UC1 Add a Child in a Hierarchical Structure

Status

Work in progress

Description

Organizations generally consist of hierarchically nested organizational units. Users and resources are frequently modeled as objects bound beneath the nodes in this hierarchy.
This use case addresses the ability to add objects in a containment hierarchy in a general way that may be used in provisioning systems concerned with modeling these relationships.

Actors

Service Requester – Requesting Authority (RA)
Service Provider – Provisioning Service Point (PSP)

Triggers

Examples of triggers for this use case are:

· A user joins an organization and this is modeled as a record for the user being added to the organizational structure. The user’s record is said to be contained by the organizational unit object.

· A user is provisioned with resources that are modeled as children of her record in the organizational hierarchy. The user record will contain the user’s resources.
Preconditions

The container node exists

Postconditions

The container node will have a contained node representing the added object
Basic course of action

1. The container node is identified
2. An appropriate child object is constructed from available information

3. The child object is bound to the container node

Alternate courses of action

Examples
The basic course of action may be approached in a number of ways. The following scenarios illustrate three possible implementation options based on proposed SPML 2 models:

1. The child node is created according to a schema that allows the container to be specified
2. The child node is created and the containment relationship is created at the same time

3. The child node is created and the containment relationship is created using an SPML 2 capability
The examples provided here represent a hypothetical PSP that is provisioning to an LDAP directory.

Scenario 1: Schema-based approach

Using the SPML 2.0 core schema and operations, a target is published by a PSP that contains a schema representing a user and organization. The following is a simple example that allows a User object to be contained by a previously created object. The response from the PSP list targets request might look something like this:
<listTargetsResponse result="success">

<target>

 <identifier ID=”user”/>

 <schema>

 <xsd:schema targetNamespace="urn:org.joebob"

 xmlns:xsd=http://www.w3.org/2001/XMLSchema
 xmlns:spml="urn:oasis:names:tc:SPML:2:0">

 <xsd:element name="User">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="firstname" type="string" minOccurs="0"/>

 <xsd:element name="lastname" type="string" minOccurs="0"/>

 <xsd:element name="userid" type="string" minOccurs="0"/>

 <xsd:element name="container" type="spml:PSOIdentifier" minOccurs=”1”/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:schema>

 </schema>

</target>

</listTargetsResponse>
In this case, when creating a User object, the schema includes the requirement that a container be specified using an SPML 2 Provisioning Service Object (PSO) identifier. In this example, an add request following the SPML 2 core specification might look something like the following:

<addRequest xmlns="urn:oasis:names:tc:SPML:2:0" execution="synchronous">

<target ID="user"/>

<parameters xmlns:jb=”urn:org.joebob”>

<jb:firstname>Joe</jb:firstname>

<jb:lastname>Bob</jb:lastname>

<jb:userid>joebob</jb:userid>

<jb:container>ou=users,ou=joebob,dc=com</jb:container>

</parameters>

</addRequest>
The container identifier would be retrieved from the PSP before issuing the add command by using one of the SPML 2 query or lookup mechanisms.
Scenario 2: Extension of Core Commands to Specify Containment

Jeff Bohren has put forward a proposal that accommodates relationships by extending the core operations. A derived operation would be created for an add including a containment relationship and another that could specify reference relationships. In this case, the schema returned by the list targets command would be slightly different in that it would no longer specify a container.
<listTargetsResponse result="success">

 <target>

 <identifier ID=”user”/>

 <schema>

 <xsd:schema targetNamespace="urn:org.joebob"

 xmlns:xsd=http://www.w3.org/2001/XMLSchema
 xmlns:spml="urn:oasis:names:tc:SPML:2:0">

 <xsd:element name="User">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="firstname" type="string" minOccurs="0"/>

 <xsd:element name="lastname" type="string" minOccurs="0"/>

 <xsd:element name="userid" type="string" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:schema>

 </schema>

 </target>

</listTargetsResponse>

In this scenario, the command used to add the user object would also create the relationship. The add request used to create the object and the relationship is an extension of the core add request and is in a separate namespace.
<addRequest xmlns="urn:oasis:names:tc:SPML:2:0:contain" execution="synchronous">

<target ID="user"/>

<parameters xmlns:jb=”urn:org.joebob”>

<jb:firstname>Joe</jb:firstname>

<jb:lastname>Bob</jb:lastname>

<jb:userid>joebob</jb:userid>

</parameters>

<container>ou=users,ou=joebob,dc=com</container>

</addRequest>
Note that the container element is now part of the add request rather than the target parameters and that the add request is in a different namespace than in the previous example.
Scenario 3: Use of a Relationship Capability
A Relationship capability could be constructed that offered a way to specify generic relationships between provisioning objects. In this scenario, the list targets command would indicate that the capability was supported:
<listTargetsResponse result="success">

 <target>

 <identifier ID=”user”/>

 <schema>

 <xsd:schema targetNamespace="urn:org.joebob"

 xmlns:xsd=http://www.w3.org/2001/XMLSchema
 xmlns:spml="urn:oasis:names:tc:SPML:2:0">

 <xsd:element name="User">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="firstname" type="string" minOccurs="0"/>

 <xsd:element name="lastname" type="string" minOccurs="0"/>

 <xsd:element name="userid" type="string" minOccurs="0"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:schema>

 </schema>

 <supportedCapability capability="urn:oasis:names:tc:SPML:2:0:state" appliesTo="urn:org.joebob:User"/>

 <supportedCapability capability="urn:oasis:names:tc:SPML:2:0:relationship"/>

 </target>

</listTargetsResponse>

The Relationship capability might define a number of schema elements representing relationship types. These can then be added to a request, for example:
<addRequest xmlns="urn:oasis:names:tc:SPML:2:0" execution="synchronous">

<target ID="user"/>

<parameters xmlns:jb=”urn:org.joebob”>

<jb:firstname>Joe</jb:firstname>

<jb:lastname>Bob</jb:lastname>

<jb:userid>joebob</jb:userid>

</parameters>
 <Relationship xmlns=”urn:oasis:names:tc:SPML:2:0:relationship” type=”containment”>

 <related type=”container”>ou=users,ou=joebob,dc=com</related>

 </Relationship>

 <State xmlns=”urn:oasis:names:tc:SPML:2:0:state”>suspended</State>
</addRequest>
In this example, the relationship is added as additional information in the normal add request. The example also includes a state specifier indicating that the user should be in a suspended state when created (this would require modification of the current state schema). The relationship capability has defined the schema for a relationship as something like the following (the rel prefix is associated with the urn:oasis:names:tc:SPML:2:0:relationship namespace):

 <element name="Relationship" type="rel:RelationshipType"/>

 <complexType name="RelationshipType">

 <sequence>

 <element name="related" type="rel:RelatedObjectType" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="name" type="string" use="optional"/>

 <attribute name="type" type="rel:RelationshipTypeEnum" use="optional"/>

 </complexType>

 <simpleType name="RelationshipTypeEnum">

 <restriction base="string">

 <enumeration value="containment"/>

 <enumeration value="reference"/>

 </restriction>

 </simpleType>

 <element name="RelatedObject" type="rel:RelatedObjectType"/>

 <complexType name="RelatedObjectType">

 <sequence>

 <any namespace="##other" minOccurs="0" maxOccurs="1"/>

 </sequence>

 <attribute name="name" type="string" use="optional"/>

 <attribute name="type" type="rel:RelatedTypeEnum" use="optional"/>

 <attribute name="relatedObject" type="IDREF" use="optional"/>

 </complexType>

 <simpleType name="RelatedTypeEnum">

 <restriction base="string">

 <enumeration value="container"/>

 <enumeration value="contained"/>

 <enumeration value="referrer"/>

 <enumeration value="referenced"/>

 </restriction>

 </simpleType>
This is simply an example of a possible approach to a relationship schema. Note that multiple relationships can be established by including additional relationship descriptors in the request.
Issues

Interoperability

By specifying the containment model in the target schema, as in scenario #1, interoperability may be diminished since there is no mechanism to model containment published by the PSTC in this case. Both scenarios #2 and #3 address this issue.
Specification of Capabilities

There is work to be done on the definition of capabilities. Do we need to distinguish between capabilities that implement a service endpoint, i.e. an operational interface, and capabilities that simply specify a schema?
Decisions
UC2 Navigate Between Nodes in a Hierarchical Structure

Status

Work in progress

Description

If an organization’s structure is represented as a hierarchical collection of organizational units, applications and tools will frequently need to traverse the hierarchy in different ways. For example, operations that apply to entities in a given organization will require that the children of an organizational unit node be available. Another example might be supervisor relationships that can be modeled by a containment hierarchy and will therefore require that the hierarchy be navigable from child nodes to their containing parents.
Actors

Service Requester – Requesting Authority (RA)

Service Provider – Provisioning Service Point (PSP)

Triggers

An example of a trigger for this use case is the need to resolve the parent organization for a user, in this case a fictitious user JoeBob, in order to charge the correct organization for JoeBob’s salary and benefits. Other examples include JoeBob’s supervisor wishing to operate on all of his subordinates or JoeBob may need to determine his report-to structure in the organization.
Preconditions

Postconditions

Basic course of action

1. Identify the starting point (node) for the traversal

2. Resolve the desired relationship for the starting node
3. Operate on the resulting nodes
Alternate courses of action

Examples
A number of example approaches to this use case are:

1. The relationships are described in the schema and the standard search facility is used to navigate them.

2. The relationships are manipulated using extensions of the core commands and a specialized search command is used to traverse them.
3. The relationships are managed through an SPML 2 capability

The examples provided here represent a hypothetical PSP that is provisioning to an LDAP directory.

Scenario 1: Schema-based approach

As in the previous use case, a target may publish the schema for a user that includes the ability to specify a container property as a PSO identifier. An SPML 2 search request can be used to retrieve all children of a given PSO, for example, using the desired value for the container. Since the container is an identified schema attribute, searches may be conducted using this attribute in the same way as any other. For example, to get JoeBob’s container, the following request might be used:
<searchRequest xmlns="urn:oasis:names:tc:SPML:2:0:search" xmlns:spml="urn:oasis:names:tc:SPML:2:0">

<searchBase ID=”userid=joebob,ou=users,ou=joebob,dc=com”/>

 <searchQuery/>

</searchRequest>
The response will include all attributes for the user record, including the container property. To determine all the children of a particular container, something like the following might be used:
<searchRequest xmlns="urn:oasis:names:tc:SPML:2:0:search" xmlns:spml="urn:oasis:names:tc:SPML:2:0">

<searchBase ID=”ou=joebob,dc=com”/>

<searchQuery xpath=”//[container=’ou=users,ou=joebob,dc=com’]”/>

</searchRequest>
The SPML 2 search capability does not define the search syntax so this example uses a simple XPath expression for example purposes only.
Scenario 2: Extension of Core Commands to Specify Containment

Jeff Bohren’s proposal includes an extended search command for reference relationships but suggests that for containment the search capability be used and that the “searchBase” element would be used to specify the container. To retrieve the objects contained

<searchRequest xmlns="urn:oasis:names:tc:SPML:2:0:search" xmlns:spml="urn:oasis:names:tc:SPML:2:0">

<searchBase ID=”ou=joebob,dc=com”/>

<searchQuery/>

</searchRequest>
[TBD] How is the container attribute returned in the response?

For JoeBob, a search for his container record would look like... [TBD]
Scenario 3: Use of a Relationship Capability
A Relationship capability would publish a schema and operational interface. The operational interface includes the ability to resolve a relationship of a given type for an object. The getRelated operation allows a relationship type and a related object to be specified and in return will provide the participants of each relationship of the specified type that includes the specified entity. For example, the container for JoeBob’s user record might be retrieved using:
<getRelated xmlns="urn:oasis:names:tc:SPML:2:0:relationship">

<target ID="user"/>

 <relationship type=”containment”/>

 <related type=”contained”>
 <relatedObject>userid=joebob,ou=users,ou=joebob,dc=com</ relatedObject >

 </related>

</getRelated>
This would return all of the containment relationships that have a contained object corresponding to the specified node. In other words, all of the containers that have the specified node as a member. Or, to retrieve all of the objects contained by a certain object:

<getRelated xmlns="urn:oasis:names:tc:SPML:2:0:relationship">

<target ID="user"/>

 <relationship type=”containment”/>

 <related type=”container”>
 <relatedObject>ou=users,ou=joebob,dc=com</ relatedObject>

 </related>

</getRelated>
Issues

Interoperability

Interoperability is a factor with the first sample scenario since the relationship model is not explicitly defined outside the target schema. Among other things, this means that the user, or RA, must have explicit knowledge of the semantics of the relationship attributes when creating queries. The particulars of accessing relationships is also closely tied to the implementation of the resource managed by the PSP, which is undesirable.
Search Issues

Search request might benefit from the ability to specify the target. A well-defined search syntax would be valuable.
Core Schema Considerations

The examples make use of a PSO element that is not currently defined in the core schema.

Decisions

