Report on SOAP Security for OASIS PSTC
Cliff Schmidt

March 25, 2001
NOTE: This report includes excerpts from documents published by Microsoft approximately six months ago (see Recommended Reading). Many of these details may change over the next few weeks and months.
Background on SOAP / Introduction to WS-Security

Security for SOAP messages is currently addressed in the WS-Security and WS-License specifications. However, it might also be useful to review the SOAP protocol, which these specs extend. This section is composed of excerpts from several of the documents listed under Recommended Reading, below.
SOAP [1]
SOAP is a lightweight, extensible, XML-based protocol for information exchange in a decentralized, distributed environment. Primarily, SOAP defines a framework for message structure and a message processing model. SOAP also defines a set of encoding rules for serializing data and a convention for making remote procedure calls. The SOAP extensibility model provides the foundation for a wide range of composable modules and protocols running over a variety of underlying protocols such as HTTP.

SOAP was designed to be extensible. SOAP modules leverage this extensibility to provide composable building blocks suitable for building the higher-level capabilities. Removed from the burden of specifying unnecessary capabilities, modules tend to be simple and focused.

Modules express elements of functionality that can be used individually or combined to achieve composite and higher-level results. The functions provided by the module are consistently available and consistently expressed. This generality, breadth and uniformity allow a wide range of services to take advantage of XML Web services-enabled network infrastructure such as routers, switches, proxies, caches, and firewalls.

Infrastructure protocols build on SOAP modules to provide end-to-end functionality. Protocols at this layer tend to have semantically-rich finite state machines as part of their definition. They maintain state across a sequence of messages and may aggregate the effect of many messages to achieve a higher-level result. Example infrastructure protocols include reliable messaging and transactions.

WS-Security[2]
WS-Security proposes a standard set of extensions that can be used to build secure Web services. WS-Security is flexible and is designed to be used as the basis for the construction of a wide variety of security models. This includes support for multiple security authentication credentials, multiple trust domains, and multiple encryption technologies.
The specification provides three main mechanisms: credential passing, message integrity, and message confidentiality. These mechanisms by themselves do not provide a complete security solution. Instead, WS-Security is a building block that can be used in conjunction with other Web service extensions and higher-level application-specific protocols to accommodate a wide variety of security models and encryption technologies.

WS-Security addresses three key areas:

Credentials provide a mechanism for associating security information, such as Kerberos tickets, with a message.

Integrity addresses how to use XML-Signature [XML-Signature] to ensure that SOAP messages are not tampered with during message transmission.

Confidentiality addresses how to use XML Encryption [XML-Encrypt] to keep portions of a SOAP message confidential.

These mechanisms can be used independently (e.g., to pass a license) or in a tightly integrated manner (e.g., signing and encrypting a message and providing a certificate hierarchy associated with the keys used for signing and encryption).
WS-License[3]
WS-Security defines the credentials header that provides a container for passing the licenses and related information that are collectively referred to as credentials. There may be multiple credentials within this header, and each credential tag identifies the type of data it contains.

WS-License defines tags to use for encoding license formats for X.509 certificates and Kerberos tickets, and a tag to use when passing arbitrary binary credentials. Specifically, WS-License defines the abstractCredential, abstractLicense, binaryLicense, and binaryCredential elements, the last two of which are placed within the wsse:credentials header.

Here is an example that describes the use of WS-License tags. During an exchange of messages, Alice issues a new X.509 license to Bob that he can use to send subsequent messages to Alice. Alice places this new license in the wsse:credentials header using the wsse:binaryLicense tag. She also places the associated encrypted testament in the wsse:credentials header using the wsse:binaryCredential tag. She then sends the message to Bob. When the message is received, Bob can extract the new license and encrypted testament. Bob can then decrypt the testament and use it in conjunction with the new license to send messages to Alice.
Relevance of WS-Security to SPML

· How WS-Security affects SPML

The PSTC charter states, “SPML will assume a pre-existing trust model between participating Provisioning Service Points and will utilize available security mechanisms for encryption and message integrity.” The SOAP headers currently specified in WS-Security and WS-License provide a means for addressing some of these issues. Future SOAP module specifications are likely to address the remaining issues.
· How SPML affects WS-Security

Due to the extensible nature of SOAP, WS-Security, and WS-License, it is unlikely that any of these specifications would need to be altered in order to support SPML messages. Even if the PSTC chose to specify a specific SPML SOAP header/module, this would not affect the other SOAP specifications. However, for a message primarily about provisioning, I would imagine the SOAP body is the appropriate place for SPML; a new header wouldn’t seem to be necessary.
Initial Recommendation for Action Items

· PSTC should determine if SPML messages are exchanged using Web services.

· If so, PSTC should specify SOAP as the message protocol.
· If SOAP is used as the message protocol, PSTC should follow the progress of SOAP modules (aka GXA specifications[1]), including WS-Security, and give serious consideration to specifying WS-Security as the means for passing credentials, and ensuring message integrity & confidentiality.
· PSTC should investigate how SAML, XACML, and XrML complement WS-Security. For instance, I believe SAML can be carried within the <credentials/> element.
Recommended Reading

[1] “Global XML Web Services Architecture” © 2001 Microsoft Corporation. http://www.gotdotnet.com/team/XMLwebservices/gxa_overview.aspx
[2] “Web Services Security Language” © 2001–2002 Microsoft Corporation. http://msdn.microsoft.com/ws/2002/01/Security/
[3] “Web Services License Language” © 2001–2002 Microsoft Corporation. http://msdn.microsoft.com/ws/2002/01/License/
[4] “SOAP Version 1.2 Part 0: Primer” Copyright ©2001 W3C® http://www.w3.org/TR/2001/WD-soap12-part0-20011217/
