OpenNetwork Technologies SPML 2.0 Proposal

[image: image1.png]OpenNetwork,

Service Provisioning Markup Language (SPML) 2.0 Proposal
Introduction

This proposal for SPML 2.0 is intended to address several issues remaining from the SPML 1.0 effort as well as to support the goals of the WS-Provisioning proposal. Backwards compatibility with the SPML 1.0 specification is an important goal. The biggest change from the SPML 1.0 specification is the support for multiple data models within the same top level protocol structure.
For the purpose of this proposal, the original attribute/value data model will be referred to as the “DSML Data Model”. The new open ended data that correspond to the one proposed in WS-Provisioning will be referred to as the “Extensible Data Model”. The choice of which data model to use will left to the provisioning service implementers, although some high-level object model standardization may be undertaken by the PS TC.
The SPML 2.0 protocol will be defined using and extensible XSD schema. The Extensible Data Model could then be implemented by writing extensions to the core SPML schema that extend the standard verbs to transport the service specific data.

1. Proposed Changes

The proposed changes fall into the following categories:

· Enhancements to the original DSML data model to support rich data as will as pure attribute/value data

· Addition of the Extensible Data Model to compliment the existing DSML Data Model
· Make the SPML Schema and extensible schema

· Enhancement of the top-level protocol verbs to support issues such as searching large data sets

1.1 DSML Data Model

The DSML Data Model will be the same as the SPML 1.0 specification but with enhancements to support complex data. There proposed changes are:

1. Add an spml:attribute element that can contain simple string values, spml:identifier elements, or XML data values.

2. Add an spml:modification element that can contain simple string values, spml:identifier elements, or XML data values.

3. Change the spml:attributes element to contain a list of either dsml:attr or spml:attribute (can contain a mix).

4. Change the spml:modifications element to contain a list of either dsml:dsmlModification or spml:modification (can contain a mix of both element types).

5. Add a new data type to the spml:attributeDefinition element to indicate that the attribute is an XML data attribute.
1.2 Extensible Data Model

The Extensible Data Model will be open ended and any XML structures may be used as the data for the standard SPML verbs. The add, modify, and delete verbs would contain the XML elements defined in the provisioning services WSDL and XSD schema. Provisioned objects would be identified by using one of the current SPML identifier types, or by XPath. See the Extensible Data Model Examples.
For instance if a provisioning service is created that could provision Liberty Personal Profiles (PP), each of the required verbs, such as add, modify, and search, would be extended from the base verb types defined in the SPML protocol.

[image: image2.emf]spml:AddRequestAbstractType spml:Identifier

spml:AddRequest

spml:Attributes

spml-pp:AddRequest

liberty:PP

This would allow for SPML to transport and XML data in a fashion that is fully defined by the services WSDL.

2. Proposed Changes to the SPML Verbs
2.1 Add Request

Add requests would work the same as before, except that the spml:Attributes element could contain both dsml:attr or spml:attribute elements.

2.2 Modify Request

Add requests would work the same as before, except that the spml:Modification element could contain both dsml:dsmlModification or spml:Modification elements.
One useful feature of SPML is that values on multivalued-attributes can be replaced or removed. For this to work there must be a way to tell if a give value on an attribute is equal to a value specified on the modification. For DSML attributes this would be done via a string comparison. For SPML attributes that contain XML data, this would be done by canonicalizing the XML data and then doing a string comparison on the resultant. Additionally, there is a restriction that the modification of XML data is limited to replacing an entire XML data value on an attribute. In other words, an XML data value can be added, replaced, or removed in total, but sub-elements can not be modified.

2.3 Search Request
The syntax for search requests would remain the same. The only change is that when defining a filter, the attribute name is used to define filters on a specific attribute value, but a scoped identifier is used to identify the sub element to filter on.
The search response would remain the same except that the search response attributes could contain spml:attribute elements as well as dsml:attr elements.

Handling large data sets can be accomplished for both the DSML and Extensible data models by making minor modifications to the Search Request verb (and the corresponding search response). The changes that are needed are:

· Add a response status that indicates that the search response is a partial result set

· Add a response ID that can be returned on a search response indicating that there is more data to be requested

· Add a reference ID on the search request which identifies the last search response that this request follows.

See the Large Data Set Handling Example for illustration.

2.4 Schema Definition
To specify that an attribute contains XML elements rather than simple values, the type attribute would contain the XSD identifier for the element.
Additionally there will another type enumeration defined: urn:oasis:names:tc:SPML:1:1#Identifier, that will indicate that the value will contain one or more spml:Identifier elements.

3. Examples

3.1 DSML Data Model Examples
As an example of complex data, consider the Liberty Personal Profile. The schema definition for the Liberty Basic Profile could be defined as (note that this is a partial definition):

<attributeDefinition
name = "InformalName" />

<attributeDefinition
name = "CommonName"

type="liberty:CommonName"

<objectClassDefinition
name = "IDPP" >

<memberAttributes>

<attributeDefinitionReference

name = "InformalName" required = "true" />

<attributeDefinitionReference

name = "email" required = "true" />

</memberAttributes>

</objectClassDefinition>
Adding a new profile might look like:
 <spml:addRequest>

 <spml:attributes>

 <dsml:attr name='objectclass'>

 <dsml:value>IDPP</dsml:value>

 </dsml:attr>

 <dsml:attr name='InformalName'>

 <dsml:value>theWanderer</dsml:value>

 </dsml:attr>

 <spml:attribute name='CommonName'>

 <spml:value>

 <idpp:cn>Zita Lopes</ idpp:cn>

 <idpp:altcn>Maria Lopes</idpp:altcn>

 </spml:value>

 <spml:value>

 <idpp:cn>Zita Jones</idpp:cn>

 <idpp:altcn>Maria Jones</idpp:altcn>

 </spml:value>

 </spml: attribute>

 </spml:attributes>

 </spml:addRequest>

In this example the Liberty Basic Profile is created with the Informal Name set as a normal DSML attribute element with the value of “theWanderer”. The Common Name is set using the new SPML attribute element with two values, each an XML document defined by the IDPP namespace.
To modify the profile to remove the “Zita Jones” common name, the modification request would look like:
 <spml:modifyRequest>

 <spml:identifier identifierType='urn:oasis:names:tc:SPML:1:0#GUID'>

 <spml:id>a3df6hj9</spml:id>

 </spml:identifier>

 <spml:modifications>

 <spml:modification name="CommonName" operation="delete">

 <spml:value>

 <idpp:cn>Zita Jones</idpp:cn>

 <idpp:altcn>Maria Jones</idpp:altcn>

 </spml:value>

 </spml:modification>

 </spml:modifications>

 </spml:modifyRequest>
To find all objects with a common name that has a CN that ends with “Jones”, the search request would look like:

 <spml:searchRequest>

 <dsml:filter>

 <dsml:substrings name="CommonName\cn">

 <dsml:final>Jones</dsml:final>

 </dsml:substrings>

 </dsml:filter>

 </spml:searchRequest>

Note that the syntax for the dsml:filter is not changed, but it use is expanded by allowing the name attribute to use scoped sub elements.

The corresponding search response might look like:
 <spml:searchResponse>

 <spml:searchResultEntry>

 <spml:identifier identifierType='urn:oasis:names:tc:SPML:1:0#GUID'>

 <spml:id>a3df6hj9</spml:id>

 </spml:identifier>

 <spml:attributes>

 <dsml:attr name='objectclass'>

 <dsml:value>IDPP</dsml:value>

 </dsml:attr>

 <dsml:attr name='InformalName'>

 <dsml:value>theWanderer</dsml:value>

 </dsml:attr>

 <spml:attribute name='CommonName'>

 <spml:value>

 <cn>Zita Lopes</cn>

 <altcn>Maria Lopes</altcn>

 </spml:value>

 <spml:value>

 <cn>Zita Jones</cn>

 <altcn>Maria Jones</altcn>

 </spml:value>

 </dsml:attr>

 </spml:attributes>

 </spml:searchResultEntry>

 </spml:searchResponse>

3.2 Extensible Data Model Examples
Using the Liberty Basic Profile as an example again, adding a new profile might look like:

 <spml-pp:addRequest>

 <PP>

 <InformalName>theWanderer</ InformalName>

 <CommonName>

 <CN>Zita Lopes</CN>

 <LCN xml:lang="es">L Kj343asas</LCN>

 <AltCN >Maria Lopes</AltCN>

 <AltCN>Zita Mª Lopes</AltCN>

 </CommonName>

 </PP>
 </spml-pp:addRequest>

Since entries are identified using XPath information, a modification request could look like:

 <spml-pp:modifyRequest>

 <spml:identifier type="urn:oasis:names:tc:SPML:2.0:core#XPath>

 <spml:id>//PP[InformalName=theWanderer</spml:id>

 </spml:identifier>
 <PP>

 <CommonName>

 <CN>Zita Lopes</CN>

 <LCN xml:lang="es">L Kj343asas</LCN>

 <AltCN >Maria Lopes</AltCN>

 </CommonName>

 </PP>
 </spml-pp:modifyRequest >

In this example the existing CommonName element is replaced wholesale with the new one.
Likewise a delete request would look like:

 <spml:deleteRequest>

 <spml:identifier type="urn:oasis:names:tc:SPML:2.0:core#XPath>

 <spml:id>//PP[InformalName=theWanderer]</spml:id>

 </spml:identifier>
 </spml:deleteRequest >

Search request would be filtered using XQuery. For instance to find all objects with a common name that has a CN that ends with “Lopez”, the search request would look like:

 <spml:searchRequest>

 <spml:identifier type="urn:oasis:names:tc:SPML:2.0:core#XPath>

 <spml:id>//PP/[CN=*Lopez]</spml:id>

 </spml:identifier>
 </spml:searchRequest>

The corresponding search response might look like:

 <spml:searchResponse>

 <spml-pp:searchResultEntry>

 <spml:identifier type="urn:oasis:names:tc:SPML:2.0:core#XPath>

 <spml:id>//PP[InformalName=theWanderer]</spml:id>

 </spml:identifier>
 <PP>

 <InformalName>theWanderer</InformalName>

 <CommonName>

 <CN>Zita Lopes</CN>

 <LCN xml:lang="es">L Kj343asas</LCN>

 <AltCN >Maria Lopes</AltCN>

 <AltCN>Zita Mª Lopes</AltCN>

 </CommonName>

 </PP>
 </spml-pp:searchResultEntry>

 </spml:searchResponse>

3.3 Handling Larger Data Sets
If a given search request would return too much data to handle in one response, the response would indicate that the result is a partial result. For instance if the request is:

<searchRequest requestID="Y8764">

 <filter>

 <substrings name="lastname"><any>Smith</any></substrings>

 </filter>

</searchRequest>

The response would include a partial result set, the status indicating that it is a partial result set, and a response ID that can be referenced in a future request:
<searchResponse

 results="urn:oasis:names:tc:SPML:1.0:core#success-partialresults"

 responseID="X12345">

 <searchResultEntry>

 ...

A request would then be issued with no search criteria, but would have a reference to the preceding response:
<searchRequest requestID="Y8765" reference="X12345" />

A search response would be returned with the rest of the data (this is for illustrative purposes only, in practice a number of request/responses may be required to transmit all on the data). The final response has a status of success indicating that no more data need be requested:
<searchResponse

 results="urn:oasis:names:tc:SPML:1.0:core#success"

 responseID="X12346">

 <searchResultEntry>

 ...

4. References

4.1 OASIS Standards

Service Provisioning Markup Language (SPML)

· General : http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=provision
· OpenSPML: http://www.openspml.org/
Directory Services Markup Language version 2.0 (DSMLv2)

· General : http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=dsml

4.2 Other Relevant Standards

Project Liberty

· General : http://www.projectliberty.org
· Personal Profile: http://www.projectliberty.org/specs/lib-svc-id-pp.xsd

8
Version 0.1, December 12, 2003

Copyright (2003 OpenNetwork Technologies, Inc.

_1135410478.vsd
Class name�

Association�

�

spml:AddRequestAbstractType�

�

spml:Identifier�

spml:AddRequest�

spml:Attributes�

�

spml-pp:AddRequest�

liberty:PP�

�

