Introduction


Introduction 

EDITORS NOTE: THIS SECTIONS IS INCOMPLETE. The text is defined in dexlib/help/dex/introduction.xml

This library contains an evolving set of Data Exchange Specifications (DEXs) derived from the Application Reference Model of ISO 10303-239: Application Protocol - Product Life Cycle Support (PLCS). 

The DEX library is owned and operated by OASIS Product Life Cycle Support TC. Further information on this Technical Committee, and other OASIS initiatives, can be found at (www.oasis-open.org). 

The index to the left lists the available Data Exchange Sets (DEXs). Each DEX contains: 

· an introduction, explaining the nature and purpose of the exchange set; 

· a scope statement, defining the permitted information content; 

· a business context for the data exchange, including an extract from the AP239 Application Activity Model coloured to show the information flows (arrows) that the DEX supports; 

· an overview of the DEX information model; 

· reference to the individual "capabilities" used by the DEX to specify its contents; 

· identification of the AP239 Implementation Module from which the DEX Long form is derived; 

· a list of subordinate modules and entities used by the DEX. 

The "capabilities" are the building blocks from which a DEX is constructed. Capabilities perform a similar function to Modules within STEPmod although there is not a one-to-one correspondance. They are used to accelerate DEX development and to avoid different interpretations of equivalent concepts in different DEXs. Each capability contains: 

· an introduction, explaining the nature and purpose of the capability; 

· a business overview; 

· a description of the information model used by the capability, with examples of its use; 

· a full specification of the information model used by the capability, derived from the relevant AP239 Implementation Module. 

Please note that the information models used in a DEX are true subsets of the AP239 ARM. For DEXLIB to function properly it must be located alongside the STEPmod repository, within a common parent directory. If this is not the case, some views will not work. 

Note - The library is implemented in XML and uses XSL and JScripts. It is therefore necessary to use Internet Explorer version 6 to view this site. 

Data Exchange Architecture 

[image: image1.png]
Figure 1 —  Data Exchange Architecture 

DEX Template 

Structures for Capabilities and DEXs 

DEX types 

Three levels of DEX precision may apply in order to specify a data exchange set.

· Generic DEXs define a comprehensive data exchange set that inherently captures a number of specific data exchange ideas. A generic scope opens for usage that is not planned or documented. Many applications, and translators, will not be able to handle a generic scope. 

· Specialized DEXs normally consists of a subset of the capabilities of the generic DEX. Often DEX specifications will be redundant. The generic and the specialized DEX may be identical. A specialized DEX represents a family of business data exchange requirements with identical data model structure. 

· Instantiated DEXs define outer leaf data exchange specifications for single business data exchange requirements (ideas) that shall be equally understood at both sides of an exchange. Instantiated DEXs are hence specializations of generic (or specialized if existing) DEXs, representing each single family member. An instantiated DEX may contain all or a subset of the entities of the generic DEX. 

Capability types 

Three levels of capability precision apply in order to identify the outer leaf reference data, constraints and rules needed to interpret specific business concepts. 

· Generic capabilities define the interpretation of the ARM schema of ISO 10303-239 to fulfil business requirements for information representation. 

· Specialized capability normally consists of a subset of the entities of the generic capability. In some cases, the generic and the specialized capability will be identical. A specialized capability represents a family of business concepts with identical data model structure. It therefore normally is more precise than the generic capability 

· Instantiated capability uses the same subset of entities as the specialized capability. An instantiated capability defines the business concept as the single family member of the specialized capability, with no room for ambiguity. In reality, an instantiated capability is a further specialization of the population of a specialized capability. (a) Short forms of instantiated capabilities shall compose the short form of the instantiated DEX for generation of the DEX longform. Only instantiated capabilities shall be used by a DEX (b)The specific rules and reference data of instantiated capabilities and DEXs shall be added to the DEX shortforms. 

[image: image2.png]
Figure 1 —  Structures for capabilities 

Constraints 

Constraints apply to all levels of capabilities in order to provide an increasing level of precision to represent the specific business concept. Constraints apply to generic capabilities, to specialized capabilities and to instantiated capabilities, and to generic and instantiated DEXs. Tables of Constraints shall be related to the entity or entities that they apply to. The fulfilment of constraints is validated by rules. 

Rules 

Rules shall be written in human language and in a formal language that is machine interpretable. Rules may apply to generic capabilities, to specialized capabilities and to instantiated capabilities, and to generic and instantiated DEXs. Rules are inherited from higher levels (generic) to lower levels. The aggregated set of rules is part of the short form for the instantiated capability and the instantiated DEX. 

Reference data 

Reference data shall be identified with the class identity associated to Tables of Constraints for capabilities and DEXs. Reference data apply to generic capabilities, to specialized capabilities and to instantiated capabilities, and to generic and instantiated DEXs. Reference data shall be listed in a table at the level they apply. Reference data are inherited from higher levels (generic) to lower levels (instantiated).

Numbering conventions 

Numbering conventions for DEXs and capabilities, with their constraints and rules shall be as follows: 

· The numbering convention for a generic DEX is Dxyz, and for a generic capability is Cxyz. xyz is replaced by a sequence number that starts with 001. 

· The numbering convention for a generic DEX rule is Dxyz_Rn, and for a generic capability rule is Cxyz_Rn. The letter n is a sequence number larger than '0' 

· The numbering convention for a specialized DEX is Dxyz_a, and for a specialized capability is Cxyz_a. When the specialized DEX or capability contains the full set of entities of the generic DEX or capability, the letter 'a'='0'. For specializations that cover a smaller domain than the generic DEX or capability, the letter 'a' is a sequence number larger than '0'. 

· The numbering convention for a specialized DEX rule is Dxyz_a_Rn, and for a specialized capability rule is Cxyz_a_Rn 

· The numbering convention for an instantiated DEX is Dxyz_a_p, and for an instantiated capability is Cxyz_a_p. The letter 'p' is a sequence number larger than '0'. 

· The numbering convention for an instantiated DEX rule is Dxyz_a_p_Rn, and for an instantiated capability rule is Cxyz_a_p_Rn. 

Reference data 

Documentation is on-going. To be uploaded until 25 February. 

Conventions 

Reference data 

Model diagrams 

Instance diagrams 

This diagram shows instances (denoted by the lower-right triangle with instance number, for example '#510') of EXPRESS entities. Each rectangular box denotes an instance of an entity. The lines between the boxes represent attributes which form relationships from one to the other (in the direction of the line ending in a small open circle ---o). Some entities are abstract and are only instantiated through their subtypes, which inherit any attributes present in the supertype. On the diagram, this is indicated by "supertype=>" i.e. the name of the supertype followed by the symbols "=" and ">". The name of the subtype instantiated has no symbols following the name. The basic attributes shown are in italic font in the format "attribute name=value" where the name of the attribute is followed by it's value. An empty string is denoted by single quote marks ' ', while an un-populated attribute is denoted by the symbol "$". 

relationship to PDM Schema 

[image: image3][image: image4][image: image5][image: image6][image: image7][image: image8][image: image9][image: image10][image: image11][image: image12][image: image13][image: image14][image: image15][image: image16][image: image17]
