capability development process is shown in figure 1 below.

[image: image18.png]
Figure 1 — The capability development process.
The process for building a capability is as follows.

1. Name the capability
Decide whether the capability is:

· assigning an object to something, in which case the capability should be named "Assigning_X" where X the object being assigned.

· representing something, in which case the capability should be named "Representing_X" where X the object being represented.

· referencing something, in which case the capability should be named "Referencing_X" where X the object being referenced.

2. Generate the capability XML files
Run the script: dexlib/utils/dex/mk_capability.wsf
This will generate a set of xml files for the capability stored in: dexlib/data/capabilities/CAPNAME where CAPNAME is the name of the capability.

The directory dvlp is used for storing issues against the capability and development files such as VISIO files.

The directory images is used for images that are part of the capability.

capability.xml is the file which the developer should edit. It provides an XML skeleton for the capability that must be filled out. The file contains XML comment in each section explaining what the developer must document.

3. Update dex_index.xml
Once the capability XML has been created using dexlib/utils/dex/mk_capability.wsf the capability should be added to the file: dexlib/dex_index.xml so that it can be browsed to. It is recommended that the capabilities are stored in the file in alphabetical order.

4. Add to sourceforge
Once the capability XML has been created and dexlib/dex_index.xml updated, the capability should be checked in to SourcForge. Make sure that you add all the capability directories, such as images, sys, dvlp otherwise DEXlib will not work for others.

5. Perform review
When the capability is completed it should be reviewed. The review activity is explained in the Capability Review Checklist Template .

Capability contents

The XML generated by the dexlib/utils/dex/mk_capability.wsf includes a number of inline comments. These provide guidance on the how to develop the content of the capability.

The DTDs also contain documentation of the available XML elements. See:

dexlib/dtd/dex/capability.dtd

The DTD for the capability.

dexlib/dtd/dex/dexdoc.ent

The DTD for the sections common to DEXs and capabilities.

dexlib/dtd/dex/text.ent

The DTD for the text elements. These are primarily HTML, but include a number of elements specific to dexlib.

Process for building a capability template

When a capability is created using dexlib/utils/dex/mk_capability.wsf an XML skeleton is created in the capability.xml file. This should be edited according to the requirements of a template. The XML includes includes a number of inline comments. These provide guidance on the how to develop the content of the template. As well as the inline comments, details of the template language are provided at Reading Templates .

The DTDs also contain documentation of the available XML elements. See:

dexlib/dtd/dex/template.dtd

The DTD for the templates.

How to define a Capability

THIS IS AN OLDER TEXT FROM dex-devguide.xml THAT SHOULD BE MERGED WITH THE TEXT ABOVE.
How to establish a new capability

· When defining a new capability, a request shall be sent to the organisation or person who is responsible for the management of the capabilities.

· For each capability, determine the stepmod modules it requires. Write initial additional text for the capability

· For each module in a capability, determine the subset of entities.

· Write the initial additional text for the module.

· Review existing RDL for the entity for its applicability to the entity in the capability and if all is not applicable add only what's applicable to class of class for capability.

· Create new RDL as required and include in class of class if necessary.

· For each entity in a module in a capability, determine subset of attributes required including their cardinality.

· Write the initial additional text for the entity.

· Review existing RDL for the attribute for its applicability to the attribute in the capability and if all is not applicable add only what's applicable to class of class for capability.

· Create new RDL as required and include in class of class if necessary.

· Create the capability in DEXlib.

· Perform "DEX dependencies" check in DEXlib.

· Establish user guidance, instantiation diagrams and descriptive text.

· Establish test plans.

· Perform testing.

· Quality assurance, see separate check list...

	Developer information - Developing a Business Concept
	Info T.O.C.

What is a Business Concept

A Business Concept is:

· A definition of a business term in a given context.

· A specification of how the business term maps to the ISO 10303-239 information model.

Directory structure of a business concept

Each business concept is stored within the context in which it is defined. The directory structure for storing business concepts in DEXlib is therefore as follows:

 dexlib/data/busconcept/

 dexlib/data/busconcept/[context]

 dexlib/data/busconcept/[context]/[business_concept]

Where [context] is the name of the context and where [business_concept] is the name of the business concept.
An index of the contexts is provided in: dexlib/data/busconcept/context_index.xml
An index of all the business concepts that have been defined within a given context is provided in: dexlib/data/busconcept/[context]/context.xml
Process for building a business concept

The process for building a business concept is as follows.

1. Identify the context
If the context exists, (and is identified in dexlib/data/busconcept/context_index.xml) then no action is required.
If the context does not exist, then create a context.

1. Create the context
Run the script: dexlib/utils/dex/mk_context.wsf
This will create the directory: dexlib/data/busconcept/[context]
where [context] is the name of the context. It will also create the XML files for the context. In particular: context.xml.
The file will be populated with the documented XML which you need to complete.

2. Update index of contexts
Add the context just created to: dexlib/data/busconcept/context_index.xml
This lists the contexts that have been defined in DEXlib.

2. Create the business concept
Run the script: dexlib/utils/dex/mk_buscpt.wsf
When prompted, provide the name of the context just identified/created.
This will create the directory: dexlib/data/busconcept/[context]/[business_concept]
where [context] is the name of the context and where [business_concept] is the name of the business concept.
It will also create the XML files for the business concept. In particular: dexlib/data/busconcept/[context]/[business_concept]/busconcept.xml.
The file will be populated with the documented XML which you need to complete.

3. Update context index of business concept
Each context maintains an index of the business concepts defined within that context. So update: dexlib/data/busconcept/[context]/context.xml with the new business concept just created.

	Developers Information - Developing PLCS Reference data
	Info T.O.C.

Reference Data Development Procedures

Introduction

The creation of Reference Data is very similar to any other modelling exercise. The procedures to be used are therefore similar to those for the collaborative development of information models. The basic concepts are:

· Each developer has control of their own work-space which is an extension to the group work-space.

· Each Reference Data item goes through a process of increased consensus, level of stability and control.

· There is a defined development process to be followed including tasks such as creation, review, raising issues, agreeing resolutions and incorporating resolutions.

· Team members play various roles during the process (e.g. creator, reviewer).

· After the team processes are completed, the Reference Data must be agreed within the OASIS PLCS TC based on OASIS guidelines. Once that has occurred, then the OASIS standards-making process takes over.

The purpose of the PLCS DEX Reference Data is to add semantics to an already existing model, the AP239 Product Life Cycle Support schema. At the end of the day, adding semantics to that schema is the goal, not creating an isolated, green field ontology covering the scope of PLCS. It is also the case that some of the Reference Data is to be adopted and adapted from existing standards. Therefore, allowing different viewpoints on the same concepts in the AP239 schema needs to be taken into account. For these reasons, the RD development process defines the RD development steps within the context of DEX development. It is possible to define RD outside the scope of a DEX, however that task is expected to be more difficult until the point in time when the framework within which the RD must be created is mature and stable.

The guidelines spelled out in this document are not frozen. Continuous improvement in the Reference Data development process is expected as experience is gained. If at any point, the guidelines make the process unnecessarily cumbersome, they should be reviewed and modified accordingly.

These guidelines do not include those steps required by OASIS define a standard. The OASIS standards process states that the following:

· Before the TC can submit its Committee Draft to OASIS membership for review and approval as an OASIS Standard, the TC must conduct a public review of the work. The decision by the TC to submit the work for public review requires a majority vote. The review must be announced by the TC Administrator on the OASIS members mail list and optionally on other public mail lists. Review must take place for a minimum of 30 days, during which time no changes may be made to the document. Comments must be collected via the TC's archived public comment facility. The TC must record the comments received as well as the resolution of those comments.

RD Development process

In this section, the concept of the steps involved is described first. Once the concepts are understood, then the specifics of managing the process and the OWL files involved are described. The tasks involved in the managing process should always be considered with the more conceptual step in mind.

To facillitate the development of Reference data, the Protégé Ontology Editor software is used. Learn about the installation and usage of Protégé in the Software area of DEXlib.

The concepts

The basic steps involved in developing the PLCS standard Reference Data are as follows:

1. Once the subset of the PLCS schema to be used for a DEX is defined, then the scope of the required RD is known - the RD will be subclasses of the classifiable entity types included within the DEX. Additionally, the RD must be appropriate to the usage scenario of the DEX.

2. Once the scope of the RD is identified, existing sources for RD (including the PLCS standard and non-standard RD) that may be adopted or adapted are investigated and the applicable RD is identified. If the existing RD does not satisfy the DEX requirements, then new RD must be created.

3. For each new or existing Class to be added to the RD, where it fits in the PLCS schema or an existing class of which it is a subclass must be identified. It is possible that a class may have more than one superclass (i.e. multiple inheritance is possible).

4. Given the superclass(es) and sibling classes of the class in question, the definition of the class is written such that its usage is clear and helps users decide when to use the class and when not to use the class.

5. The class is added to the developers ontology and the tasks involved in managing the process are applied. Each class must also have the required annotation created at this point in order to support the management of the RD Library as a whole.

It is often the case that the above steps are performed in a workshop. A process of recording the results of the above steps should be adopted for the workshop so that decisions are not lost. Unless a minor change is made, these should be recorded outside the RD itself, or at least only on a local copy of the RD used only for the workshop. Trying to apply change to an ontology during the workshop may affect other issues and decisions in a workshop are often overturned upon deeper review.

The details

The tasks involved in managing the development process are as follows:

1. Individual modellers develop reference data as part of the appropriate DEX team but within their own OWL file. This involves developing classes including their definition and relevant annotation properties. (See ??). The class needs to be placed in the correct place in the RD class hierarchy. This involves making classes subclasses of the EXPRESS OWL classes or of an existing RD class.

2. The classes developed by the modellers are then reviewed by the team comprising the modeller who developed the reference data, a business user from the DEX team and at least one other modeller not involved in the development of that class; This review involves checking that:

· the required annotation properties are used;

· the class definition is understandable and unambiguous;

· the class is a subclass of the appropriate PLCS schema classes (directly or indirectly through other RD classes);

· the class is a subclass of all appropriate RD classes;

· the class does not replicate other classes within the same context. Because of the possibility of PLCS adoption of multiple existing standards covering the same scope, it is possible that the class may overlap with classes defined in other standards. For example, both DEF STAN 00-60 and NATO standards may result in classes that are subclasses of the PLCS entity type "product" and those classes may overlap. However, in that case, the classes that overlap are not considered to be "within the same context". Note that it is possible to classify the same data instance any number of times in a DEX-based data exchange so both the 00-60 and NATO classes might be used at the same time.

3. The results and the rationale of the review are recorded in an issue log with the classes either deleted, or accepted as PLCS proposed reference data and the class is moved from the modellers OWL file to the plcs-proposed OWL file signifying it has been agreed by the immediate DEX team.

4. A similar review cycle then occurs but on a wider scale involving the same roles but from other DEX teams. This supports the harmonization of RD across DEXs.

5. The results and the rationale of the broader review are recorded in an issue log with the classes either deleted, or accepted as PLCS registered reference data and the class is moved from the plcs-proposed OWL file to the plcs-registered OWL file signifying it has been agreed across the DEX teams. This also signifies that the RD will be included in the next publication of the RDL through the OASIS processes.

6. At some point the plcs-registered RD is frozen, a new version of the plcs-rdl is created into which the registered RD is migrated, and the set of OWL files that make up the PLCS Reference Data Library are published for internal ballot;

7. The ballot closes and the ballot comment are reviewed and addressed.

8. Following ballot comment resolution, the set of OWL files that make up the PLCS Reference Data Library are published as an OASIS standard incrementing the Version of the entire RDL as appropriate (either a point release of an existing version or as a new major version).

OWL files

In order to manage this process, the OWL files have been structured as shown in Figure 1. The green boxes show OWL files that have been agreed at some level of consensus. The yellow boxes show the OWL files that are being developed be the individual modellers.

All of the OWL files are developed as part of the Sourceforge DEXLIB project: (http://sourceforge.net/projects/dexlib) and managed under CVS control: (http://cvs.sourceforge.net/viewcvs.py/dexlib/dexlib/data/refdata/plcs_owl/).

[image: image19.png]
Figure 1 — RDL OWL file structure
The PLCS reference data comprises of the following OWL files:

plcs-dcterms.owl (../../data/refdata/plcs_owl/plcs-dcterms.owl)

The Dublin core terms used by PLCS represented as OWL classes.

plcs-dc.owl

(../../data/refdata/plcs_owl/plcs-dc.owl) The Dublin Core elements used by PLCS represented as OWL classes.

plcs-arm-lf-express.owl (../../data/refdata/plcs_owl/plcs-arm-lf-express.owl)

The PLCS EXPRESS represented as OWL classes. The reference data is subclasses of these EXPRESS classes.

plcs-rdl.owl (../../data/refdata/plcs_owl/plcs-rdl.owl)

The OWL ontology that is the PLCS reference data. This is the reference data that has been standardized. This file imports from: plcs-arm-lf-express.owl (../../data/refdata/plcs_owl/plcs-arm-lf-express.owl)

plcs-registered.owl (../../data/refdata/plcs_owl/plcs-registered.owl)

The OWL ontology that is the PLCS reference data. This is the reference data that has been agreed by the PLCS OASIS TC as standard reference data and has been registered for inclusion in the standard at the next release. (I.e. the contents of plcs-registered.owl will be copied to plcs-rdl.owl)

plcs-proposed.owl (../../data/refdata/plcs_owl/plcs-proposed.owl)

The OWL ontology that is the PLCS reference data. This is the reference data that has been proposed to the PLCS OASIS TC as standard reference data. Once agreed, it will be registered for inclusion in the standard at the next release. (I.e. the contents of plcs-proposed.owl will be copied to plcs-registered.owl)

NOTE In order for DEXlib to recognize and process the individual modellers OWL file, they must be registered in: (../../data/refdata/plcs_owl/rdl_index.xml)
OWL developer files

Each developer will have their own developer file, as shown in Figure 1.

The following stages are required to add a new developer files:

1. Create the developer files and store it in: dexlib/data/refdata/plcs_owl/plcs-rdl-XYZ.owl where by convention X is the first character of the developers's first name, Y is the first character of developer's surname, and Z is the last character of developer's surname.

The file should contain the following. Note the XYZ should be replaced accordingly.

<?xml version="1.0"?>

<rdf:RDF

 xmlns="http://www.plcs.org/plcs-rdl-XYZ#"

 xmlns:rd-ext="http://www.plcs.org/plcs-existing#"

 xmlns:rd-prp="http://www.plcs.org/plcs-proposed#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:rdl="http://www.plcs.org/plcs-rdl#"

 xmlns:schema="http://www.plcs.org/plcs-arm-lf-express#"

 xmlns:dcterms="http://purl.org/dc/terms/"

 xmlns:rd-reg="http://www.plcs.org/plcs-registered#"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xml:base="http://www.plcs.org/plcs-rdl-XYZ">

 <owl:Ontology rdf:about="">

 <dc:source>OASIS Product Life Cycle TC</dc:source>

 <owl:imports rdf:resource="http://www.plcs.org/plcs-proposed"/>

 <owl:versionInfo>$Id: dvlp_refdata.xml,v 1.1 2005/11/22 20:23:44 matsn Exp $</owl:versionInfo>

 </owl:Ontology>

</rdf:RDF>

2. Update the ont_policy file (dexlib/data/refdata/plcs_owl/ont_policy.rdf) with a reference to the new OWL file. This is necessary in order to enable Protégé to use the versions of the OWL file from your machine as opposed to trying to import them from the internet.

3. <OntologySpec>

4. <!-- PLCS local version of the individual developers PLCS Ref Data Library (including Properties) -->

5. <publicURI rdf:resource="http://www.plcs.org/plcs-rdl-15288" />

6. <altURL rdf:resource="&plcs-rdl-15288.owl" />

7. <language rdf:resource="http://www.w3.org/2002/07/owl" />

8. <prefix rdf:datatype="&xsd;string">rdl-bhs</prefix>

9. </OntologySpec>

NOTE To see the file in Protégé don't forget to copy the dexlib/data/refdata/plcs_owl/ont-policy.rdf to wherever you have installed Protégé (e.g: Protege_3.0_beta/plugins/edu.stanford.smi.protegex.owl/ont-policy.rdf)

10. Register your OWL file with the reference library. This is done by adding your file to: dexlib/data/refdata/plcs_owl/rdl_index.xml

Managing the development process

Issue management

Issues can be raised against classes at any stage during the development of the reference data and recorded in an issue log. Details are provided in a separate section.

Versioning Ontologies

When the set of OWL files that make up the PLCS reference data are published, each file will have a version number associated with it that is incremented. The first version will be "1.0" and minor revisions will follow as "1.1", "1.2", etc. until such a point as a major release of the RDL is planned. At that point, the RDL "2.0" will be released. Note that the version of a particular class within the RDL is independent of the version of the entire RDL as a whole (i.e. RDL 1.1 may contain classes that are unchanged and therefore are at Class version 1.0).

The OWL files developed as PLCS reference data are placed under configuration management using CVS. Consequently, CVS will manage the versioning of a file every time it is committed to CVS.

This is done by setting the annotation property owl:versionInfo on the ontology to be: $Id: dvlp_refdata.xml,v 1.1 2005/11/22 20:23:44 matsn Exp $ which will be automatically updated by CVS when the file is checked in. E.g.

 <owl:Ontology rdf:about="">

 <owl:versionInfo rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 $Id: dvlp_refdata.xml,v 1.1 2005/11/22 20:23:44 matsn Exp $

 </owl:versionInfo>

 </owl:Ontology>

Versioning classes

Each class will have a version number associated with it. The form of the version will be "n.n" and for the initial release of the RDL all classes will be version "1.0". Following updates that do not change the fundamental nature of the class will cause in increment in the second level of the version (i.e. "1.0" to "1.1", etc.).

The version of the class is set by the class annotation property owl:versionInfo. E.g.

 <owl:Class rdf:ID="picometre">

 <owl:versionInfo rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 1.0

 </owl:versionInfo>

 </owl:Ontology>

Naming classes

The class names must be unique within the context of the entire Reference Data Library. Given that the practice in the ontology community is to give meaningful names (i.e. URI fragment identifiers) for classes, the PLCS RD class names follow that practice.

As the class names are also part of a URI in the OWL language, they may not contain spaces or special characters. The convention for the name is that the first character of the first word is upper case and all other characters are lower case. Words in the class name are separated by the underscore character.

Other general guidelines/practices include the following.

· It is not recommended to put the word class or category or classification in the name of the class. (e.g. a subclass of "Activity" is not "Maintenance_task_class" but "Maintenance_task").

The name of the class is set by the OWL rdf:ID construct. E.g.

 <owl:Class rdf:ID="activity"/>

Alternative labels can be provided for the OWL rdfs:label construct. These labels can be used to provide a name for the class in multiple languages. E.g.

 <owl:Class rdf:ID="Activity">

 <rdfs:label xml:lang="fr">Activité</rdfs:label>

 </owl:Class>

Class definitions

From a user viewpoint, a good definition is straightforward to understand from the text of the definition, does not use any specialist terminology, nor require any specialist knowledge.

The definition associated with an RD class may be seen by PLCS application users and therefore should take into account the DEX(s) and PLCS entity type(s) that are its context.

The definitions are set by the OWL rdfs:comment construct. E.g.

 <rdfs:comment xml:lang="en">

 A Qualified_property is property whose values are described rather than being numerically quantified.

 For example the property of a traffic light may be Red, Amber or Green.

 </rdfs:comment>

If multiple lables are to be used, none of the labels should be used in definition text. E.g. the definition for 'Qualified_property' should read,

 <rdfs:comment xml:lang="en">

 A property whose values are described rather than being numerically quantified.

 For example the property of a traffic light may be Red, Amber or Green.

 </rdfs:comment>

Class status

A class can be in one of the following possible states:

Development

While not really a formal status, the class exists within one of the RD developer OWL files available on DEXLib. For example, the class might be defined in plcs-rdl-rbn.owl(../../data/refdata/plcs_owl/plcs-rdl-rbn.owl).

Proposed

The RD has been reviewed by the DEX team and upgraded to a status of "Proposed". The class will be removed from the RD developer OWL file and moved to the Proposed OWL file (i.e. plcs-rdl-proposed.owl(../../data/refdata/plcs_owl/plcs-proposed.owl))

Registered

The RD has been reviewed by the larger PLCS TC and upgraded to a status of "Registered". The class will be removed from the "Proposed" OWL file and moved to the "Registered" OWL file (i.e. plcs-rdl-registered.owl(../../data/refdata/plcs_owl/plcs-registered.owl))

Published

Once the RD Library as a whole has been through the OASIS standardization process and made available an official OASIS standard, it is made available to the public as an initial, or new, version of the OASIS PLCS TC Reference Data Library (i.e. plcs-registered.owl(../../data/refdata/plcs_owl/plcs-registered.owl)). No changes will occur to this RD until the next revision of the RDL is published (i.e. until a version 1.1 is published to address issues raised on a version 1.0).

Additional Annotation of Classes

In conjunction with the OWL language itself, PLCS Reference Data is annotated and managed using another Web standard called The Dublin Core. The use of the Dublin Core in PLCS RD is as OWL annotation properties. Annotation properties are like comments in programming source code in that they have no effect on the technical content of the OWL ontology.

Detailed guidance on the appropriate and required use of the Dublin Core as annotation of the ontology definition is found in a separate section of this help documentation.

RD Publication process

The standard set of PLCS reference data has been balloted and the issues addressed, it is published as an OASIS standard. This is achieved by making the set of OWL files that make up the reference data available at a specified URL (e.g. http://www.plcsorg.inc). The final URL has not yet been determined. The change to all URIs within the RDL will be automated at the time of publication.

	Developer information - Raising and managing issues
	Info T.O.C.

Introduction

Issue logs are used to provide a visability and traceability to issues raised and resolved against various aspects of DEXlib. There are four issues logs maintained in DEXlib:

1. Main log

2. Infrastructure log

3. DEX Specification and Capability log

4. Reference data log

The Main log is used for ... The Infrastructure log is focused on issues against the DEXlib environment. The DEX Specification an Capability log is actually one log for each DEX Specification and Capability. The Reference data log is used for ...

Raising and resolving issues

How, by who and why is an issue raised? How is an issue resolved? How can the issues be viewed?

Raising issues

How, by who and why is an issue raised?

Resolving issues

How is an issue resolved?

Viewing issues

How can the issues be viewed? The four issue logs can all (soon) be accessed from the tools menu on DEXlib. For DEX Specifications and Capabilities, the individual logs can also be accessed from their pages.

The different logs

Main Issues log

An issue log of all the Major issues that affect all the DEXs and capabilities is maintained at:

 dexlib/docs/issues/main_issues.xml

Infrastructure log
An issue log of all the issues that are to do with the dexlib infrastructure is maintained at:

 dexlib/docs/issues/infrastructure_issues.xml

The issue log can be accessed from the tools menu on DEXlib.
DEX Specification and Capability log

An issue log is associated with each DEX and capability. The log is stored in:

 dexlib/data/[DEX]/dvlp/issues.xml

where [DEX] is the name of the DEX or capability directory.
A summary of all the issue logs can be accessed from the tools menu on DEXlib. Alternatively the individual logs are accessed from the DEXs or capabilities.

Reference data log

Issues can be raised against Reference data classes at any stage during the development.

The issues are recorded in the issue log: (../../data/refdata/plcs_owl/dvlp/issues.xml)
Each issue has the following form:

 <issue

 id=""

 class=""

 class_file="plcs-rdl.owl"

 status="open"

 category="minor_technical"

 by=""

 date="04-07-19"

 seds="no"

 ballot_comment="no"

 resolution="accept">

 <description>

 </description>

 <issue>

Where:

id

an identifier of the isssue unique to the issue log

class

the class against which the comment has been made

class_file

the owl file in which the class is stored

category

Either: editorial | minor_technical | major_technical | repository

by

person raising the issue

date

date issue raised yy-mm-dd

status

status of issue. Either "open" or "closed"

seds

A formal issue that has been raised after publication. Either "yes" or "no".

ballot_comment

A ballot comment against the class. Either "yes" or "no".

resolution

Indication as to whether the issue has been accepted or rejected. Either "accept" or "reject".

When an issue is addressed, a comment should be added. The form of the comment is:

 <comment

 by=""

 date="">

 <description>

 </description>

 </comment>

Where:

by

person raising the issue

date

date issue raised yy-mm-dd

	Developers Information - Reviewing
	Info T.O.C.

Introduction

In the end of the development phase, the output (DEX Specifications, Capabilities, etc.) must be reviewed to make sure they have the desired quality.

The Review Checklists assist during the review activity

· Capability Review Template
Using the Review Templates

Explanation of how the Review Templates are used...

	Capability Review Checklist Template
	Info T.O.C.

Instructions

This checklist is intended to provide quality assessment criteria for the development of OASIS/PLCS DEX standards. It shall be completed by the assigned reviewers and then presented to the PLCS Technical Oversight Group in OASIS for a ballot review prior to submitting the capability for OASIS ballot...

The review activity is a part of the capability development process .

How to use this Template

To be decided...

How to use the Review Checklist

The data modeller shall check items marked "(M)". Business domain experts shall check items marked "(B)". Either may check items marked "(E)".

Answer each question by setting the status to;

· NR - Not Reviewed (default)

· NA - Not Applicable

· NO - Not Accepted

· OK - Accepted

If a question is answered "NA", explain the reason why the question is not applicable in the comment field.

If a question is answered "NO", an issue should be raised against the capability in DEXLib. Each issue should be identified as "RI-X-nnn-v", where "X" is the section in the Review Checklist, "nnn" is the section number, and "v" a version number (1,2,3,...) to be used if "NO" is answered to the same review question ore than once. Add the issue identifier to comment field. In cases where the Business domain expert can't access DEXlib as a developer, the model reviewer should assist the Business domain expert.

Review Checklist

Data

This review is made against the following Capability,
Capability id:
CVS version:

Review was performed by:
Modeller:
Domain expert:

Checklist completed:

Review form

Section A - General
Item 001 (M)
Status: NR
Question: Is the status of the Capability according to the Capability Development Process set to "end_modelling"?
Comment: (no comment)

Item 002 (M)
Status: NR
Question: Are the names of the project leader, editor, model reviewer and business reviewer documented in the capability and in accordance with the OASIS PLCS resource matrix?
Comment: (no comment)

Section B - Figures
Item 001 (M)
Status: NR
Question: Are all figures in the "png" format?
Comment: (no comment)

Item 002 (M)
Status: NR
Question: Are all images stored in a folder named "images"?
Comment: (no comment)

Item 003 (B)
Status: NR
Question: Are all figures sequentially numbered?
Comment: (no comment)

	Developers Information - Testing
	Info T.O.C.

DEX testing

This document focus on the need to establish a framework for testing that supports the overall objectives of the PLCS Technical Committee of OASIS. This will apply to different targets,

· Testing applied to the Capabilities used in the DEXs.

· Testing applied to the DEXs as deliverables from the TC.

· Testing applied to example Data sets that are made available to support formal documents.

· Testing of software implementations.

Quality checks applied to capabilities

This quality check relates to the definition of a complete capability, which is,

· QC internal Team completed review.

· Complete all sections according to PLCS/771 - "Project Specification for DEX Development".

· Checked by second modeller.

· Accepted by teams using the capability.

· User guidance/ Documentation,

· The prime reader and user of the capabilities is the modellers and implementers.

· Business experts in the development teams need sufficient understanding to confirm that business requirements are met. Hence the documentation of each capability should comprise a short business focused overview.

· Instantiation diagram complete.

· XML is semantically correct,

· Checked by second modeller.

· Sign off by team leader.

· QC external to the team

· Accepted by teams using the capability.

· Sign off by DEX coordinator.

When DEXs using the Capability has reached Level 2 and Level 3 there is higher levels of quality for this Capability. This should be reflected in a master listing of the Capabilities.

Testing applied to the DEXs as deliverables

The testing of DEXs as deliverables relates to the definition of a completed DEX. The completeness of a DEX is divided into four (4) levels,

Level 1 - Drafting the DEX documentation

· Completed all sections according to PLCS/771 - "Project Specification for DEX Development".

· Reference data.

· Establish Normative Reference data mandatory classes identified.

· Provide examples for each of the others class types.

· The DEX should contain documentation on how the Reference data is implemented in the DEX.

· Accepted by the team. Sign off by team leader.

Level 2 - Testing by mapping

· The DEX should contain the longform needed to implement the DEX.

· The DEX should contain the DEX Reference data.

· Generated exchange file (Part 21 or Part 28) and Reference Data based on industrial data.

· Update DEX and capabilities according to lessons learned.

· Submit DEX for Committee Draft ballot (full membership of the PLCS TC).

Level 3- Testing by exchange

· Establish a test data set and Reference Data (Extending 'bike data set').

· Exchange tested between two or more systems (systems may be based on the same application).

· Verify the DEX in a business context.

· Update DEX and capabilities according to lessons learned.

Level 4 - Published

· At least 3 implementations.

· Submit for OASIS Standard ballot (entire OASIS).

Testing applied to example data sets

The availability of test data sets is vital in establishing a critical mass of software implementations. It is important that such data sets are published in support of the formal DEX documentation and developed in conjunction with the DEX. (The development of test data sets provides necessary feedback on the DEX and its documentation). Data sets may be presented in a variety of formats,

· ISO 10303-21.

· XML according to bindings in ISO 10303-28: 2003.

· XML according to the XML Schema binding (in preparation) It may be preferable to have the same data set available in more than one format.

It is anticipated that data sets will fall into two major categories,

· Simple or artificial - Simple or artificial data sets are those designed primarily for the purposes of either documentation or testing. Such artificial data sets may, of necessity, be hand-coded.

· Production - Production data sets will be based on "real life" data and will have been written by a software implementation.

Independent of format it is suggested that the following criteria are applied,

· Is the content of the data set within the scope of the DEX?

· Is there supporting documentation?

· Text description of content.

· Instance diagram (possibly only for simpler data sets).

· Supporting illustrations where appropriate.

· Is the data set syntactically correct according to the relevant format's rules?

· Does the data set properly correspond to the data model for the DEX?

· Does the data set properly correspond to the data model for AP239?

· Is the meta data defined in the data set? (File header)

· Where a data set has been created by a software system with import (read) capability, has the data set been successfully re-imported? (The so-called loop-back test).

· Has the data set successfully been processed by 2 or more implementations, excluding the creating system? The implementations should themselves claim to support the same DEX.

All of the above criteria merit further explanation and expansion. Data sets that meet the above criteria should be made available through a version-controlled repository.

Testing of software implementations

The following types of testing could apply to software implementations,

· Conformance - does the implementation satisfy requirements defined in the applicable standard?

· Interoperability - can different implementations exchange or share data?

· Robustness - How well does an implementation handle invalid data, large data volumes, etc?

· Performance - How well does the implementation perform?

Of these, interoperability testing is the closest to the desired business functionality. Conformance testing also merits further consideration it that it can be used as the basis for a certification program, allowing vendors of software implementations to support their claims. Given that, at the time of writing, there are very few implementations that could claim conformance and AP239 has yet to complete DIS balloting, it is reasonable to treat development of testing processes for implementations as a lower priority

	Developers Information - XML Tags
	Info T.O.C.

Introduction

This section describes the XML elements (tags) that are used when writing an XML file for use in DEXlib.

The elements are defined in the following DTDs:

· dexlib/dtd/dex/text.ent
The basic text elements.

Basic text tags

This section describes the XML elements (tags) that are used for basic text layout.

<p> — Paragraph

Paragraphs are defined by the XML element (these are the same as the HTML elements of the same name):

 <!ELEMENT p (%text-elts;)*>

E.g. <p>A new paragraph.</p>
<ul|ol> — List

Lists are defined by the XML elements (these are the same as the HTML elements of the same name):

 <!ELEMENT ul (li+)>

 <!ELEMENT ol (li+)>

 <!ATTLIST ol

 type (1 | A | a | I | i) "1"

 start CDATA #IMPLIED>

 <!ELEMENT li (%text-elts;)*>

where is an unordered list, is an ordered list and is a list item.

E.g. The following XML:

 First item.

 Second item.

results in:

· First item

· Second item

<screen> — Screen output

Screen is used for...

Referencing tags

This section describes the XML elements that can be used to establish hyperlinks to different parts of DEXlib.

<dex_ref> — Link to a DEX

are defined by the XML element:

where linkend is

NOTE A list of all available DEX links is provided in the "Tools" section of DEXlib.

<capability_ref> — Link to a Capability

are defined by the XML element:

where linkend is

NOTE A list of all available DEX links is provided in the "Tools" section of DEXlib.

<template_ref> — Link to a Template

are defined by the XML element:

 <!-- reference to a capability template -->

 <!-- name is the name of the template

 When the template is defined in a capability, provide the capability name

 When the template is defined in a business_concept, provide the business_concept and its context

-->

 <!ELEMENT template_ref EMPTY>

 <!ATTLIST template_ref

name CDATA #REQUIRED

capability CDATA #IMPLIED

context CDATA #IMPLIED

business_concept CDATA #IMPLIED>

where linkend is

NOTE A list of all available DEX links is provided in the "Tools" section of DEXlib.

<express_ref> — Link to an EXPRESS object

are defined by the XML element:

where linkend is

NOTE A list of all available DEX links is provided in the "Tools" section of DEXlib.

<express_extref> — Link to an external EXPRESS object

are defined by the XML element:

where linkend is

NOTE A list of all available DEX links is provided in the "Tools" section of DEXlib.

<module_ref> — Link to a module

are defined by the XML element:

where linkend is

NOTE A list of all available DEX links is provided in the "Tools" section of DEXlib.

<rdl_ref> — Link to an OWL Class

URLs to a class in an RDL are defined by the XML element:

 <!-- Setup an URL to a class in an RDL -->

 <!ELEMENT rdl_ref (#PCDATA)>

 <!-- id: the id of the class being referenced -->

 <!ATTLIST rdl_ref id CDATA #REQUIRED>

 <!-- rdl: the name of the file containing the class referenced -->

 <!ATTLIST rdl_ref rdl CDATA #REQUIRED>

	Developer information - Administration of developed output
	Info T.O.C.

Introduction

...

Administration

Administration of DEX Specifications

The co-ordinator is responsible for the Master DEX Specifications list and for defining unique DEX numbers.

Administration of Capabilities

The co-ordinator is responsible for defining new unique capability numbers when requested. A Master capability list is automatically generated by DEXlib.

Administration of Business Concepts

Not described...

	OASIS PLCS TC - Development process
	Info T.O.C.

Description

The overall development process for PLCS DEX Specifications is described in figure 1.

[image: image20.png]
Figure 1 — The PLCS DEX Specification overall development process.
The specific development activities regarding the technical aspects are described at the Development process page.

	DEXlib
	Info T.O.C.

Introduction

...

Purpose

Why DEXlib (and STEPmod)?

DEXlib and STEPmod

See the CVS access guide for information on how to get hold of STEPmod and DEXlib.

Note - Both DEXlib and STEPmod are implemented in XML and uses XSL and JScripts. It is therefore necessary to use Internet Explorer version 6 or later to view these sites.

DEXlib

The DEX library is owned and operated by OASIS Product Life Cycle Support TC. Further information on this Technical Committee, and other OASIS initiatives, can be found at (www.oasis-open.org), and in the OASIS section of these information pages.

STEPmod

STEPmod is an abbreviation for 'the STEP modules repository'. It is the development environment for all ISO 10303 STEP modules. A local copy of STEPmod must be located alongside the STEPmod repository, within a common parent directory for DEXlib to function properly. If this is not the case, some views will not work.

Development environment

...

Sourceforge.net

DEXlib and STEPmod are developed on Sourceforge.net (http://www.sourceforge.net). Sourceforge.net is a free Open Source software and standards development website. The website has CVS installed and made available to different development projects for free.

CVS - Concurrent Versions System

"CVS" is an acronym for the "Concurrent Versions System".

CVS is a "Source Control" or "Revision Control" tool designed to keep track of source changes made by groups of developers working on the same files, allowing them to stay in sync with each other as each individual chooses.

CVS is used to keep track of collections of files in a shared directory called "The Repository". Each collection of files can be given a "module" name, which is used to "checkout" that collection. DEXlib and STEPmod are two eamples of modules.

After checkout, files can be modified (using your favorite editor), "committed" back into the Repository and compared against earlier revisions. Collections of files can be "tagged" with a symbolic name for later retrieval.

You can add new files, remove files you no longer want, ask for information about sets of files in three different ways, produce patch "diffs" from a base revision and merge the committed changes of other developers into your working files.

This text has been copied from http://www.cs.utah.edu/dept/old/texinfo/cvs/FAQ.txt but has been slightly modified.
The two repositories at Sourceforge.net

One development repository and one mirrored read-only repository.
The development...
The read-only repository is used by anonymous users and the web based viewer utility on (www). The mirroring is not instant. Delays for up to 24 hours are not unusual.

	How to access CVS on Sourceforge
	Info T.O.C.

Introduction

DEXlib and STEPmod are developed on Sourceforge.net. Sourceforge.net is a free Open Source software and standards development website.

This page provides instructions about which actions should be performed in order to gain access to DEXlib and STEPmod on Sourceforge.net. This is done in two different ways depending on if you are a developer who needs to update information, or if you are a non-developer who only wishes to download it. Each file can also be accessed individually from the CVS section of DEXlib and STEPmod with only a web browser, without following the instructions below.

The guidence provided here is build from a number of preavious documents, but the majority is extracted from a help guide created by Mike Ward, Eurostep ltd. If you encounter problems following this guide, contact anyone of the DEXlib developers.

Download DEXlib as a non-developer

This section explains the actions you need to take in order to be able to download STEPmod or DEXlib for the purpose of viewing it only. From now on only DEXlib will be discussed, but the methodology is the same for STEPmod.

· First you need to download, install and configure WinCVS. This is explained in the software section about WinCVS .

With the proper settings, the download of the DEXlib module is straight-forward.

· Start the WinCVS application

· Make sure that the folder ABOVE your STEPmod or DEXlib root folder is selected in the tree-view window before beginning the download.

There are two different ways of doing the actual downloading of a CVS module. The first time a 'check out' must be performed. When this first download is completed, two methods can be used to keep the module (i.e. DEXlib or STEPmod) up to date. Either you perform a new check out each time, or you do a 'update'.

· The first time 'check out' is done by...

When this first download is completed, two methods can be used to keep the module (i.e. DEXlib or STEPmod) up to date. Either you perform a new check out each time, or you do a 'update'.

· An 'update' is done by...

Your first download will take quite some time depending on your connection to the Internet. The following uppdates will be much quicker because only the changes to the module will be downloaded.

You are now ready to browse DEXlib. If you're unsure on how to navigate the environment, have a look at the section with Navigation instructions .

CVS access for developers

This section describes how CVS is set up to allow an user with developer status (i.e. someone with rights to modify the contents) to access DEXlib or STEPmod on Sourceforge.net.

Create a Sourceforge.net account

· Go to, (https://sourceforge.net/account/register.php) and follow the instructions given. You will be asked to choose a password and enter a valid e-mail address, and then an account name, a display name, your real name, your time-zone and then answer questions about optional e-mail notifications.

· Keep a record of your chosen account name and password in a safe place.

Request Developer status for DEXlib and STEPmod

· Email Rob Bodington (rob.bodington(at)eurostep.com), Tom Hendrix, (thomas.e.hendrix(at)boeing.com) or Chris Kreiler (kreilerc(at)mantech-wva.com) and request developer status. Remember to include your SF.net account name and a reference to an existing developer who may verify your request to join the team.

[image: image21.png]
Figure 1 — An example e-mail.
· Wait for a confirmation.

Authentication setup

· In order to create a safe connection to Sourceforge.net you need to download an authentication software suite named PuTTY. Read more in the software section about PuTTY.

· After the download, you need to use the PuTTYgen application to generate authentication keys. How this is done is explained here .

Post public key on SourceForge.net

· Visit, (http://sourceforge.net/account/) and log in to your personal account, using your Sourcforge.net account name and password.

· Click on the [Account Options] link in the top menu to access the 'Account Maintenance' page.

· Scroll down and click on the link [Edit SSH Keys for Shell/CVS].

· Open your private key file with the Puttygen application. You will be asked for the password you chose during creation.

· Copy the numerals in the 'Public key for pasting into OpenSSH authorized_keys file' box, by selecting them with your mouse and press Ctrl+C.

· Paste the line into the 'Authorized keys:' box on the page at the Sourceforge.net website, which loaded when you clicked on the [Edit SSH Keys for Shell/CVS] link.

· Click on the 'Update' button to add the key. You will be sent back to the 'Account Maintenance' page.

· Wait for the key to be synchronized to the project. There is up to a 10 minute delay between the time SSH keys are uploaded on the SourceForge.net site until they are synchronized to the project shell and CVS servers.

If you again click on the link [Edit SSH Keys for Shell/CVS] you can check if your copied string contains any errors (shown by red text). The key string should not be broken into several lines!

Set up and test PuTTY

· The next step is to set up PuTTY. It is explained in the software section for PuTTY .

· The last step is to test the PuTTY connection. It is explained in the software section for PuTTY .

Download, Install and Setup WinCVS

· WinCVS is a graphical front-end for CVS. How to download, install and setup WinCVS is explained in the software section for WinCVS .

Congratulations!

Your computer should now be correctly set up to allow you to access STEPmod and DEXlib. If you encounter problems or would like to suggest improvements to this guide, please contact any of the DEXlib developers listed on Sourceforge.net. A guide on how to work (download, edit, upload) with STEPmod and DEXlib is found here.

	How to work with DEXlib and STEPmod on Sourceforge.net
	Info T.O.C.

Introduction

This page provides instructions about which actions should be performed in order to gain access to DEXlib and STEPmod on Sourceforge.net. This is done in two different ways depending on if you are a developer who needs to update information, or if you are a non-developer who only wishes to download it. Each file can also be accessed individually from the CVS section of DEXlib and STEPmod without following the instructions below.

This guide assumes you have WinCVS and other neccesary applications set up correctly. If this is not the case, please visit to the CVS access guide.

The guidence provided here is build from a number of preavious documents, but the majority is extracted from a help guide created by Mike Ward, Eurostep. The instructions on this page written for version 1.3.13.2 of WinCVS. If you encounter problems following this guide, contact anyone of the DEXlib developers.

Sourceforge access for developers

This section describes how DEXlib or STEPmod on Sourceforge.net is accessed by a user with developer status.

Accessing and downloading DEXlib or STEPmod

All steps which must be repeted each time a CVS download should take place are described in this section.

Start Pageant

Before accessing STEPmod or DEXlib you must start the PuTTY authentication agent - Pageant. Pageant is needed to ... (explain).

· Run 'pageant.exe'. An icon (a computer with a hat...) will appear in your lower toolbar. No dialogue box will appear on your screen, only the icon.

· Double click on this icon.

[image: image22.png]
Figure 1 — The Pageant application.
· Click on the 'Add Key' button.

· Browse to the folder where you saved your key pair, select your private key (file ends with .PPK) and klick on the 'Open' button.

· Type in the password you chose in step 4 during CVS setup, and click on the 'OK' button. Your key should appear in the Pageant window.

· Close the Pageant window. Note that the icon still is on your toolbar and the program active. If you right-click on the icon and chose 'Exit' from the pop-up menu, the Pageant application will close and you will not be able to log into DEXlib or STEPmod with WinCVS.

Update your local STEPmod or DEXlib copy

Before you begin editing, it's a good idea to do a CVS update to make sure you have the latest version of the file you plan to work on. This will reduse the risk of conflicts when checking them back in again.

· Start WinCVS.

· Make sure that the folder ABOVE your STEPmod or DEXlib root folder is selected in the tree-view window before begining the download.

· Open the 'Admin' meny and select 'Command Line...' (or use Ctrl+L).

[image: image23.png]
Figure 1 — VinCVS command line settings for STEPmod download.
· Type in "cvs -d:ext:mysfusername@my_putty_session:/cvsroot/stepmod co stepmod" in the 'Command line settings' window, but replace "mysfusername" with your Sourcforge account name and "my_putty_session" with the name of your PuTTY session. If you instead want to access DEXlib, replace "../stepmod co stepmod", with "../dexlib co dexlib".

· Click on the 'OK' button, and the update will begin.

· Read the WinCVS messages that are displayed during the update, and take appropriate actions if needed.

· Save (from the 'File' menu) ?why? ...

Sourceforge access for non developers

This section describes how DEXlib or STEPmod on Sourceforge.net is accessed by a user who is not a developer. With the proper rights, you can also dowload an HTML-version of DEXlib and STEPmod. A link to the downloadsite is found on the OASIS PLCS TC website; (http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=plcs)
	Site navigation instructions
	Info T.O.C.

Using the banner menu

--- THIS PAGE IS NOT COMPLETED! ---

On the top of the page, there is a banner menu. From this menu, most of the resources on this site are easily accessed. This page reveals what is hidden behind each menu item. If you at any point wishes to return to the layout that you first met when you entered DEXlib, just press your browsers 'refresh' button.

[image: image24.png]
Figure 1 — The DEXlib banner menu.
Start section

This link reloads the start page into the main window. Use your browsers 'refresh' button if you wish to reload also the DEX Specifications menu in the left margin.

Help section

You've probably already used this link while navigating to this page. Use this section a lot if you new to DEXlib. Most questions find their answeres here...

DEXs section

The sub-menues ('Identifier', 'Name' and 'Number') lets you organize the left hand side list of DEXs according to your preferences.

Capabilities section

The sub-menues ('Identifier', 'Name', 'Number' and 'Function') lets you organize the left hand side list of Capabilities according to your preferences.

Business Concept section

Use this section a lot...

RDL section

Use this section a lot...

Terminology section

Use this section a lot...

EXPRESS section

Use this section a lot...

Test Data section

Use this section a lot...

Tools section

Use this section a lot...

	DEXlib directory structure
	Info T.O.C.

The DEXlib repository is organized as follows:
NOTE: The directory structure is based on the STEPmod directory structure, and designed so that it can be migrated to STEPmod with minimum change. Hence, all DEXlib specific files are contained within the dex folder sub directories.

css/

Contains the CSS stylesheets.

css/dex

The DEXlib specific files.

css/refdata

The DEXlib specific files. (REMOVE?)

data/

XML data for DEXlib.

data/basic

Contains boilerplate XML document fragments common to all DEX Specifications. E.g. contacts, abbreviations etc.

data/basic/dex

The DEXlib specific files.

data/busconcept

Contains ...

data/capabilities

Contains directories for the capabilities.

data/capability/[capability-name]

Each capability is stored in its own directory with the same name as the capability [capability-name]. Each capability directory contains files specific to the capability including XML data, images, etc.

data/dex/[capability-name]/dvlp

Sources for images and other development files.

data/dex/[capability-name]/images

Image files used by the Capability. The png format is preferred.

data/dex/[capability-name]/sys

Auto generated XML files for displaying the Capability.

data/dex

Contains directories for the DEX Specifications.

data/dex/[dex-name]

Each DEX Specification is stored in its own directory with the same name as the DEX Specification [dex-name]. Each directory contains files specific to the DEX Specification.

data/dex/[dex-name]/dvlp

Sources for images and other development files.

data/dex/[dex-name]/images

Image files used by the DEX Specification. The png format is preferred.

data/dex/[dex-name]/sys

Auto generated XML files for displaying the DEX Specification.

data/refdata

Contains the XML files for the reference data.

data/terminology

Contains ...

data/testdata

Contains ...

docs/

Contains ...

downloads/

Contains ...

dtd/

Contains the repository DTD files.

dtd/dex

The DEX Specification specific DTDs.

dtd/refdata

The reference data specific DTDs.

etc/

Contains ...

help/

Contains all the help files. This root folder should be empty.

help/dex

The XML files used for the PLCS information pages.

help/dex/dvlp

Sources for images and other development files.

help/dex/images

The image files used for the PLCS information pages. The png format is preferred.

help/refdata

The reference data specific help - NOT USED!.

images/

DEXlib image files. This root folder should be empty.

images/dex

Contains images that are used in DEXlib, e.g. the issues symbol or the '+' and '-' boxes for navigation. Note that any images specific to a DEX Specification, Capability, etc., should appear in the relevant DEX Specification or capability directory. The same goes for the images used in the help section.

images/refdata

The reference data specific images.

logs/

Contains ...

sys/

Contains the XML for displaying the HTML frames for dexlib.

utils/

Contains a set of utility scripts for creating DEX Specifications, capabilities and other functionality.

utils/dex

The DEX Specification specific utilities.

utils/refdata

The reference data specific utilities.

xsl/

Contains everything pertaining to transforming the XML to HTML. This includes XSLT stylesheets.

xsl/dex

The DEXlib specific XSL files.

xsl/refdata

The reference data specific XSL.

	FAQ - DEXlib frequently asked questions
	Info T.O.C.

List of questions

If you don't find the answer to your question here, don't hesitate to send it to the OASIS PLCS mailing list. If you have the answer to a question without one, or a much better answer, send that remark to the same mailing list.

Remember, there are no stupid questions - but not asking them might be!

General questions

What is DEX Specifications, Capabilities, Business Concepts and Reference data?

Read the Business overview, and the Technical description section.

How do I best navigate this site?

Look at the site navigation instructions page.

How do I get in contact with the PLCS community?

Look at the PLCS contact information page.

Who is allowed to edit the content of the Help pages?

(question not ansvered)

Editing DEXlib

Which colors should I use when I create images or diagrams?

(question not ansvered)

Where should I place images and other files I'm creating during the develpoment?

Read the page about the DEXlib directory structure.

How do I write characters like "ä" or "é" in an xml file?

(question not ansvered)

How do I create the instance diagrams I need in my documentation?

Have a look at the Software section where you'll find information about Graphical Instance and Instance Explorer.

What is the naming convention for files in DEXlib?"

No spaces should be used, instead add an underscore '_' if necessary.
All DEXlib file extensions should always be in lower case.

How do I change a file name in DEXlib/CVS?

DELETE the file in CVS and rename it something else. Deleting 'Filename.txt and replacing it with 'filename.txt' is NOT possible. Instead the new file must be named something like 'file_name.txt', to be considered a new file name.

Other questions

How do I login to Sourceforge.net?

Look in the...

How do I download STEPmod or DEXlib from Sourceforge.net?

First you need to set up CVS. This is described in the CVS setup guide The actual download procedure is described in the CVS work guide.

What is the difference between a 'Representing' Capability and a 'Referencing' one?

(question not ansvered)

How do I raise an issue against STEPmod?

(question not ansvered)

How can I view a summary of all DEXs?

Click on 'Tools' in the banner menu. Then chose 'DEX summary' sorted by ID or Number.

How do I raise an issue against a DEX or Reference Data?

(question not ansvered)

How do I view issues raised against DEXs and Reference Data?

(question not ansvered)

Is there a god?

(question not ansvered)

What is a 'DEX short form'?

(question not ansvered)

How do I create a new DEX, Capability or Business Concept?

Make a BC().

How do I remove a created DEX, Capability or Business Concept?

First remove the folder with the name of the item to be deleted in 'dexlib/data/-itemtype-/'. Then open the 'dex_index.xml' file in the DEXlib root directory and remove the line that describes the item.

How do I create Reference Data using OWL?

(question not ansvered)

What is Protege?

(question not ansvered)

	Software - Graphical Express
	Info T.O.C.

Description

Graphical Express is a Visio plug-in, which can be used to draw EXPRESS-G diagrams.

Visio 2002 or newer is recommended.

Graphical Express is a freeware, which can be downloaded from the Eurostep website (www.eurostep.com).

Installation

Graphical Express comes as an executable installation file.

The path-xxx must be reset.

	Software - PuTTY
	Info T.O.C.

Description

PuTTY is a software suite for authentication. In order to create a safe connection to Sourceforge.net, such a software is needed.

The PuTTY suite can be downloaded from, (http://www.chiark.greenend.org.uk/~sgtatham/putty/) Look in the 'Download' section and chose files depending on your environment. These files are required,

· PuTTY.exe - (a Telnet and SSH client)

· Plink.exe - (a command line interface to PuTTy)

· Pageant.exe - (an SSH autentication agent)

· PuTTYgen.exe - (an RSA and DSA key generation utility)

This page contains a number of sub-sections;

· Installation
· Generate and save a public/private key pair
· Load your private key with Pageant
· Set up PuTTY
· Test PuTTY
Installation

None of the download files need any installation. They are all executable in the format they are downloaded.

Generate and save a public/private key pair

A public/private key pair needs to be generated, which will be used for authentication on Sourceforge.net.

· Run 'PuTTYgen.exe' from the folder where you saved it, e.g. by double-clicking it.

[image: image25.png]
Figure 1 — The PuTTYgen application.
· Make sure that 'SSH2RSA' is chosen in the Parameters section of the window that has opened up.

· Click the 'Generate button'.

· type in your preferred password in "Key passphrase" field.

· retype your preferred password in "Confirm passphrase" field.

· keep a record of your password.

· save the private key as, e.g. 'priv_key' in your PuTTY-folder.

· save the public key as, e.g. 'pub_key' in your PuTTY-folder.

· Note that the chosen password is a local password on your own machine that allows you access to your keys.

· Close the 'PuTTYgen' application.

Load your private key with Pageant

You will have to complete the actions described in this step every time you use WinCVS. These steps are also included in the guide on how to download, work with, and upload DEXlib and STEPmod on Sourceforge.net

· Run 'pageant.exe'. An icon (a computer with a hat...) will appear in your lower toolbar. No dialogue box will appear on your screen, only the icon.

· Double click on this icon.

[image: image26.png]
Figure 1 — The Pageant application.
· Click on the 'Add Key' button.

· Browse to the folder where you saved your key pair, select your private key (file ends with .PPK) and click on the 'Open' button.

· Type in the password you chose in step 4, and click on the 'OK' button. Your key should appear in the Pageant window.

· Close the Pageant window. Note that the icon still is on your toolbar and the program active. If you right-click on the icon and chose 'Exit' from the pop-up menu, the Pageant application will close and you will not be able to log into DEXlib or STEPmod with WinCVS.

Set up PuTTY

· Run 'putty.exe' from your PuTTY folder. The PuTTY Configuration window should appear on your screen.

[image: image27.png]
Figure 1 — The PuTTY Configuration window and the 'Session' section.
· Open the 'Session' section if it's not already open.

· Type "cvs.sourceforge.net" in the 'Host Name (or IP address)' field.

· Type "22" in the 'Port' field (if necessary).

· Select "SSH" (if necessary) in the 'Protocol:' dialogue.

· Type a name for your PuTTY session in the 'Saved Sessions' field, e.g. "my_putty_session".

· Check "Never" in the 'Close window on exit:' dialogue.

· Save your PuTTY session.

· Close PuTTY by clicking on the 'Cancel' button.

· Run 'putty.exe' again and load your created session ("my_putty_session").

· Open the 'Connection' section by clicking in the 'Category' field.

· Type in your Sourceforge.net account name in the 'Auto-login username' field.

[image: image28.png]
Figure 1 — The PuTTY Configuration window and the 'Connection' section.
· Open the 'SSH' section by clicking in the 'Category' field.

· Check "2" in 'Protocol options:' dialogue.

[image: image29.png]
Figure 1 — The PuTTY Configuration window and the 'SSH' section.
· Open the 'Auth' section by clicking in the 'Category' field.

· Check the "SSH2" option in the 'Authentication methods' dialogue.

· Click on the "Browse" button, and navigate to where your private key (.PPK) file is stored.

[image: image30.png]
Figure 1 — The PuTTY Configuration window and the 'Auth' section.
· Open the 'Session' section again and save the changes you've made to your PuTTY session.

· Close PuTTY by clicking on the 'Cancel' button.

Test PuTTY

· The last step is to test the PuTTY connection. First you need to load your private key with Pageant .

· Then run 'putty.exe' again and load your created session ("my_putty_session").

· Click on the 'Open' button

[image: image31.png]
Figure 1 — Your PuTTY Connection has been setup correctly!
· Your screen should look like the image above if your PuTTY session is set up correctly

· Close the pop-up box and the PuTTY window.

This setup and test only needs to be performed once. Though, if you later on experience authentication problems, it could be a good idea to run this test again.

	Software - WinCVS
	Info T.O.C.

Description

WinCVS is a graphical front end tool for accessing CVS repositories. It runs on the Microsoft Windows platform. WinCvs is an advanced CVS client that provides an expert level of control over CVS operations.

CVS, Concurrent Versions System, is a centralized Revision Control System (RCS). SourceForge.net provides CVS service to all hosted projects. In order to access the CVS service, a CVS client (like WinCVS) is needed. CVS allows developers to keep a historical record of changes made to their source code tree, and to allow multiple developers to work on a single set of files at the same time without accidentally overwriting changes made by other developers.
(Paragraph copied from Sorceforge.net)

This section provides descriptions for two different versions of WinCVS.

· WinCVS 1.3.13.2
· WinCVS 2.0.2.4
WinCVS 1.3.13.2

This older version of WinCVS is still usable...

Download and install WinCVS

WinCVS is a graphical front-end for CVS (Concurrent Versions System). CVS is an open-source version control system mainly used be software developers. The instructions in step 9 below are written for version 1.3.13.2 of WinCVS. The first three bullets describe how to download the most recent version of WinCVS. If you wish to use the older 1.3.13.2 version, you can download it from (...here...), and skip these first three bullets.

· Use your web browser to visit [http://www.wincvs.org/], and scroll down to the 'CvsGui distribution' section.

· Click on the [binaries and source code] link, and scroll down to the 'Latest Recommended Release: WinCvs 1.3.20.3 (released 2004-11-21)' section. If the release numbers and dates are different doesn't matter.

· Click on the [Download installer] link, chose a download location by clicking on the download icon. Save the zip-file to your hard drive.

· Extract the 'setup.exe' file from the 'WinCvs13b20-3.zip' file into the same folder. The zip file may have another name depending on which version was the most recent when you performed the download.

· Run the 'setup.exe' file and accept the default settings. Also accept to install CVSNT.

WinCVS should now be installed on your computer, and an icon (a yellow fish) should be present on your desktop. (Install python?)

Setup for non-developers

No setup guidence for non-developers is written for this version of WinCVS.

WinCVS configuration for developers

When the installation is completed and your computer has been restarted, WinCVS needs to be configured for access to DEXlib or STEPmod. These instructions for are valid for WinCvs 1.3.13.2.

· Create a folder for all your STEPmod and DEXlib files. Note that the main folders "StepMod" and "Dexlib" must both be placed on the same level in the catalog hierarchy, otherwise links in DEXlib to STEPmod contents will not work properly.

· Start WinCVS.

· Open the 'Admin' menu and select 'Preferences...' (or use Ctrl+F1).

· Click on the 'General' tab to set general preferences.

[image: image32.png]
Figure 1 — The 'General' preferences tab in WinCVS.
· Select "ssh" in the 'Authentication' field.

· Type "/cvsroot/dexlib" in the 'Path:' field.

· Type "cvs.sourceforge.net" in the 'Host address:' field, or the name of your PuTTY sessesion, e.g. 'my_putty_session'.

· Type your SourceForge user name, e.g. 'my_sf_username'' in the 'User name:' field.

· Click on the 'Settings...' button next to the 'Authentication' field.

[image: image33.png]
Figure 1 — The 'SSH Options' window.
· Check the 'SH client:' box.

· Click on the '...' button next to the SSH text input field.

· Browse to your "plink.exe" file, select it and click on the 'open' button.

· Click on the 'OK' button in the 'SSH Options' window.

· Click on the 'Globals' tab to set more preferences.

[image: image34.png]
Figure 1 — The 'Globals' preferences tab in WinCVS.
· Check the 'Supply control when adding files' box.

· Check the 'Prune (remove) empty directories' box.

· Click on the 'CVS' tab to specify folder preferences.

[image: image35.png]
Figure 1 — The 'Globals' preferences tab in WinCVS.
· Click on the '...' button next to the 'HOME' text input field.

· Browse to your STEPmod and DEXlib folder that you created in the beginning of this step, select it and click on the 'open' button.

· Click on the 'WinCvs' tab to specify the file editor to be used.

[image: image36.png]
Figure 1 — The 'WinCvs' preferences tab in WinCVS.
· Click on the '...' button next to the 'Default viewer used to open files:' text input field.

· Browse to the file editor you wish to use when working in STEPmod or DEXlib, select it and click on the 'open' button.

· Click on the 'OK' button in the 'WinCvs' preferences tab to save your settings and exit the 'WinCvs Preferences' dialog.

WinCVS 2.0.2.4

WinCVS 2.0.2.4 was the latest available version at the time of this writing (2005-11-08).

Installation

This installation description has been copied from the Sorceforge.net document F05. To install WinCvs, first read these instructions through, then do the following:

1. Download the latest stable release of WinCvs from the CvsGui project website (https://sourceforge.net/projects/cvsgui/), and unzip the downloaded file.

2. Run the WinCvs installer program extracted from the downloaded file, wincvs_setup.exe.

3. Close all other open programs except for the WinCvs installer and then click on the 'Next' button.

4. Read the license text if you are unfamiliar with it, select the 'I accept the agreement' radio button and then click on the 'Next' button.

5. This screen displays useful information about the WinCvs applicaion. It also provides details on optional Windows components that are required for certain users. Once you have done so, click on the 'Next' button.

6. Review and alter the installation path for WinCvs if necessary. The default path is the ideal location for most users. Then, click on the 'Next' button.

7. Select the 'Full installation (recommended)' installation component pull-down and click on the 'Next' button.

8. Review and alter the Start Menu folder to be created for WinCvs as needed (the default option is recommended and shouldn't be changed for most users), and click on the 'Next' button.

9. Modify any icon and shell context menu options as desired (again, most users shouldn't have a need to modify these), and click on the 'Next' button.

10. Review the selected installation options and then click on the 'Install' button if they are correct. If not, go back and correct any incorrect settings.

11. Make sure the 'Install CVSNT' option is checked and click on the 'Finish' button.

12. Click on the 'Next' button.

13. Review the license agreement (the GNU GPL) and then select the 'I accept the agreement' radio button. Then, click on the 'Next' button to continue.

14. Review and alter the installation path for cvsnt if necessary. The default path is the ideal location for most users. Then, click on the 'Next' button.

15. If a warning box comes up, notifying you that the folder exists where you are trying to install cvsnt, select 'Yes', as you do want to overwrite it.

16. Select the 'Full installation' component method (this is not the default, you will have to select the option from the pull-down menu), then click on the 'Next' button.

17. Review and modify the Start Menu options for cvsnt (the defaults should be fine for most users), then click on the 'Next' button.

18. Make sure the 'Generate default certificate' option is checked and click on the 'Next' button.

19. Review the installation options and use the 'Back' button to fix any mistakes. Then, click on the 'Install' button.

20. Click on the 'Finish' button

21. You must restart the computer to start using WinCvs. If you wish to use it now, select the 'Yes, restart the computer now' radio button. Otherwise, select the 'No, I will restart the computer later' radio button, and restart the computer before trying to configure WinCvs.

(Install python?)

Setup for non-developers

When the installation is completed and your computer has been restarted, WinCVS needs to setup for anonymous access to the prefererred CVS module, e.g. DEXlib or STEPmod. Anonymous access will only allow you to download a module and view it, not to take part in the development process. If you instead is interested in becoming a developer, have a look at the Developers Information section.

Setup for developers

No setup guidence for developers is written for this version of WinCVS. See the instructions written for WinCVS 1.3.13.2
If you are using WinCVS 2.0.2.4 as a developer, you're more than welcome to write a developer setup guidence document.

	Software - Protégé
	Info T.O.C.

Description

Protégé is a free, open source ontology editor and knowledge-base framework, developed by Stanford Medical Informatics at the Stanford University School of Medicine It supports Frames, XML Schema, RDF(S) and OWL. In the PLCS comunity, it is used for the development of Reference Data OWL ontologies.

The March 2004 initial publication of the PLCS Reference Data used Protégé 2.1 Beta Build 176 and OWL Plug-in Build 97. The development of Protégé and the OWL Plug-in continues so care should be taken to test any newer releases before committing to their use for Reference Data development.

Protégé can be downloaded from (http://protege.stanford.edu/)
Installation Requirements

Download before starting (see URL's at end of page MISSING!)

· Java (J2RE) 1.4.2/3 (1.5 has problems as of April 2004

· Latest beta version of Protégé (currently Beta 2.1 Build 182)

· Latest Protégé OWL Plug-in (currently build 104)

Please review FAQ and user guides for more details.

Installation

1. Protégé is available from the Stanford University Web site. Please download the version appropriate to your computer operating system. For PLCS DEX Reference Data development, please use version 3.0(http://protege.stanford.edu/download.html) or newer. As the PLCS reference data is developed using OWL, you will require the full version of Protégé that includes the base system and optional plug-ins. This will automatically include the required OWL plug-in.

2. Note that if you don't already have a Java Virtual Machine (JVM) installed, you should download one. The Sun and IBM Web sites have downloads available. Protégé also has a download that comes bundled with a JVM. In order to operate Protégé you only need the Java Runtime Environment (JRE), not the full System Developers Kit (SDK).

3. Once the JVM/JRE is ready, install Protégé as directed. Note that you can test by verifying JRE is available to system (Windows: Use Control Panel) if you are unsure.

4. Install Protégé using all defaults. Choose the JRE you just installed or that already existed (remember only 1.4.2 or 1.4.3 work as of April 2004). During installation you will be asked which components of Protégé to include. Select "Everything" to ensure that the OWL plug-ins are installed.

5. Test by starting and opening test "newspaper" ontology.

6. Test the OWL plug-in by creating new "OWL Files" Ontology.

7. To enable Protégé to use local OWL files, rather than those found on the Web, you need to update the ont-policy.rdf file provided as part of the OWL Plug-in. An example is provided in dexlib. Before setting this up, please compare the downloaded ont-policy.rdf in the OWL Plugin folder to see if it has changed. If so, add the plcs and Dublin Core elements from the PLCS version of this file to the new one. Over time, the ont-policy.rdf file is likely to change as the Protégé OWL Plugin is developed.

8. You should copy dexlib/data/refdata/plcs_owl/ont-policy.rdf wherever you have installed Protégé OWL plug-in (e.g: Protege_3.0/plugins/edu.stanford.smi.protegex.owl/ont-policy.rdf).

9. Edit that file so that the ENTITY plcs points to the folder where you have installed the plcs_owl folder in dexlib.

EXAMPLE <!ENTITY plcs 'file:///d:/rbn/projects/nist_module_repo/dexlib/data/refdata/plcs_owl/'>

The OntologySpec element in the ont-policy.rdf file specifies the natural URI you'll put in your data, the alternative location (e.g. your dexlib folders), the type of the file which is OWL in our case, and the XML namespace prefix to use. Note that this prefix must match exactly the XML namespace used in the OWL files making up the Reference Data.

This capability allows you to specify the final, proper URI during the development of the Reference Data. When finally published on the Web without the use of the ont-policy.rdf redirection, the Web addresses will be correct.

If you want to use OWL files directly from the Web, then do not include them in the ont-policy.rdf file.

Notes

1. Windows Default Plugins folder: C:\Program Files\Protege_3.0\plugins

2. Installing each new build of Protégé in a new folder is recommeded.

3. Reference data files should be stored in a separate folder from the installed software. Use of the dexlib folders is recommended.

RD Development with Protégé

This section explains how to use the Protégé tool to specify various aspects of the PLCS Reference Data.

Complete On Superclass

create a Necessary & Sufficient Condition and define that a Superclass is made up of a union of subclasses. In Protégé:

· right-click on N & S

· create new expression

· select C and add class

· select U for Union

· select C and add class

Disjoint On Subclasses

you add a disjoint statement for each subclass. In Protégé:

· under the Disjoint heading, add disjoint class using C+

Equivalent classes and other relationships

The OWL Language has the built in capability to state that two classes have exactly the same members. From the OWL Web Ontology Language Guide : The property owl:equivalentClass is used to indicate that two classes have precisely the same instances. Note that in OWL DL, classes simply denote sets of individuals, and are not individuals themselves. See Section 3.2.2 of the OWL Web Ontology Language Reference (http://www.w3.org/TR/owl-ref/#equivalentClass-def).

The OWL Language also has the built in capability to state that one class is defined as the unionOf, intersectionOf or complementOf of other classes. For the creation of PLCS Reference Data, this set theory capability of OWL is included in OWL DL and so may be used. See Section 3.1.3 of the OWL Web Ontology Language Reference(http://www.w3.org/TR/owl-ref/#Boolean)
Class equivalence can be created in Protege by:

1. Selecting on of the equivalent classes.

2. Select the "NECESSARY & SUFFICIENT" header in the "Asserted Conditions Widget".

3. Click the "Add named class..." button to display a dialog containing the class hierarchy. Select the equivalent class and click the "OK" button to close the dialog.

An example screen shot of Protege is shown in Figure 3.

[image: image37.png]
Figure 3 — Qualifier classes
The resulting OWL is:

 <owl:Class rdf:ID="y">

 <owl:equivalentClass>

 <owl:Class rdf:ID="x"/>

 </owl:equivalentClass>

 </owl:Class>

 <owl:Class rdf:about="#x">

 <owl:equivalentClass rdf:resource="#y"/>

 </owl:Class>

Multi-language class names and definitions
This section has not yet been reviewed or agreed.
Identifying classes as used in a DEX

This section has not yet been reviewed or agreed.
Identifying classes as used in a contract

This section has not yet been reviewed or agreed.
Who uses the class - which organization has contracted against an ontology or a subset of the ontologies?

How to identify classes that are used/required by a capability

This section has not yet been reviewed or agreed.
We may need to identify the reference data...

How does an organization extend/use the ontology.

This section has not yet been reviewed or agreed.
Are there types of Reference Data classes to be taken into account?

This section has not yet been reviewed or agreed.
EXPRESS/OWL classes

The PLCS information model is represented by converting the EXPRESS entities to OWL classes - EXPRESS/OWL classes. Reference data is generated by creating sub classes of these OWL classes.

Model classes

This section has not yet been reviewed or agreed.
There is some reference data that is used to provide additional semantics to the PLCS information model or to clarify the ambiguity of the model. This reference data is typically used where the PLCS model is inadequate, but was not be modified in order to preserve compatibility with existing parts of the STEP standard.

Qualifier classes

This section has not yet been reviewed or agreed.
Qualifier classes are used to qualify an assignment. For example, a typical or actual date is represented by qualifying a Date_or_date_time_assignment as being typical or actual.

The application of a qualifier class is achieved by making the EXPRESS entity to which the qualifier applies a sub class. An example is shown in Figure 2.

[image: image38.png]
Figure 2 — Qualifier classes
Domain classes

This section has not yet been reviewed or agreed.
The majority of OWL classes are classes particular to a given domain.

Example classes

This section has not yet been reviewed or agreed.
During the development of the capabilities, some reference data is used as examples in the text describing the capability. Rather than including this reference data in the standard set of reference data to be published, it is stored in a separate OWL file plcs-rdl-examples.owl(../../data/refdata/plcs_owl/plcs-rdl-examples.owl).

References

The Protégé Ontology Editor and Knowledge Acquisition System (http://protege.stanford.edu/)
Protégé FAQ(http://protege.stanford.edu/faq.html)
OWL Plugin FAQ(http://protege.stanford.edu/plugins/owl/protege-owl-faq.html)
Sun Java(http://java.sun.com/j2se/index.jsp)
	Software - Graphical Instance
	Info T.O.C.

Description

Graphical Instance is a tool, which can be used to draw instance diagrams according to EXPRESS-I.

Graphical Instance is a freeware, which can be downloaded from the Eurostep website (www.eurostep.com).

Installation

Graphical Instance comes as an executable installation file.

	Software - Instance Explorer
	Info T.O.C.

Description

Instance Explorer is a tool, which can be used to draw instance diagrams according to EXPRESS-I.

Instance Explorer is sold by PDTec gmbh.

Installation

Instance Explorer comes as an executable installation file.

	Software - Ant
	Info T.O.C.

Description

Ant is a Java™-based build tool. The Ant build file utils/build.xml can be used as an alternative to utils/xml2html.js for converting the XML in the module repository to HTML. The build file is also useful for automated backups and mirroring of the repository. To use this build file, you need to have the following software installed:

· Ant.

· A recent version of the Java 2 Platform.

· The SAXON XSLT processor (use the “full” version, not the “instant” version).

Note: There is some implementation dependent code used in build.xml so you must use SAXON rather than other TrAX-compliant XSLT processors, e.g. Xalan-Java (http://xml.apache.org/xalan-j).

Ant can be downloaded from the Apache web site (http://jakarta.apache.org/ant).

Installation

Note: To avoid memory problems, set the environment variable
ANT_OPTS=-Xmx256m

	Software - SAXON
	Info T.O.C.

Description

SAXON is a ...

SAXON can be downloaded from the SAXON site at Sourceforge.net (http://saxon.sourceforge.net).

Installation

	Software - Java 2 Platform
	Info T.O.C.

Description

The Java 2 Platform is a ...

A recent version of the Java 2 Platform can be downloaded from the Sun Java web site (http://java.sun.com/j2se/).

Installation
