
PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 1 of 26

PPS (Production Planning and
Scheduling) Part 3: Profile
Specifications, Version 1.0
Public Review Draft 02

24 Oct 2009
Specification URIs:

http://docs.oasis-open.org/pps/v1.0/pps-profile-specifications-1.0.doc
http://docs.oasis-open.org/pps/v1.0/pps-profile-specifications-1.0.html
http://docs.oasis-open.org/pps/v1.0/pps-profile-specifications-1.0.pdf

Previous Version:
http://docs.oasis-open.org/pps/v1.0/cs01/pps-profile-specifications-1.0.doc
http://docs.oasis-open.org/pps/v1.0/cs01/pps-profile-specifications-1.0.html
http://docs.oasis-open.org/pps/v1.0/cs01/pps-profile-specifications-1.0.pdf

Latest Version:
http://docs.oasis-open.org/pps/v1.0/pr02/pps-profile-specifications-1.0.doc
http://docs.oasis-open.org/pps/v1.0/pr02/pps-profile-specifications-1.0.html
http://docs.oasis-open.org/pps/v1.0/pr02/pps-profile-specifications-1.0.pdf

Technical Committee:
OASIS Production Planning and Scheduling TC

Chair(s):
Yasuyuki Nishioka, PSLX Forum / Hosei University

Editor(s):
Yasuyuki Nishioka, PSLX Forum / Hosei University
Koichi Wada, PSLX Forum

Related work:
This specification is related to:

• Universal Business Language 2.0
Declared XML Namespace(s):

http://docs.oasis-open.org/pps/2009
Abstract:

OASIS PPS (Production Planning and Scheduling) specifications deal with problems of decision-
making in all manufacturing companies who want to have a sophisticated information system for
production planning and scheduling. PPS specifications provide XML schema and communication
protocols for information exchange among manufacturing application programs in the web-
services environment. This specification entitled “Part 3: Profile Specifications” especially focuses
on profiles of application programs that may exchange the messages. Application profile and
implementation profile are defined. Implementation profile shows capability of application
programs in terms of services for message exchange, selecting from all exchange items defined
in the application profile. The profile can be used for definition of a minimum level of
implementation of application programs who are involved in a community of data exchange.

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 2 of 26

Status:

This document was last revised or approved by the PPS TC on the above date. The level of
approval is also listed above. Check the “Latest Version” or “Latest Approved Version” location
noted above for possible later revisions of this document.
Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/pps/.
For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/pps/ipr.php.
The non-normative errata page for this specification is located at http://www.oasis-
open.org/committees/pps/.

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 3 of 26

Notices
Copyright © OASIS® 2007. All Rights Reserved.
All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.
OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.
OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.
The names "OASIS", PPS are trademarks of OASIS, the owner and developer of this specification, and
should be used only to refer to the organization and its official outputs. OASIS welcomes reference to,
and implementation and use of, specifications, while reserving the right to enforce its marks against
misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 4 of 26

Table of Contents
1 Introduction ... 6

1.1 Terminology .. 6
1.2 Normative References .. 6
1.3 Non-Normative References .. 6
1.4 Conformance .. 6
1.5 Terms and definitions ... 7

2 Application profile Definitions ... 8
2.1 General ... 8
2.2 Structure of profile definitions ... 8
2.3 Standard profile definitions ... 9
2.4 Extended profile definitions ... 10
2.5 Revision rule ... 11

3 Implementation profiles .. 12
3.1 General ... 12
3.2 Structure of implementation profiles ... 12
3.3 Level of implementation .. 14
3.4 Profile inquiry .. 14

4 XML Elements .. 16
4.1 AppProfile Element ... 16
4.2 AppDocument Element ... 16
4.3 AppObject Element ... 17
4.4 AppProperty Element .. 18
4.5 Enumeration Element ... 18
4.6 EnumElement Element ... 19
4.7 ImplementProfile Element ... 19
4.8 ImplementDocument Element .. 21
4.9 ImplementAction Element ... 21
4.10 ImplementProperty Element ... 22
4.11 ImplementEvent Element .. 23

A. Acknowledgements .. 25
B. Revision History .. 26

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 5 of 26

Figures

Figure 1 Structure of profile specifications ... 8
Figure 2 Application Profile .. 9
Figure 3 Concept of communication availability between implementations .. 12
Figure 4 Structure of ImplementProfile .. 13

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 6 of 26

1 Introduction 1

This specification prescribes definition of application profile and implementation profile. Implementation 2
profile shows capability of information exchange with other application programs using PPS transaction 3
messages [PPS02]. In order to define an implementation profile for each application program, this 4
document also defines and prescribes application profile specification that should be consistent with all 5
implementation profiles. An application profile allows each individual program to describe their capability. 6
Application profile shows a set of domain documents, domain objects and domain properties, which may 7
be used in a message of production planning and scheduling application programs. Implementation 8
profile shows domain documents, domain objects and domain properties that the application program can 9
deal with correctly. The implementation profile also shows an implementation level of the application 10
program. By collecting implementation profiles, a system integrator can arrange particular messaging in 11
application specific scenarios. 12

1.1 Terminology 13

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 14
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 15
in [RFC2119]. 16

1.2 Normative References 17

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 18
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 19

[PPS01] PPS (Production Planning and Scheduling) Part 1: Core Elements, Version 1.0, 20
Public Review Draft 01, http://www.oasis-open.org/committees/pps/ 21

[PPS02] PPS (Production Planning and Scheduling) Part 2: Transaction Messages, 22
Version 1.0, Public Review Draft 01, http://www.oasis-open.org/committees/pps/ 23

[PATH] XML Path Language (XPath) Version 1.0, http://www.w3.org/TR/xpath 24

1.3 Non-Normative References 25

[PSLXWP] PSLX Consortium, PSLX White Paper - APS Conceptual definition and 26
implementation, http://www.pslx.org/ 27

[PSLX001] PSLX Technical Standard, Version 2, Part 1: Enterprise Model (in Japanese), 28
Recommendation of PSLX Forum, http://www.pslx.org/ 29

[PSLX002] PSLX Technical Standard, Version 2, Part 2: Activity Model (in Japanese), 30
Recommendation of PSLX Forum, http://www.pslx.org/ 31

[PSLX003] PSLX Technical Standard, Version 2, Part 3: Object Model (in Japanese), 32
Recommendation of PSLX Forum, http://www.pslx.org/ 33

[PROFILE] PSLX Application Profile, Version 1.0 (printed edition is in Japanese), 34
http://www.pslx.org/ 35

1.4 Conformance 36

A document of profile confirms OASIS PPS Profile Specifications if all elements in the artifact are 37
consistent with the normative text of this specification, and the document can be processed properly with 38
the XML schema that can be downloaded from the following URI. 39
 40

http://docs.oasis-open.org/pps/v1.0/pps-schema-1.0.xsd 41
 42

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 7 of 26

1.5 Terms and definitions 43

Application profile 44
Collections of profile specifications for all application programs that may be involved in the 45
communication group who exchanges PPS messages. This information is defined by platform 46
designer to provide all available domain documents, domain objects and domain properties. 47

Domain document 48
Document that is a content of message sent or received between application programs, and is 49
processed by a transaction. Domain document consists of a verb part and a noun part. Verbs 50
such as add, change and remove affect the types of messages, while nouns represented by 51
domain objects show the classes of domain objects. Specific classes of domain documents can 52
be defined by platform designer to share the domain information. 53

Domain object 54
Object necessary for representing production planning and scheduling information in 55
manufacturing operations management. Domain objects are contents of a domain document, and 56
represented by primitive elements. Specific classes of domain objects can be defined by platform 57
designer to share the domain information. 58

Domain property 59
Any parameters that show a property of a domain object. A domain property is represented by 60
XML attributes of the primitive element, or XML child elements of the primitive elements. A 61
domain object may have multiple domain properties that has same property name. Specific 62
properties of domain objects can be defined by platform designer to share the domain information, 63
and additionally defined by each application designer. 64

Implementation profile 65
Specification of capability of an application program in terms of exchanging PPS messages. The 66
profile includes a list of available documents and their properties that may be exchanged in PPS 67
messages among production planning and scheduling applications. 68

Messaging model 69
Simple patterns of messaging between sender and receiver, or requester and responder. Four 70
message models: NOTIFY, PUSH, PULL, SYNC are defined from an application independent 71
perspective. 72

Primitive element 73
XML element that represents a primitive object in the production planning and scheduling domain. 74
Nine primitive elements are defined in [PPS01]. Every domain objects are represented by the 75
primitive elements. 76

Transaction element 77
XML element that represents a transaction to process message documents which is sent or 78
received between application programs. Transaction element can control a transaction process of 79
application program database by commitment and rollback. Transaction element may request 80
confirmation from receiver if the message has been received properly. 81

 82

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 8 of 26

2 Application profile Definitions 83

2.1 General 84

Application profile definition is a set of specifications for all application programs that may be involved in 85
the communication exchanging PPS transaction messages. Each application program may send and 86
receive messages that consist of domain documents, domain objects and domain properties. The 87
application profile definition provides all available domain documents, domain objects and domain 88
primitives. 89
Application programs can exchange their messages correctly when they understand the semantics of 90
information in the message. In order to do this, application profile definition helps agreement of common 91
usage and understanding of domain documents, domain objects and domain properties. 92
Several application profile definitions can exist independently for the same problem domain. Two 93
application programs cannot communicate each other if they don’t refer a common application profile. In 94
order to avoid such a situation, this specification provides an extension mechanism in which a standard 95
profile definition can be extended to an extended profile definition for particular group in local domain. 96
Figure 1 shows the structure of application profiles. Application profile is either a standard profile 97
definition or an extended profile definition. Figure also shows that an implementation profile refers an 98
application profile without regarding distinction of standard profile definition and extended profile definition. 99
 100

Application profile

Standard profile definition

Extended profile definition

Implementation profile

extended

selected

 101
Figure 1 Structure of profile specifications 102

 103
As an example of standard profile definition, PPS TC supports the PSLX profile [PROFILE] for this 104
planning and scheduling domain. However, this specification only shows general rules and structures of a 105
standard profile definition. 106

2.2 Structure of profile definitions 107

Application profile SHOULD have a list of domain documents and a list of domain objects. In addition, 108
application profile MAY have a list of enumerations, which shows available value set of a domain property 109
of a domain object. 110
Application profile definition SHOULD be described by AppProfile element defined in Section 4.1. This 111
element SHOULD appear in the top level of the XML document. 112

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 9 of 26

All candidates of domain documents, which may be used by any application program who sends or 113
receives a message in the target domain, SHOULD be specified using AppDocument element under the 114
AppProfile element. 115
All domain objects, which are used in any domain document defined in AppDocument elements, 116
SHOULD be specified in AppObject element under the AppProfile element. An AppObject has a list of 117
properties that represent the characteristics of the object. Each property SHOULD be described in 118
AppProperty under the AppObject. 119
 120

AppProfile

AppObject

AppProperty

AppDocument

AppObject

 121
Figure 2 Application Profile 122

 123
The structure of application profile is illustrated in Figure 2. Domain document represented by 124
AppDocument has domain objects represented by AppObject. The domain objects that is listed in the 125
same document SHOULD be the same class objects defined in one AppObject in the application profile. 126
The application profile defines domain objects independent from domain documents, because the domain 127
objects may be referred from several different kinds of domain documents. 128
 129
Example: Application profile definition 130

<AppProfile name=”pps-profile” prefix="pps" namespace="http:www.oasis-open.org/committees/pps/profile-1.0"> 131
 <AppObject name="Product" primitive=”Item”> 132
 <AppProperty name="id" path="@id"/> 133
 <AppProperty name="name" path="@name"/> 134
 … 135
 <AppProperty name="Size" path="Spec[@type=”size”]/@value"/> 136
 <AppProperty name="Color" path="Spec[@type=”color”]/@value"/> 137
 … 138
 </AppObject> 139
 … 140
 <AppDocument name="ProductRecord" object=”Product”/> 141
 <AppDocument name="ProductInventory" object=”Product”/> 142
 <AppDocument name="BillOfMaterials" object=”Product”/> 143
 <AppDocument name="BillOfResources" object=”Product”/> 144
 … 145
</AppProfile> 146

 147
 148

2.3 Standard profile definitions 149

An application profile that does not have a base profile is a standard profile. Standard profile definition 150
SHOULD be specified in consistent with the following rules: 151
• Standard profile definition SHOULD have a name to identify the definition among all application 152

programs in world-wide. Unique identifier such as URI is required. 153

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 10 of 26

• The name of standard profile definition contains information of revision, and the revision of the 154
definition SHOULD follow the rule defined in Section 2.5. 155

• Standard profile definition SHOULD NOT have a base definition as a reference of other standard 156
profile definitions. 157

• Standard profile definition SHOULD be published among application programs and accessible by all 158
the application programs in the problem domain via Internet by announcing the URL the application 159
can download the document. 160

• Standard profile definition SHOULD have the domain object in Table 1 or sub-class of Table 1 161
domain objects. The domain objects SHOULD be represented by the primitive elements [PPS01] 162
determined by the table. 163

• Every domain object in a standard profile definition SHOULD have a domain property that shows 164
identifier of the object. The domain property SHOULD be represented by id attribute of the primitive 165
XML element in Table 1. 166

 167
Table 1 Domain objects required in standard profile definitions 168

Object Name XML Element Description

Party Party Party such as customers and suppliers

Plan Plan Plan of production, capacity, inventory, etc.

Order Order Request of products and services

Item Item Items to produce or consume

Resource Resource Production resource such as machine and personnel

Process Process Production process

Lot Lot Actual lots produced in the plant

Task Task Actual tasks on certain resources

Operation Operation Actual operations in the plant

 169

2.4 Extended profile definitions 170

Standard profile definition MAY be extended by an extended profile definition. Extended profile definition 171
MAY also be extended recursively. This is also represented by AppProfile element. Extended profile 172
definitions SHOULD have a reference of a standard profile definition, which is the base of extension. 173
Extended profile definition MAY add domain documents, domain objects and domain properties which 174
have not been defined in the standard profile definition. Additional information of domain documents, 175
domain objects and domain properties SHOULD be defined in the same way as the definition in standard 176
profile definitions. 177
Extended profile definitions MAY modify the domain documents, domain objects and domain properties 178
addressed in the standard profile. In order to modify the definition, extended profile SHOULD describe 179
new contents with the same identification name of the document, object or property. 180
Extended profile definitions SHOULD NOT remove the domain documents, domain objects and domain 181
properties addressed in the standard profile. 182
Enumerations MAY be added or modified to the standard profile definition. When extended profile 183
describes enumeration name which is in the standard profile, the candidates of the enumeration are 184
replaced to those in the standard. Extended profile definitions SHOULD NOT remove any enumeration in 185
the application profile. 186

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 11 of 26

 187
Example: Extended application profile 188

<AppProfile prefix="ex1" name="pps-profile-1.1” namespace=”http://www.pslx.org/profile-1" base="pps-profile-1.0"> 189
 <Enumeration name="groupType"> 190
 <EnumElement name="high" description="description of a"/> 191
 <EnumElement name="low" description="description of b"/> 192
 </Enumeration> 193
 <AppObject name=”Consumer”> 194
 <AppProperty name="group" path="Spec[type=’pslx:group’]/@value" enumeration="groupType"/> 195
 </AppObject> 196
</AppProfile> 197

 198
Example shows an application profile extended from the standard profile. The new profile has additional 199
enumeration named “groupType”, and then a new Consumer object is defined with a new property which 200
has a name “group” and the additional enumeration type. 201

2.5 Revision rule 202

After an application profile definition has been created, many application programs are developed 203
according to the profile definition. In accordance with the industrial experiences, the old definition may be 204
required to modify for domain specific reasons in the application domain. 205
Any application profile SHOULD NOT be changed without keeping the following rules after when the 206
profile definition has been published. Otherwise, the new profile SHOULD have a new name that doesn’t 207
have any relation with the previous one. 208
There are two revision levels. One is a revision that the system developers have to deal with the new 209
specification and change if necessary. The other is editorial revision where the any program doesn’t need 210
to care in terms of interoperability. To inform the former cases, the name of profile SHOULD be changed 211
by adding the revision numbers. For the latter cases, instead of changing the name of profile, the actual 212
file name of the profile, specified at the location attribute in the AppProfile element SHOUD be changed. 213
In order to represent the revision status in the profile name, there are two portions of digits in the name of 214
profile definitions: major revision and minor revision. They are following the original identification name or 215
the profile separated by dash “- mark. The two portion is separated by the dot “.” character. 216
When the major version increases, it: 217
• SHOULD NOT change the name of the profile excepting the portion representing the revision status. 218
• SHOULD NOT change the prefix and namespece in the attribute of AppProfile element. 219
• SHOULD NOT change the domain object in AppDocument element. 220
When the minor version increases, it: 221
• SHOULD follow the rule of major version increasing, 222
• SHOULD NOT change the domain properties in the domain objects. 223
• SHOULD NOT change the enumeration definition in the AppProfile element. 224
 225

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 12 of 26

3 Implementation profiles 226

3.1 General 227

Application program may not have all capability in dealing with the domain documents, domain objects 228
and domain properties defined in the application profile definitions. Implementation profiles are the 229
selection of domain documents, domain objects and domain properties from application profile definitions 230
by application programs depending on the capability of the program. 231
When an application program tries to send a message to another application program, system integrator 232
may need to confirm whether or not the receiving application program has capability to response the 233
message. Then an implementation profile of an application program shows such capability to send or 234
receive information. 235
 236

Implementation
profile 1

Implementation
profile 2

Application profile definitions

(Program 1)

(Program 2)

K H A C G J P U M

A G J P M

K A C G M

Available
communication

 237
Figure 3 Concept of communication availability between implementations 238

 239
Figure 3 explains a concept of communication availability between two application programs. Each 240
application program that refers a same application profile has an implementation profile that has a list of 241
items available to communicate, by selecting from the candidates defined in the application profile. Tow 242
application programs can exchange a message properly if the both implementations have the 243
corresponding capability. 244
An application program MAY have two or more than two implementation profiles each of which 245
corresponding to different application profile definitions. An implementation profile SHOULD have a 246
corresponding application profile definition. 247
To confirm the capability of any application program, section 3.4 provides the method of how to get the 248
information by receiving an implementation profile from the program. 249

3.2 Structure of implementation profiles 250

Implementation profiles defined for application programs SHOULD be described by ImplementProfile 251
element in XML format. The information includes domain documents, domain objects and domain 252
properties available to process by the application program. For each domain document, implementation 253
level, which shows the application program have all functions or not in terms of transactions defined in 254
[PPS02], can be defined. 255
Every implementation profile has a reference to a certain application profile. However, it doesn’t show 256
whether the application profile is a standard or extended. From the perspective of application programs, 257
distinction between standard profile definition and extended profile definition has no sense. 258

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 13 of 26

ImplementProfile element MAY be described under Transaction element defined in [PPS02]. Therefore, 259
this can be send or receive through a PPS transaction process. Using Get and Show transactions, two 260
application programs can exchange the implementation profile. 261
An ImplementationProfile element has ImplementDocument elements each of which represents 262
availability for any domain document. An ImplementDocument element has ImplementAction, 263
ImplementProperty and ImplementEvent. 264
ImplementAction element represents information of implemented type of transaction such as Get, Show, 265
Add, and so forth. ImplementProperty element represents implemented properties of the domain object. 266
ImplementEvent represents any event definitions that the application program monitors properties and 267
publish notifications of event defined on the property. Figure 4 shows the structure of ImplementProfile, 268
ImplementDocument, ImplementAction, and ImplementProperty elements. 269
 270

ImplementProfile

ImplementDocument

ImplementAction

ImplementProperty

Domain document

Get Show Add

Actions

Implementation Profile Application profile

Domain object

Domain property

Domain property

…

ImplementEvent

 271
Figure 4 Structure of ImplementProfile 272

 273
All domain documents represented by ImmplementProfile SHOULD be in the list of the corresponding 274
application profile definition. 275
Domain documents in implementation profile SHOULD have a domain property if the property is defined 276
in the application profile as a primary key of the object or as a property that is always required. 277
The following example shows an implementation profile of an application program that communicates 278
with other program under an application profile. Then the implementation profile of the example is the 279
selection of the application profile representing domain documents, transaction types and domain 280
properties. 281
 282
Example: Implementation profile of a program for an application profile 283

<ImplementProfile id=”AP001” action=”Notify”> 284
 <ImplementDocument name=”Product”> 285
 <ImplementAction action=”Get” level=”1”/> 286
 <ImplementAction action=”Show” level=”1”/> 287
 <ImplementAction action=”Add” level=”2”/> 288
 <ImplementProperty name=”id” title=”Company ID”/> 289
 <ImplementProperty name=”name” title=”Company name”/> 290
 </ImplementDocument> 291
 <ImplementDocument name=”ProductInventory”> 292
 … 293
 </ImplementDocument> 294
 …. 295
</ImplementProfile> 296

 297

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 14 of 26

In accordance with the implementation profile, the application program sends or receives a message that 298
SHOULD have a domain document listed in the implementation profile. The domain properties in the 299
object SHOULD be one of the domain properties defined in the application profile. 300
 301
Example: A message created on the implementation profile 302

<Document name=”Product” id=”001” action=”Get” 303
 namespace="http:www.oasis-open.org/committees/pps/profile-1.0"> 304
 <Condition> 305
 <Property name=”pps:name” value=”MX-001”/> 306
 <Property name=”pps:color” value=”white”/> 307
 </Condition> 308
 <Selection type=”All”/> 309
</Document> 310

 311
Above example shows a message of a Get document created by an application program. The properties 312
referred to as “name” and “color” are specified in this message. The properties are defined in the 313
implementation profile as well as the application profile. The prefix “pps” and colon mark are added at the 314
front of the name to notify that the name is defined in the profile. 315

3.3 Level of implementation 316

Domain documents can be sent or received by application programs in any types of action including Add, 317
Change, Remove, Get, Show, Notify and Sync. These actions are prescribed in [PPS02]. Level of 318
implementation represents whether or not the functions prescribed in [PPS02] are fully implemented or 319
partially implemented 320
The certain level of Partial implementation is defined in [PPS02] depending on the type of transaction. 321
When the application program informs Partial implementation, it SHOULD have full capability of functions 322
defined in the partial implementation in [PPS02]. 323
An application program MAY define a level of implementation for each pair of document and transaction 324
type for each application profile definition. 325

3.4 Profile inquiry 326

All application programs SHOULD send implementation profile as a Show transaction message or Notify 327
transaction message. Application programs SHOULD have capability to response implementation profile 328
as Show message when it receives an ImplementProfile inquiry in a form of Get message. 329
When responding to the Get message of implementation profile in PULL model, the program SHOULD 330
send corresponding Show message that is made of ImplementProfile element or Error element. 331
This capability of implement profile inquiry SHOULD NOT be in the available list of ImplementProfile by 332
itself. Since any Condition and Selection element cannot be described in ImplementProfile, the inquiry of 333
implementation profile can only request all the information of implement profiles. 334
 335
Example: Inquiry of implementation profile for PPS standard profile definition 336

<Message id=”A01” sender=”A”> 337
 <ImplementProfile action=”Get” /> 338
</Message> 339

 340
Example: Answer of the inquiry in above example 341

<Message id=”B01” sender=”B”> 342
<ImplementProfile id=”B01” action=”Show” > 343
 <ImplementDocument name="Supplier"> 344
 <ImplementAction action="Get" level="1"/> 345
 <ImplementAction action="Add"/> 346
 <ImplementProperty name="id" display="NO"/> 347

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 15 of 26

 <ImplementProperty name="name" display="NAME"/> 348
 … 349
 </ImplementDocument> 350
 351
</ImplementProfile > 352
</Message> 353

 354
Examples are the request of implementation profile and its response. By the message in the first 355
example , the responder needs to answer its capability on the application profiles. 356

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 16 of 26

4 XML Elements 357

4.1 AppProfile Element 358

AppProfile element SHOULD represent an application profile. Standard application profile and extended 359
application profile are both represented by this element. This is a top level element in an application 360
profile, and has Enumeration element, AppObject element, and AppDocument element. 361
This information SHOULD be specified in the following XML schema. The XML documents generated by 362
the schema SHOULD be consistent with the following arguments. 363
 364

 <xsd:element name="AppProfile"> 365
 <xsd:complexType> 366
 <xsd:sequence> 367
 <xsd:element ref="Enumeration" minOccurs="0" maxOccurs="unbounded"/> 368
 <xsd:element ref="AppObject" minOccurs="0" maxOccurs="unbounded"/> 369
 <xsd:element ref="AppDocument" minOccurs="0" maxOccurs="unbounded"/> 370
 </xsd:sequence> 371
 <xsd:attribute name="name" type="xsd:string" use="required"/> 372
 <xsd:attribute name="base" type="xsd:string"/> 373
 <xsd:attribute name="location" type="xsd:string"/> 374
 <xsd:attribute name="prefix" type="xsd:string"/> 375
 <xsd:attribute name="namespace" type="xsd:string"/> 376
 <xsd:attribute name="create" type="xsd:string"/> 377
 <xsd:attribute name="description" type="xsd:string"/> 378
 </xsd:complexType> 379
 </xsd:element> 380

 381
• Enumeration element SHOULD represent any enumeration type that is used as a special type of 382

properties. 383
• AppObject element SHOULD represent any domain objects used in the domain documents defined in 384

this profile. 385
• AppDocument element SHOULD represent any domain documents that the applications may send or 386

receive on this profile. 387
 388

• name attribute SHOULD represent the name of this application profile. The name SHOULD be unique 389
in the namespace. This attribute is REQUIRED. 390

• base attribute SHOULD represent the base application profile when this profile is an extended 391
application profile. 392

• location attribute SHOULD represent the location where the profile can be downloaded via Internet. 393
• prefix attribute SHOULD represent the prefix text that is added in the name of values that are 394

qualified by this profile. 395
• namespace attribute SHOULD represent the namespace when this profile is used in a specific 396

namespace. 397
• create attribute SHOULD represent the date of creation of the profile 398
• description attribute SHOULD represent any description related to this profile. 399

4.2 AppDocument Element 400

AppDocument element SHOULD represent a domain document that is contained in a message of any 401
transactions. All domain documents that may appear in messages SHOULD be described in 402
AppApplication element that corresponds to an application profile. 403

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 17 of 26

This information SHOULD be specified in the following XML schema. The XML documents generated by 404
the schema SHOULD be consistent with the following arguments. 405
 406

 <xsd:element name="AppDocument"> 407
 <xsd:complexType> 408
 <xsd:attribute name="name" type="xsd:string" use="required"/> 409
 <xsd:attribute name="object" type="xsd:string"/> 410
 <xsd:attribute name="category" type="xsd:string"/> 411
 <xsd:attribute name="descirption" type="xsd:string"/> 412
 </xsd:complexType> 413
 </xsd:element> 414

 415
• name attribute SHOULD represent the name of the domain document. The name SHOULD be unique 416

in the namespace to identify the type of the document. This attribute is REQUIRED. 417
• object attribute SHOULD represent the name of domain object that the document MAY have in the 418

body as its content. One document SHOULD have one kind of domain object. All objects referred by 419
this attribute SHOULD be defined in the same application profile or base application profile. This 420
attribute is REQUIRED. 421

• category attribute SHULD represent any category of the domain document. This information is used 422
for making any group by categorizing various documents. Same group documents have same value 423
for this attribute. This attribute is OPTIONAL. 424

• description attribute SHOULD represent any description of the domain document. Any comments and 425
additional information of the document may be specified there. This attribute is OPTIONAL. 426

4.3 AppObject Element 427

AppObject element SHOULD represent a domain object corresponding to any actual object in the target 428
problem domain. All domain objects that are referred to from domain documents in the application profile 429
SHOULD be described in the AppObject element. 430
This information SHOULD be specified in the following XML schema. The XML documents generated by 431
the schema SHOULD be consistent with the following arguments. 432
 433

 <xsd:element name="AppObject"> 434
 <xsd:complexType> 435
 <xsd:sequence> 436
 <xsd:element ref="AppProperty" minOccurs="0" maxOccurs="unbounded"/> 437
 </xsd:sequence> 438
 <xsd:attribute name="name" type="xsd:string" use="required"/> 439
 <xsd:attribute name="primitive" type="xsd:string" use="required"/> 440
 <xsd:attribute name="descirption" type="xsd:string"/> 441
 </xsd:complexType> 442
 </xsd:element> 443

 444
• AppProperty element SHOULD represent a property that may be described in the domain objects of 445

the application profile definition. All possible properties SHOULD be described in the domain object 446
represented by AppObject. 447
 448

• name attribute SHOULD represent the name of the object. The name SHOULD be unique under the 449
application profile definition in the selected namespace. This attribute is REQUIRED. 450

• primitive attribute SHOULD represent a primitive element name selected from the primitive element 451
list defined in [PPS01]. Since every domain object is a subclass of one in the primitive objects, all 452
AppObject elements SHOULD have a primitive attribute. This attribute is REQUIRED. 453

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 18 of 26

• description attribute SHOULD represent any description of the domain object. This attribute is 454
OPTIONAL. 455

4.4 AppProperty Element 456

AppProperty element SHOULD represent a domain property of a domain object. All properties that may 457
be defined to represent the characteristics of the domain object SHOUD be described under the 458
AppObject corresponding to the domain object. 459
This information SHOULD be specified in the following XML schema. The XML documents generated by 460
the schema SHOULD be consistent with the following arguments. 461
 462

 <xsd:element name="AppProperty"> 463
 <xsd:complexType> 464
 <xsd:attribute name="name" type="xsd:string"/> 465
 <xsd:attribute name="path" type="xsd:string"/> 466
 <xsd:attribute name="multiple" type="xsd:string"/> 467
 <xsd:attribute name="key" type="xsd:string"/> 468
 <xsd:attribute name="enumeration" type="xsd:string"/> 469
 <xsd:attribute name="dataType" type="xsd:string"/> 470
 <xsd:attribute name="use" type="xsd:string"/> 471
 <xsd:attribute name="description" type="xsd:string"/> 472
 </xsd:complexType> 473
 </xsd:element> 474

 475
• name attribute SHOULD represent the name of the property. The name SHOULD be unique in the 476

domain object defined by AppObject to identify the property. This attribute is REQUIRED. 477
• path attribute SHOULD represent the location of the attribute data in the primitive XML description 478

defined in [PPS01]. The specification of the path SHOULD conform to [PATH]. If the profile is a 479
standard application profile, this attribute is REQUIRED, and otherwise OPTIONAL. 480

• multiple attribute SHOULD represent whether the property can have multiple values or not. If the 481
value of this attribute is positive integer or “Unbounded”, actual message described by [PPS01] 482
specification can have corresponding number of values for this property. This attribute is OPTIONAL. 483

• key attribute SHOULD represent whether or not this property is primary key of the domain object to 484
identify the target object from the instances in the database. If the value is “True”, then this property is 485
primary key. Primary key SHOULD NOT defined more than one in the same domain object. 486

• enumeration attribute SHOULD represent the name of enumeration type when the property has a 487
value in the enumeration list. The name of enumeration type SHOULD be specified in Enumeration 488
elements in the same application profile definition. This attribute is OPTIONAL. 489

• dataType attribute SHOULD represent the data type of the property. The value of this attribute 490
SHOULD be “Qty”, “Char” or “Time”. The data type described in the attribute SHOULD be the same 491
as the data type of attribute on the body elements identified by the path attribute. 492

• use attribute SHOULD represent that the property is mandatory for any implementation, if the value of 493
this attribute is “Required”. 494

• description attribute SHOULD represent any description of the domain property. This attribute is 495
OPTIONAL. 496

4.5 Enumeration Element 497

Enumeration element SHOULD represent an enumeration type that has several items in a list format. If a 498
property of a domain object has the enumeration type, then the property SHOULD have one of any items 499
in the enumeration list. 500
Enumeration type is independent from any domain object in the application profile definition. Therefore, 501
several different domain objects MAY have different properties that has the same enumeration type. 502

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 19 of 26

This information SHOULD be specified in the following XML schema. The XML documents generated by 503
the schema SHOULD be consistent with the following arguments. 504
 505

 <xsd:element name="Enumeration"> 506
 <xsd:complexType> 507
 <xsd:sequence> 508
 <xsd:element ref="EnumElement" maxOccurs="unbounded"/> 509
 </xsd:sequence> 510
 <xsd:attribute name="name" type="xsd:string" use="required"/> 511
 <xsd:attribute name="description" type="xsd:string"/> 512
 </xsd:complexType> 513
 </xsd:element> 514

 515
• EnumElement element SHOULD represent an item of the list that the enumeration type has as 516

candidates of property value. 517
 518

• name attribute SHOULD represent a name of this enumeration type. The name SHOULD be unique 519
in the application profile definition. This attribute is REQUIRED. 520

• description attribute SHOULD represent any description of the enumeration type. This attribute is 521
OPTIONAL. 522

4.6 EnumElement Element 523

EnumElement element SHOULD represent an item of enumeration list. A property that is defined with the 524
enumeration type SHOULD select one of the items from the enumeration list. 525
This information SHOULD be specified in the following XML schema. The XML documents generated by 526
the schema SHOULD be consistent with the following arguments. 527
 528

 <xsd:element name="EnumElement"> 529
 <xsd:complexType> 530
 <xsd:attribute name="value" type="xsd:string" use="required"/> 531
 <xsd:attribute name="primary" type="xsd:boolean"/> 532
 <xsd:attribute name="alias" type="xsd:int"/> 533
 <xsd:attribute name="descirption" type="xsd:string"/> 534
 </xsd:complexType> 535
 </xsd:element> 536

 537
• value attribute SHOULD represent value texts that can be selected from the enumeration list. The 538

value SHOULD be unique in the value list of the enumeration type. This attribute is REQUIRED. 539
• primary attribute SHOULD represent the primary item in the enumeration list. Only the primary 540

attribute SHOULD have “True” value for this attribute. No more than one item in the item list SHOULD 541
have “true” value. This attribute is OPTIONAL, and the default value is “False”. 542

• alias attribute SHOULD represent a numerical value instead of the text value specified in the value 543
attribute. The value SHOULD be unique integer among the items in the enumeration type. 544

• description attribute SHOULD represent any description of the enumeration element. This attribute is 545
OPTIONAL. 546

4.7 ImplementProfile Element 547

ImplementProfile element SHOULD represent an implementation profile for an application program. 548
ImplementProfile SHOULD be defined for each application program what the application program 549
supports. This information MAY be sent by the application program and received by the party who wants 550
to know the capability of the application program. Therefore, in order to make transactions, some 551
attributes and sub-elements are the same as the attributes of Document element defined in [PPS02]. 552

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 20 of 26

This information SHOULD be specified in the following XML schema. The XML documents generated by 553
the schema SHOULD be consistent with the following arguments. 554
 555

 <xsd:element name="ImplementProfile"> 556
 <xsd:complexType> 557
 <xsd:sequence> 558
 <xsd:element ref="Error" minOccurs="0" maxOccurs="unbounded"/> 559
 <xsd:element ref="App" minOccurs="0"/> 560
 <xsd:element ref="ImplementDocument" minOccurs="0" maxOccurs="unbounded"/> 561
 </xsd:sequence> 562
 <xsd:attribute name="id" type="xsd:string"/> 563
 <xsd:attribute name="name" type="xsd:string"/> 564
 <xsd:attribute name="action" type="xsd:string"/> 565
 <xsd:attribute name="profile" type="xsd:string"/> 566
 <xsd:attribute name="location" type="xsd:string"/> 567
 <xsd:attribute name="namespace" type="xsd:string"/> 568
 <xsd:attribute name="create" type="xsd:dateTime"/> 569
 <xsd:attribute name="description" type="xsd:string"/> 570
 </xsd:complexType> 571
 </xsd:element> 572

 573
• Error element SHOULD represent error information, when any errors occur during the transaction of 574

message exchange of this implementation profile. The specification of this element is defined in 575
[PPS02]. 576

• App element SHOULD represent any information for the application program concerning the 577
transaction of profile exchange. The use of this element SHOULD be consistent with all cases of 578
transactions while the other messages are exchanged. The specification of this element is defined in 579
[PPS02]. 580

• ImplementDocument element SHOULD represent a domain document that the application program 581
may send or receive. All available documents in the application profile SHOULD be listed using this 582
element. 583
 584

• id attribute SHOULD represent identifier of the application program. The id SHOULD be unique in all 585
application programs that can be accessed in the network. In order to guarantee the uniqueness, 586
system integrator must assigns the unique number and manages it in the network configuration. This 587
id is the same as the sender name when the application will send a message. This attribute is 588
REQUIRED. 589

• name attribute SHOULD represent a name that the application program shows its name for an 590
explanation by natural texts. This attribute is OPTIONAL 591

• action attribute SHOULD represent a name of action during transaction models defined in [PPS02]. 592
The value of this attribute SHOULD be “Notify”, “Get” or “Show”. When the element is created as a 593
message for exchange, this attribute is REQUIRED. Otherwise, such as for a XML document file, this 594
attribute is OPTIONAL. 595

• profile attribute SHOULD represent the name of application profile that this implementation profile is 596
referring to select the available part in the definition. This attribute is OPTIONAL. 597

• location attribute SHOULD represent the location of the application profile to get the actual file by the 598
party who want to know the content of the application profile. This attribute is OPTIONAL. 599

• namespace attribute SHOULD represent the namespace of the application profile. This attribute is 600
necessary to identify the profile in world-wide basis. This attribute is OPTIONAL. 601

• create attribute SHOULD represent the date of creation of the implementation profile. This attribute is 602
OPTIONAL. 603

• description attribute SHOULD represent any description of the implementation profile. This attribute is 604
OPTIONAL. 605

 606

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 21 of 26

4.8 ImplementDocument Element 607

ImplementDocument element SHOULD represent a domain document selected from the application 608
profile. All available domain documents SHOULD be listed by this element. Available domain documents 609
MAY be defined for each application profile that the program can support. 610
This information SHOULD be specified in the following XML schema. The XML documents generated by 611
the schema SHOULD be consistent with the following arguments. 612
 613

 <xsd:element name="ImplementDocument"> 614
 <xsd:complexType> 615
 <xsd:sequence> 616
 <xsd:element ref="ImplementAction" minOccurs="0" maxOccurs="unbounded"/> 617
 <xsd:element ref="ImplementProperty" minOccurs="0" maxOccurs="unbounded"/> 618
 <xsd:element ref="ImplementEvent" minOccurs="0" maxOccurs="unbounded"/> 619
 </xsd:sequence> 620
 <xsd:attribute name="name" type="xsd:string" use="required"/> 621
 <xsd:attribute name="option" type="xsd:string"/> 622
 <xsd:attribute name="profile" type="xsd:string"/> 623
 <xsd:attribute name="location" type="xsd:string"/> 624
 <xsd:attribute name="namespace" type="xsd:string"/> 625
 <xsd:attribute name="description" type="xsd:string"/> 626
 </xsd:complexType> 627
 </xsd:element> 628

 629
• ImplementAction element SHOULD represent an action that the program can perform for the domain 630

document. This element MAY represent a role of the program in the transaction. 631
• ImplementProperty element SHOULD represent a property that the program can deal with in the 632

domain object. All properties defined in this element SHOULD be defined as a property of a domain 633
object in the corresponding application profile. 634

• ImplementEvent element SHOULD represent an event that the program can monitor a property in 635
order to notify the change of the data to subscribers. This information MAY be defined by each 636
application programs. 637
 638

• name attribute SHOULD represent the name of the domain document. The name SHOULD be 639
defined in the list of domain document in the corresponding application profile. This attribute is 640
REQUIRED. 641

• option attribute SHOULD represent optional process to deal with the domain document data. There 642
can be several domain document of same document name if the document has different option value. 643
According to the option process, the required implement properties may be different. 644

• profile attribute SHOULD represent the name of application profile that this ImplementDocument is 645
referring to select the available part in the definition. This attribute is OPTIONAL. 646

• location attribute SHOULD represent the location of the application profile to get the actual file by the 647
party who want to know the content of the application profile. This attribute is OPTIONAL. 648

• namespace attribute SHOULD represent the namespace of the ImplementDocument. This attribute is 649
necessary to identify the document name in world-wide basis. This attribute is OPTIONAL. 650

• description attribute SHOULD represent any description of the implemented document. This attribute 651
is OPTIONAL. 652

4.9 ImplementAction Element 653

ImplementAction element SHOULD represent an action that the program can perform for the domain 654
document. The actions include the transaction model referred to as “Add”, “Change”, “Remove”, “Notify”, 655
“Sync”, “Get” or “Show”. This element MAY represent a role of the program in the transaction such as 656
sender or receiver. 657

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 22 of 26

This information SHOULD be specified in the following XML schema. The XML documents generated by 658
the schema SHOULD be consistent with the following arguments. 659
 660

 <xsd:element name="ImplementAction"> 661
 <xsd:complexType> 662
 <xsd:attribute name="action" type="xsd:string" use="required"/> 663
 <xsd:attribute name="level" type="xsd:int"/> 664
 <xsd:attribute name="role" type="xsd:string"/> 665
 <xsd:attribute name="description" type="xsd:string"/> 666
 </xsd:complexType> 667
 </xsd:element> 668

 669
• action attribute SHOULD represent the action performed by the application program. The value of this 670

attribute SHOULD be one of “Add”, “Change”, “Remove”, “Notify”, “Sync”, “Get” and “Show”. This 671
attribute is REQUIRED. 672

• level attribute SHOULD represent an implementation level defined in [PPS02] for each document 673
processed by the application program. Level 0 shows no implementation, while level 1 and 2 are 674
partially and fully implemented, respectively. Default value is 1 that minimum implementation is 675
supported. This attribute is OPTIONAL. 676

• role attribute SHOULD represent a role in the transaction. The value of this attribute is either “Server” 677
or “Client”. Every transaction has its available roles that can be selected as a value of this attribute. 678
Default value is “Server”. This attribute is OPTIONAL. 679

• description attribute SHOULD represent any description of the implement action. This attribute is 680
OPTIONAL. 681

4.10 ImplementProperty Element 682

ImplementProperty element SHOULD represent a domain property that can be processed in the 683
application program. Some properties SHULD be defined in the corresponding domain object in the 684
application profile definition. The properties that are not defined in the application profile SHOULD be 685
specified in this element as a user extended property. Properties extended by application programs 686
SHOULD have additional definitions similar to the definitions by AppProperty element. 687
This information SHOULD be specified in the following XML schema. The XML documents generated by 688
the schema SHOULD be consistent with the following arguments. 689
 690

 <xsd:element name="ImplementProperty"> 691
 <xsd:complexType> 692
 <xsd:attribute name="name" type="xsd:string" use="required"/> 693
 <xsd:attribute name="title" type="xsd:string"/> 694
 <xsd:attribute name="extend" type="xsd:string"/> 695
 <xsd:attribute name="link" type="xsd:string"/> 696
 <xsd:attribute name="multiple" type="xsd:string"/> 697
 <xsd:attribute name="path" type="xsd:string"/> 698
 <xsd:attribute name="dataType" type="xsd:string"/> 699
 <xsd:attribute name="enumeration" type="xsd:string"/> 700
 <xsd:attribute name="type" type="xsd:string"/> 701
 <xsd:attribute name="use" type="xsd:string"/> 702
 <xsd:attribute name="description" type="xsd:string"/> 703
 </xsd:complexType> 704
 </xsd:element> 705

 706
• name attribute SHOULD represent the name of the property. The name SHOULD be defined in the 707

corresponding application profile. This attribute is REQUIRED. 708
• title attribute SHOULD represent the header title of the property. This value MAY be a short 709

description to show the property relating to the actual world. This attribute is OPTIONAL. 710

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 23 of 26

• extend attribute SHOULD represent qualifier string that is specified as prefix of the property name, if 711
this property is extended by the local program. For example, if the value is “user”, then the description 712
of this property will have “user:” prefix in the actual messages. This attribute is OPTIONAL. 713

• link attribute SHOULD represent that this property is also defined in other domain document that can 714
be linked to this document. The value of this attribute MAY has the name of domain document. 715

• multiple attribute SHOULD represent whether the property can have multiple values or not. If the 716
value of this attribute is positive integer or “Unbounded”, actual message can have corresponding 717
number of values for this property. The value number SHOULD be less or equal than the number 718
defined in the application profile. 719

• path attribute SHOULD represent the location of the attribute data in the primitive XML description 720
defined in [PPS01]. The specification of the path SHOULD conform to the syntax of [PATH]. If the 721
attribute value of extend is defined and this attribute is not described, then the default path data 722
SHOULD be “Spce[@type=’aaa:bbb’]/CCC/@value”, where aaa denotes the value of extend attribute 723
and bbb denotes the value of name attribute, and CCC is the value of dataType attribute. 724

• dataType attribute SHOULD represent the data type of the property. The expecting value of this 725
attribute is Qty, Char and Time. This attribute is REQUIRED if the value of extend has data. 726
Otherwise it is OPTIONAL. 727

• enumeration attribute SHOULD represent the name of enumeration type when the property is 728
extended by the local program, and has a value in the enumeration list. The name of enumeration 729
type SHOULD be specified in Enumeration elements in the application profile definition. This attribute 730
is OPTIONAL. 731

• type attribute SHOULD represent that the type of this property in terms of usage. When the value is 732
“Typical”, then the usage of this property is typical. 733

• use attribute SHOULD whether the property is mandatory. When the value “Required” represents 734
mandatory, while the value “Optional” represents optional. This value SHOULD be “Required” if the 735
corresponding property in the application profile has “Required” value. Default value of this attribute is 736
“Optional”. 737

• description attribute SHOULD represent any description of the property. This attribute is OPTIONAL. 738
 739

4.11 ImplementEvent Element 740

ImplementEvent element SHOULD represent any event definitions that the application program monitors 741
on a particular property and detects the event occurrence on it. When the event occurs, the application 742
program SHOULD publish a notification of the event to all the parties who are on the list of subscription. 743
This information is defined by each application program, then clients of the event notification service MAY 744
request for the publication as a subscriber. 745
ImplementEvent element SHOULD allow an application program to define the unit size of data differences, 746
maximum and minimum data value, duration of one monitoring cycle and expire date of notifications to 747
determine the event occurrence. 748
This information SHOULD be specified in the following XML schema. The XML documents generated by 749
the schema SHOULD be consistent with the following arguments. 750
 751

 <xsd:element name="ImplementEvent"> 752
 <xsd:complexType> 753
 <xsd:sequence> 754
 <xsd:element ref="App" minOccurs="0"/> 755
 <xsd:element ref="Condition" minOccurs="0" maxOccurs="unbounded"/> 756
 <xsd:element ref="Selection" minOccurs="0" maxOccurs="unbounded"/> 757
 <xsd:element ref="Property" minOccurs="0" maxOccurs="unbounded"/> 758
 </xsd:sequence> 759
 <xsd:attribute name="name" type="xsd:string" use="required"/> 760
 <xsd:attribute name="type" type="xsd:string"/> 761
 <xsd:attribute name="cycle" type="xsd:duration"/> 762

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 24 of 26

 <xsd:attribute name="start" type="xsd:dateTime"/> 763
 <xsd:attribute name="expire" type="xsd:dateTime"/> 764
 <xsd:attribute name="description" type="xsd:string"/> 765
 </xsd:complexType> 766
 </xsd:element> 767

 768
• App element SHOULD represent the application specific information about event monitoring, event 769

processing, transaction control and so forth. The specification of App element is defined in [PPS01]. 770
• Condition element SHOULD represent the condition to select the target domain objects the 771

application is monitoring the event. The specification of this element is defined in [PPS02]. 772
• Selection element SHOULD represent the condition of selecting the target property in the domain 773

object. The selected property values are reported to the subscribers when event occurs. When the 774
target property is multiple, Condition element under this element can restrict the properties. The 775
specification of this element is defined in [PPS02]. 776

• Property element SHOULD represent the target property and constraints to detect event on the 777
property. The target property is monitored by the program. When there is more than one Property 778
element under the ImplementEvent, it SHOULD represent that more than one conditions need to be 779
checked to detect the event occurrence. Each Property element MAY have a different target property 780
on the domain object to others. Conditions of these properties SHOULD be conjunctive. The 781
specification of this element is defined in [PPS02]. 782
 783

• name attribute SHOULD represent the name of the event. The name SHOULD be unique in the 784
domain object defined in the application profile. This attribute is REQUIRED. 785

• type attribute SHOULD represent a method to detect this event. Value candidates of this attribute 786
SHOULD include “True”, “False”, “Enter”, “Leave”, “Change”, “Add”, and “Remove”. If the value is 787
“True”, then event occurs when all the conditions are true. If the value is “False”, then event occurs 788
when at least one condition is false. If the value is “Enter”, then event occurs when the status 789
changes from false to true, while “Leave” means that the status changes from true to false. If the 790
value is “Change”, then event occurs when the value of the target property is change. “Add” 791
represents that event occurs when a new domain object which satisfies the conditions is added, and 792
“Remove” shows that event occurs when any objects which satisfies the conditions is removed. If the 793
target property is multiple and Selection element is described, then “Add” and “Remove” mean that 794
one of the multiple properties is added and removed, respectively. Default value is “Change”. This 795
attribute is OPTIONAL. 796

• cycle attribute SHOULD represent the duration of monitoring of the property value to detect the event 797
occurrence. The application program SHOULD monitor the value until the expiration date. This 798
attribute is OPTIONAL. 799

• start attribute SHOULD represent starting time of the monitoring and notification service. After this 800
date and time, application program start monitoring the properties. If this attribute is not described, 801
then it represent the service has already started. The origin of cyclic procedure defined by cycle 802
attribute SHOULD be this start time. This attribute is OPTIONAL. 803

• expire attribute SHOULD represent expire time and date of the event notification. After the time of 804
expiration, the application will stop monitoring the event occurrence. If this attribute is not defined, it 805
SHOULD represent that there is no expiration date. This attribute is OPTIONAL. 806

• description attribute SHOULD represent any description of the event. This attribute is OPTIONAL. 807
 808

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 25 of 26

A. Acknowledgements 809

The following individuals have participated in the creation of this specification and are gratefully 810
acknowledged: 811
Participants: 812

Shinya Matsukawa, Hitachi 813
Tomohiko Maeda, Fujitsu 814
Masahiro Mizutani, Unisys Corporation 815
Akihiro Kawauchi, Individual Member 816
Yuto Banba, PSLX Forum 817
Hideichi Okamune, PSLX Forum 818

 819

PPS Part 3: Profile Specifications, Version 1.0 24 October 2009
Copyright © OASIS® 2007-2009. All Rights Reserved. Page 26 of 26

B. Revision History 820

 821

Revision Date Editor Changes Made

 822
 823

