1 Introduction

2 Concepts

3 Protocol

The general model adopted by this protocol is that a requestor (client) asks a provider (server) to perform operations. In the simplest case, each request for an SPML operation is processed individually and is processed synchronously.  The “Request/Response Model” section below presents this general model and discusses mechanisms that govern asynchronous execution. The Profiles and Identifiers sections also describe aspects (of the protocol) that apply to all operations.
In order to encourage adoption of this standard, this specification minimizes the set of operations that a provider must implement. The Core Operations section discusses these required operations.

This specification also defines optional operations.  Some operations are optional (rather than required) because the operations may be more difficult for a provider to implement for certain kinds of targets. Some operations are optional because the operations may apply only to specific types of objects on a target. This specification defines a set of standard capabilities, each of which groups optional operations that are functionally related. The remainder of the Operations section discusses optional operations (such as search) that are associated with SPMLv2’s standard capabilities.

The capability mechanism in SPMLv2 is open and allows an individual provider (or any third party) to define additional custom capabilities.  See Custom Capabilities later in this section.

3.1 Request/Response Model

The general model adopted by this protocol is that a requestor (client) asks a provider (server) to perform an operation. A requestor asks a provider to perform an operation by sending to the provider an SPML request that describes the operation. The provider must then examine the request and, if the provider determines that the request is valid, the provider must do whatever is necessary to implement the requested operation.  The provider must also return to the requestor an SPML response that details any result or error that pertains to the request.

A provider may execute a requested operation either synchronously or asynchronously.  The choice of execution type depends on the requirements and capabilities of the requestor and of the provider. 

A requestor generally requests each operation individually. SPMLv2 also defines a capability to batch requests. If the provider supports this batch capability, a requestor may group any number of batchable requests (e.g., requests to ‘add’, ‘modify’ or ‘delete’) into a single request.

The remainder of this section describes the execution types that SPMLv2 supports and the mechanisms that govern them.

3.1.1 Synchronous and Asynchronous Execution

SPML requests support two distinct types of execution: synchronous and asynchronous.  

· Synchronous. In the simple case, each operation is processed synchronously. The requestor blocks (i.e., suspends its thread of execution and does nothing else on that thread) until the provider has completed the operation and the requestor receives the provider’s response.

· Asynchronous.  In some cases, an operation must be executed asynchronously.  This most commonly happens when an operation will take a long time to complete—e.g., because the operation requires workflow (which may include approvals).  In such a case, the provider returns in its response a token (i.e., “requestID”) that the requestor may use to cancel the asynchronous operation or to track the progress of the asynchronous operation. A requestor may do other work while the provider executes the requested operation (and a provider may serve other requests while the requested operation executes). 

3.1.1.1 Execution attribute

A requestor uses the optional “execution” attribute of an SPML request to specify that the provider must execute the specified operation synchronously or to specify that the provider must execute the specified operation asynchronously. If a requestor does not specify the “execution” attribute in an SPML request, the provider may decide whether to execute the requested operation synchronously or to execute the requested operation asynchronously.

3.1.1.2 Async Capability

A provider uses the Async Capability that is defined as part of SPMLv2 to tell any requestor that the provider supports asynchronous execution of requested operations on objects contained by that target.  A target may further refine this declaration to say that the provider supports asynchronous execution of requested operations only for specific types of objects (i.e., for a specific subset of supported schema entities) on the target.

SPMLv2’s Async Capability also defines two operations that a requestor may use to manage another operation that a provider is executing asynchronously:
- A status operation allows a requestor to check the status (and possibly results) of an operation.
- A cancel operation asks the provider to stop executing an operation.

For more information, see the Async Capability section.

3.1.1.3 Determining execution type

By default, a requestor allows a provider to decide whether to execute a requested operation synchronously or asynchronously. A requestor that needs the provider to execute a requested operation in a particular manner must specify this in the request.  Each subsection that follows describes one of the four possibilities. 

The following subsections normatively apply to every SPMLv2 operation unless the normative text that describes an operation specifies otherwise.

3.1.1.3.1 Requestor specifies synchronous execution (normative)

A requestor MAY specify that an operation must execute synchronously. A requestor that wants the provider to execute an operation synchronously MUST specify “execution=’synchronous’“ in the SPML request.

If a requestor specifies that an operation must be executed synchronously and the provider cannot execute the requested operation synchronously, then the provider MUST fail the operation.  If a provider fails an operation because the provider cannot execute the operation synchronously, then the provider’s response MUST specify “result=’failed’” and “error=’unsupportedExecutionType’”.

If a requestor specifies that an operation must be executed synchronously and the provider does not fail the request, then the provider implicitly agrees to execute the requested operation synchronously. The provider MUST acknowledge the request with a synchronous response that contains any result and any error or output of the operation.  The provider’s response MUST NOT have a “requestID” attribute. The provider’s response MUST NOT specify “result=’pending’”.  The provider’s response MUST specify either “result=’succeeded’” or “result=’failed’”.  If the provider’s response specifies “result=’failed’”, then the provider’s response must have an “error” attribute.  The provider’s response MAY contain any additional results (i.e., output) of the completed operation.

3.1.1.3.2 Requestor specifies asynchronous execution (normative)

A requestor may specify that an operation must execute asynchronously. A requestor that wants the provider to execute an operation asynchronously MUST specify “execution=’asynchronous’” in the SPML request.

If a requestor specifies that an operation must be executed asynchronously and the provider cannot execute the requested operation asynchronously, then the provider MUST fail the operation.  If the provider fails the operation because the provider cannot execute the operation asynchronously, then the provider’s response MUST specify “result=’failed’” and (the provider’s response MUST specify) “error=’unsupportedExecutionType’”.

If a requestor specifies that an operation must be executed asynchronously and the provider does not fail the request, then the provider implicitly agrees to execute the requested operation asynchronously. The provider MUST acknowledge the request with a synchronous response that indicates that the operation will execute asynchronously.  The provider’s response MUST specify “result=’pending’” and (the provider’s response MUST specify) “requestID=’<value>’”.  The requestID value MUST uniquely identify the requested operation to the provider.

If the provider’s response indicates that the requested operation will execute asynchronously, the requestor may continue with other processing.  The requestor may use the requestID value that is returned in the provider’s response to obtain the status and results of the requested operation (or to cancel the requested operation).

Also see sections “Asynchronous capability” and “Results of asynchronous operations”.

3.1.1.3.3 Provider chooses synchronous execution (normative)

A requestor MAY allow the provider to decide whether to execute a requested operation synchronously or asynchronously.  A requestor that wants to let the provider decide the type of execution for an operation MUST omit the “execution” attribute of the SPML request. 

If a requestor lets the provider decide the type of execution for an operation and the provider chooses to execute the requested operation synchronously, then the provider’s response MUST indicate that the requested operation was executed synchronously. The provider’s response MUST NOT have a  “requestID” attribute. The provider’s response MUST NOT specify “result=’pending’”. The provider’s response MUST specify either “result=‘succeeded’” or “result=’failed’”. If the provider’s response specifies “result=’failed’”, then the provider’s response must have an “error” attribute. The provider’s response MAY contain any additional results (i.e., output) of the completed operation.

3.1.1.3.4 Provider chooses asynchronous execution (normative)

A requestor MAY allow a provider to decide whether to execute a requested operation synchronously or asynchronously.  A requestor that wants to let the provider decide the type of execution for an operation MUST omit the “execution” attribute of the SPML request. 

If a requestor lets the provider decide the type of execution for an operation and the provider chooses to execute the requested operation asynchronously, then the provider’s response must indicate that the the requested operation will execute asynchronously. The provider MUST acknowledge the request with a synchronous response that indicates that the operation will execute asynchronously. The provider’s response MUST specify “result=’pending’” and (the provider’s response MUST specify) “requestID=’<value>’”. The requestID value MUST uniquely identify the requested operation to the provider.

If the provider’s response indicates that the requested operation will execute asynchronously, the requestor may continue with other processing.  The requestor may use the requestID value that was returned in the provider’s response to obtain the status and results of the requested operation (or to cancel the requested operation). 

Also see sections “Asynchronous capability” and “Results of asynchronous operations”.

3.1.1.4 Results of asynchronous operations (normative)

A provider that supports asynchronous execution of requested operations MUST maintain the status, results and output of each asynchronously executed operation during the period of time that the operation is executing and for some reasonable period of time after the operation completes. Maintaining this information allows the provider to respond to status requests.  

A provider that supports asynchronous execution of requested operations SHOULD publish out-of-band (i.e., make available to requestors in a manner that is not specified by this document) any limit on the how long after the completion of an asynchronous operation the provider will keep the results and output of that operation.

3.1.2 Individual and Batch requests

Individual.  The SPMLv2 core protocol allows a requestor to ask a provider to execute an individual operation. Each request that is part of the SPMLv2 core schema asks a provider to perform a single operation.

Batch.  A ‘batch’ operation was part of the core protocol in SPML1.0.  SPMLv2 defines ‘batch’ as an optional operation that is associated with the Batch capability.  See the Batch Capability section.

3.2 Profiles

SPMLv2 defines two “profiles” in which a requestor and provider may exchange SPML protocol: 
- DSML 2.0 as defined in the “DSML Binding for SPMLv2”.
- XML Schema

A requestor and a provider may exchange SPML protocol in any profile to which they agree.

SPML 1.0 defined file bindings and SOAP bindings that assumed the DSML schema.  SPMLv2 continues to support DSML as one profile, but also supports a generic XML Schema profile.  

The DSML profile may be more convenient for applications that access mainly targets that are LDAP or X500 directory services.   The generic XML Schema profile may be more convenient for applications that access mainly targets that are web services.

A separate document that is entitled “DSML Bindings for SPML V2.0” discusses the DSML profile.

[Ed. The preceding text duplicates the Concepts/Profile section. 
What needs to be said, perhaps normatively, here?]

3.2.1 DSML profile

[Ed. What do I need to say about the DSML profile?  Ask Jeff Bohren and Gerry Woods.]
3.2.2 Generic XML Schema profile

[Ed. What do I need to say about the generic XML schema profile?  Ask Jeff Bohren and Gerry Woods.]
3.3 Identifiers

3.3.1 PSOIdentifier (normative)

PSOIdentifier must be unique.  A provider MUST ensure that each object’s PSO-ID is unique (within the namespace of the provider). Since every PSOIdentifier also specifies the target that contains the object, the value that identifies an object must be unique within the namespace of the target.

PSOIdentifier can be mutable.  A provider MAY change the PSO-ID for an object. For example, moving an organizational unit (OU) beneath a new parent within a directory service will change the distinguished name (DN) of the organizational unit.  If the provider exposes the directory service DN as the object’s PSO-ID, then this operation will change the object’s PSO-ID. 

A provider SHOULD expose an immutable value (such as a globally unique identifier or “guid”) as the PSO-ID for each object.
3.4 Operations

3.4.1 Core Operations

Schema syntax for the SPMLv2 core operations is defined in a schema associated with the following XML namespace:

urn:oasis:names:tc:SPML:2:0

A compliant provider must implement all the operations defined in the core schema.  For more information, see the section entititled Conformance.

The SPMLv2 core operations include:
- a bootstrap operation (listTargets) on the provider.
- basic operations (add, lookup, modify, delete) that manipulate objects on a target.
3.4.1.1 listTargets

	
<complexType name="SchemaType">



<complexContent>




<extension base="spml:ExtensibleType">






<sequence>






<element name="supports" type="spml:ObjectClassRefType" minOccurs="0" maxOccurs="unbounded"/>





</sequence>





<attribute name="ref" type="anyURI" use="optional" />




</extension>



</complexContent>


</complexType>


<complexType name="ObjectClassRefType">



<complexContent>




<extension base="spml:ExtensibleType">






<sequence>





</sequence>





<attribute name="objectclassname" type="string" use="optional" /> 





<attribute name="elementname" type="QName" use="optional" /> 




</extension>



</complexContent>


</complexType>


<complexType name="CapabilityType">



<complexContent>




<extension base="spml:ExtensibleType">





<sequence>






<element name="appliesTo" type="spml:ObjectClassRefType" minOccurs="0" maxOccurs="unbounded"/>





</sequence>





<attribute name="identifier" type="anyURI" /> 





<attribute name="location" type="anyURI" use="optional" /> 




</extension>



</complexContent>


</complexType>


<complexType name="TargetType">



<complexContent>




<extension base="spml:ExtensibleType">






<sequence>






<element name="identifier" type="spml:IdentifierType" minOccurs="0"/>






<element name="schema" type="spml:SchemaType" maxOccurs="unbounded"/>






<element name="capability" type="spml:CapabilityType" maxOccurs="unbounded"/>





</sequence>





<anyAttribute namespace="##other" processContents="lax"/>








</extension>



</complexContent>






</complexType>


<complexType name="ListTargetsRequestType">



<complexContent>




<extension base="spml:SpmlRequestType">





<sequence/>




</extension>



</complexContent>


</complexType>


<complexType name="ListTargetsResponseType">



<complexContent>




<extension base="spml:SpmlResponseType">





<sequence>






<element name="target" type="spml:TargetType" maxOccurs="unbounded"/>





</sequence>




</extension>



</complexContent>


</complexType>


<element name="listTargetsRequest" type="spml:ListTargetsRequestType"/>


<element name="listTargetsResponse" type="spml:ListTargetsResponseType"/>




3.4.1.1.1 Request (normative)

A requestor MUST send a <listTargetsRequest> to a provider in order to ask the provider to declare the set of targets that the provider exposes for provisioning operations.

Execution. A requestor MUST NOT specify “execution=’asynchronous’” in a <listTargetsRequest>. A requestor MUST specify “execution=’synchronous’” or (a requestor MUST) omit the execution attribute. This is because a requestor SHOULD examine each target definition to see whether the target supports the Async Capability before making a request that specifies “execution=’asynchronous’” (rather than assuming that the provider supports asynchronous execution of requested operations). Since a requestor typically must perform the listTargets operation only once at the beginning of a session, this restriction should not be too onerous.

For more information, see the section entitled “Determining execution type”.

No required content. A <listTargetsRequest> requires no sub-element (i.e., to act as an argument).

3.4.1.1.2 Response (normative)

A provider that receives a <listTargetsRequest> from a requestor that it trusts MUST return to the requestor a <listTargetsResponse>.  

Execution. A provider MUST execute a listTargets operation synchronously.  This is because a provider must allow the requestor to examine each target definition to see whether the target supports the Async Capability (and thus whether the provider might choose to execute a requested operation asynchronously) before the provider chooses to execute a requested operation asynchronously. Since a requestor typically must perform the listTargets operation only once at the beginning of a session, this restriction should not be too onerous.

If a requestor specifies “execution=’asynchronous’”, a provider MUST fail the operation with “error=’unsupportedExecutionType’”.

For more information, see the section entitled “Determining execution type”.

Result.  A <listTargetsResponse> MUST have a result attribute that indicates whether the provider successfully processed the request.  See ResultCode for values of this attribute.

Error. If the provider cannot return a list of its targets, the <listTargetsResponse> MUST contain an error attribute that characterizes the failure.  See ErrorCode for values of this attribute. 

Target.  If the provider successfully returned a list of its targets, the <listTargetsResponse> MUST contain at least one <target> element.
Schema. The provider MUST return at least one <schema> element as a sub-element of each <target>. Each <schema> element MUST contain some form of XML Schema that defines the structure of XML objects.  The content of the <schema> element MUST include the XML namespace of the schema. The content of the <schema> element SHOULD be some form of XML Schema. 

Supported Schema Entities. A target MAY declare as part of its schema the set of schema entities for which the target supports the basic SPML operations (i.e., add, lookup, modify and delete).  The target <schema> element MAY contain any number of <supports> elements.  Each <supports> element refers to an entity in the target schema: 

- If the schema is DSML, each <supports> element specifies the name of an objectclass (as the value of its objectclassname attribute). 

- If the schema is XML Schema, each <supports> element specifies a QName (as the value of its elementName attribute).
A provider that explicitly declares a set of schema entities that a target supports has implicitly declared that the target supports only those schema entities. If a target schema contains at least one <supports> element, then the provider MUST support the basic SPML operations for (objects on that target that are instances of) any target schema entity to which a <supports> element refers.

A provider that does not explicitly declare as part of a target at least one schema entity that the target supports has implicitly declared that the target supports every schema entity.  If a target schema contains no <supports> element, then the provider MUST support the basic SPML operations for (objects on that target that are instances of) any top-level entity in the target schema.

Capability. A target may also expose a set of capabilities that it supports.  A capability defines optional operations or semantics. For more information, see the Capability topic within the Concepts section.

A <target> element MAY contain any number of <capability> elements.  Each <capability> element MUST specify (as the value of its identifier attribute) an XML namespace.  Each <capability> element MAY specify (as the value of its location attribute) the URL of an XML schema.

Capability operations.  The XML schema that a capability identifier attribute specifies MAY define operations. The XML schema for a capability SHOULD define any operation as a paired request and response such that the (XSD type of the) request (directly or indirectly) extends SpmlRequestType and the (XSD type of the) response (directly or indirectly) extends SpmlResponseType.

Capability appliesTo.  A target may support a capability for all of the target’s supported schema entities or only for a specific subset of the target’s supported schema entities.  Each capability element may specify any number of supported schema entities to which it applies. A capability that does not specify a supported schema entity to which it applies must apply to every supported schema entity.  

A <capability> element MAY contain any number of <appliesTo> elements.  Each <appliesTo> element MUST specify a schema entity that the target supports.

- If the schema is DSML, each <appliesTo> element specifies the name of an objectclass (as the value of its objectclassname attribute). 

- If the schema is generic XML Schema, each <appliesTo> element specifies a QName (as the value of its elementName attribute).
A <capability> element that contains no <appliesTo> element MUST apply to every schema entity that the target supports.  If the XML schema for the capability defines an operation, the provider MUST support the capability-defined operation for (any object that is instance of) any schema entity that the target supports.  If the capability implies some semantic meaning, then the provider SHOULD apply that semantic meaning to (every object that is an instance of) any schema entity that the target supports.

3.4.1.1.3 Examples (non-normative)

In the following example, a requestor asks a provider to return a list the targets that the provider exposes for provisioning operations.  

	<listTargetsRequest>

</listTargetsRequest>


The provider returns a <listTargetsResponse>.  The result attribute of the <listTargetsResponse> element indicates that the listTargets request was successfully processed. The <listTargetsResponse> contains a sequence of two <target> elements.  Each <target> element describes an endpoint that is available for provisioning operations.  

	<listTargetsResponse result=“success">


<target>



<identifier>target1</identifier>



<schema>

<schema targetNamespace="urn:example:schema:target1" xmlns="http://www.w3.org/2001/XMLSchema" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:spml="urn:oasis:names:tc:SPML:2:0" elementFormDefault="qualified">




<complexType name="Account">





<sequence>






<element name="description" type="string" minOccurs="0"/>





</sequence>





<attribute name="accountName" type="string" use="required"/>




</complexType>




<complexType name="Group">





<sequence>






<element name="description" type="string" minOccurs="0"/>





</sequence>





<attribute name="groupName" type="string" use="required"/>




</complexType>




<supports elementName=”Account”>




<supports elementName=”Group”>

</schema>



</schema>



<capability identifier=”urn:oasis:names:tc:SPML:2.0:bulk”/>



<capability identifier=”urn:oasis:names:tc:SPML:2.0:search”/>



<capability identifier=”urn:oasis:names:tc:SPML:2.0:password”>




<appliesTo elementName=”Account”/>



</capability>



<capability identifier=”suspend”>




<appliesTo elementName=”Account”/>



</capability>



<capability identifier=”reference”>




<appliesTo elementName=”Account”/>



</capability>


</target>


<target>



<identifier>target2</identifier>



<schema>

<schema targetNamespace="urn:example:schema:target2" xmlns="http://www.w3.org/2001/XMLSchema" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:spml="urn:oasis:names:tc:SPML:2:0" elementFormDefault="qualified">




<complexType name="Person">





<sequence>






<element name="dn" type="string"/>






<element name="email" type="string" minOccurs="0"/>





</sequence>





<attribute name="cn" type="string" use="required"/>





<attribute name="firstName" type="string" use="required"/>





<attribute name="lastName" type="string" use="required"/>





<attribute name="fullName" type="string" use="required"/>




</complexType>




<complexType name="Organization">





<sequence>






<element name="dn" type="string"/>






<element name="description" type="string" minOccurs="0"/>





</sequence>





<attribute name="cn" type="string" use="required"/>




</complexType>




<complexType name="OrganizationalUnit">





<sequence>






<element name="dn" type="string"/>






<element name="description" type="string" minOccurs="0"/>





</sequence>





<attribute name="cn" type="string" use="required"/>




</complexType>




<supports elementName=”Person”>




<supports elementName=”Organization”>




<supports elementName=”OrganizationalUnit”>

</schema>



</schema>



<capability identifier=”urn:oasis:names:tc:SPML:2.0:bulk”/>



<capability identifier=”urn:oasis:names:tc:SPML:2.0:search”/>



<capability identifier=”urn:oasis:names:tc:SPML:2.0:password”>




<appliesTo elementName=”Person”/>



</capability>



<capability identifier=”suspend”>




<appliesTo elementName=”Person”/>



</capability>



<capability identifier=”reference”>




<appliesTo elementName=”Person”/>



</capability>


</target>

</listTargetsResponse>


This example listTargetsResponse contains two targets: target1 and target2.  Each of these targets contains a simple schema.  

The schema for target1 defines two entities: Account and Group.  The schema for target1 declares both of these entities as supported schema entities.  Target1 declares that it supports the Bulk capability and Search capability for both Account and Group.  Target1 also declares that it supports the Password, Suspend, and Reference capabilities for Account.

The schema for target2 defines three entities: Person, Organization and OrganizationalUnit.  The schema for target2 declares all of these entities as supported schema entities.  Target2 declares that it supports the Bulk capability and Search capability for both schema entities.  Target2 also declares that it supports the Password, Suspend, and Reference capabilities for Person.

NOTE: Subsequent examples within this section will build on this example, using the target definitions returned in this example. Examples will also build upon each other. An object that is created in the example of the add operation will be modified or deleted in later examples.
3.4.1.2 add
	
<complexType name="PSOType">



<complexContent>




<extension base="spml:ExtensibleType">






<sequence>






 <element name="id" type="spml:PSOIdentifierType" minOccurs="0"/>






<element name="capabilityParameter" type="spml:CapabilityParameterType" minOccurs="0" maxOccurs="unbounded"/>





</sequence>




</extension>



</complexContent>


</complexType>


<complexType name="AddRequestType">



<complexContent>




<extension base="spml:BatchableRequestType">





<sequence>






<element name="container" type="spml:PSOIdentifierType" minOccurs="0"/>






<element name="parameters" type="spml:ExtensibleType" minOccurs="0" />





</sequence>




</extension>



</complexContent>


</complexType>


<complexType name="AddResponseType">



<complexContent>




<extension base="spml:SpmlResponseType">





<sequence>






<element name="pso" type="spml:PSOType" minOccurs="0"/>





</sequence>




</extension>



</complexContent>


</complexType>


<element name="addRequest" type="spml:AddRequestType"/>


<element name="addResponse" type="spml:AddResponseType"/>




3.4.1.2.1 Request (normative)

A requestor MUST send an <addRequest> to a provider in order to (ask the provider to) create a new object.

Execution. A requestor MAY specify a type of execution for the add operation. See the section entitled “Determining execution type”.
Container. An optional <container> sub-element specifies the parent under which to create the new object.  If <container> is specified, its content must specify an existing object on the target or its content must specify the target itself.  If <container> is not specified, the provider must assume that the target is the parent of the object to be created.  A target that does not support containment must accept only the identifier of the target as the content of <container>.  

Parameters. An optional <parameters> sub-element supplies initial content for the new object.  Because it is an ExtensibleType, the <parameters> sub-element may validly contain any XML element or attribute.  The <parameters> sub-element should contain elements and attributes defined by the target schema as valid for the type of object to be added.  

Capability-specific data. An <addRequest> element may also contain capability-specific data—for example, references to another object.  Note: A provider MAY declare capability-specific elements or attributes as part of the target schema, but a provider is not required to do so.  

3.4.1.2.2 Response (normative)

A provider that receives an <addRequest> from a requestor that the provider trusts MUST examine the content of the <addRequest>.  If the request is valid, the provider MUST create the requested object under the specified parent if it is possible to do so.  

Execution.  If an <addRequest> does not specify a type of execution, a provider MUST choose a type of execution for the requested operation. See the section entitled “Determining execution type”.

Response. The provider must return to the requestor an <addResponse>.  

Result. The <addResponse> must have a result attribute that indicates whether the provider successfully created the requested object.  See ResultCode for values of this attribute.

Error. If the provider cannot create the requested object, the <addResponse> must contain an error attribute that characterizes the failure.  See ErrorCode for values of this attribute. 

The provider MUST return an error if any of the following is true:
- the <container> sub-element is absent.
- the <container> sub-element specifies neither a target nor an object that exists on a target.
- the <parameters> sub-element is missing an element or attribute that is required (according to the schema of the target) for the object to be added.

The provider MAY return an error if:
- the <parameters> sub-element contains data that the provider recognizes neither as valid according to the target schema for the type of object to be created nor as capability-specific data (i.e., corresponding to a capability that the target supports for the type of object to be added).

pso. If the provider successfully created the requested object, the <addResponse> must contain an <pso> element that contains the XML representation of the newly created object.
3.4.1.2.3 Examples (non-normative)

In the following example, a requestor asks a provider to add a new person.  The requestor specifies the attributes required for the Person schema entity (cn, firstName, lastName and fullName). The requestor also supplies an optional email address for the person. This example assumes that a container named “ou=Development, org=Example” already exists.

	<addRequest>


<container ID=”ou=Development, org=Example”>



<target>target2</target>


</container>


<parameters>



<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>




<email>joebob@example.com</email>



</Person>


</parameters>

</addRequest>


The provider returns an <addResponse> element.  The result attribute of the <addResponse> element indicates that the add request was successfully processed. The <addResponse> contains an <identifier> element that identifies the newly created object. This requestor will need this value for any subsequent operation on the newly created object. 

	<addResponse result=“urn:oasis:names:tc:SPML:2:0#success">


<pso>



<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>




<email>joebob@example.com</email>



</Person>



<id ID=”2244”><target>target2</target></id>


</pso>

</addResponse>


Next, the requestor asks a provider to add a new account.  The requestor specifies a name for the account.  The requestor also specifies references to a Group that resides on target1 and to a Person (from the first example in this section) that resides on target2.

	<addRequest>


<container><target>target1</target></container>


<parameters>



<Account accountName=”joebob”/>


</parameters>


<reference name="memberOf">



<identifier ID="group1">




<target>target1</target>



</identifier>


</reference>


<reference name="owner">



<identifier ID="2244">




<target>target2</target>



</identifier>


</reference>

</addRequest>


The provider returns an <addResponse> element.  The result attribute of the <addResponse> element indicates that the add operation was successfully processed. The <addResponse> contains an <identifier> element that identifies the newly created object. This requestor will need this value for any subsequent operation on the newly created object. 

	<addResponse result = “urn:oasis:names:tc:SPML:2:0#success">


<pso>



<Account accountName=”joebob”/>



<id ID=”1431”><target>target1</target></id>



<capabilityParameter>




<reference name="memberOf">





<identifier ID="group1">






<target>target1</target>





</identifier>




</reference>




<reference name="owner">





<identifier ID="2244">






<target>target2</target>





</identifier>




</reference>



</capabilityParameter>


</pso>

</addResponse>


3.4.1.3 lookup

	
<complexType name="PSOType">



<complexContent>




<extension base="spml:ExtensibleType">






<sequence>






 <element name="id" type="spml:PSOIdentifierType" minOccurs="0"/>






<element name="capabilityParameter" type="spml:CapabilityParameterType" minOccurs="0" maxOccurs="unbounded"/>





</sequence>




</extension>



</complexContent>






</complexType>



<complexType name="LookupRequestType">



<complexContent>




<extension base="spml:SpmlRequestType">





<sequence>






<element name="identifier" type="spml:PSOIdentifierType"/>





</sequence>




</extension>



</complexContent>


</complexType>


<complexType name="LookupResponseType">



<complexContent>




<extension base="spml:SpmlResponseType">





<sequence>






<element name="pso" type="spml:PSOType" minOccurs="0"/>





</sequence>




</extension>



</complexContent>


</complexType>


<element name="lookupRequest" type="spml:LookupRequestType"/>


<element name="lookupResponse" type="spml:LookupResponseType"/>




3.4.1.3.1 Request (normative)

A requestor MUST send a <lookupRequest> to a provider in order to (ask the provider to) return (the XML that represents) an existing object.

Execution. A requestor MAY specify a type of execution for a lookup operation. See Determining execution type. 

In general, a provider SHOULD NOT specify “execution=’asynchronous’”. The reason for this is that the result of a lookup should reflect the current state of a target object. If a lookup operation is executed asynchronously then other operations are more likely to intervene.

Identifier. A requestor MUST supply an <identifier> sub-element that specifies the object to be returned.  The content of <identifier> MUST specify an existing object on the target.
3.4.1.3.2 Response (normative)

A provider that receives a <lookupRequest> from a requestor that the provider trusts MUST examine the content of the <lookupRequest>.  If the request is valid, the provider MUST create the requested object under the specified parent if it is possible to do so.  

Execution.  If an <lookupRequest> does not have an execution attribute, the provider MUST choose a type of execution for the requested operation. See the section entitled “Determining execution type”.

A provider SHOULD execute a lookup operation synchronously if it is possible to do so. The reason for this is that the result of a lookup should reflect the current state of a target object. If a lookup operation is executed asynchronously then other operations are more likely to intervene.

Response. The provider must return to the requestor a <lookupResponse>. 

Result. The <lookupResponse> must contain a result attribute that indicates whether the provider successfully returned the requested object.  See ResultCode for values of this attribute.

pso. If the provider successfully returned the requested object, the <lookupResponse> must contain a <pso> element that contains the XML representation of the requested object. 

Capability-specific data. If a provider successfully returns a requested object, the <lookupResponse> MUST include any capability-specific data if the schema for the target declares that it supports the capability for the schema entity of which the requested object is an instance.

Error. If the provider cannot return the requested object, the <lookupResponse> must contain an error attribute that characterizes the failure.  See ErrorCode for values of this attribute. 

The provider MUST return an error if any of the following is true:
- the <identifier> sub-element is absent.
- the <identifier> sub-element does not specify a object that exists on the target.

The provider MAY return an error if:
- the <identifier> sub-element contains data that the provider does not recognize.

3.4.1.3.3 Examples (non-normative)

In the following example, a requestor asks a provider to return the person object from the add examples above.  The requestor specifies the identifier for the person object.

	<lookupRequest>


<identifier ID=”2244”>



<target>target2</target>


</identifier>

</lookupRequest>


The provider returns an <lookupResponse> element.  The result attribute of the <lookupResponse> element indicates that the lookup request was successfully processed. The <lookupResponse> contains a <pso> element that contains the requested object. 

The <pso> element contains an <id> element that contains the PSOIdentifier.  

	<lookupResponse result=“urn:oasis:names:tc:SPML:2:0#success">


<pso>



<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>




<email>joebob@example.com</email>



</Person>



<id ID=”2244”><target>target2</target></id>


</pso>

</lookupResponse>


Next, the requestor asks a provider to return the account object from the add examples above.  The requestor specifies an identifier for the account object.  

	<lookupRequest>


<identifier ID="1431">



<target>target1</target>


</identifier>

</lookupRequest>


The provider returns a <lookupResponse> element.  The result attribute of the <lookupResponse> element indicates that the add request was successfully processed. The <lookupResponse> contains a <pso> element that contains the requested object. 

The <pso> element contains an <id> element that contains the PSOIdentifier.  In this example, the <pso> element also contains two reference elements. The lookup operation automatically includes capability-specific data (such as these two reference elements) if the schema for the target declares that it supports the reference capability (for the schema entity of which the requested object is an instance).

	<lookupResponse result = “urn:oasis:names:tc:SPML:2:0#success">


<pso>



<Account accountName=”joebob”/>



<id ID=”1431”><target>target1</target></id>



<capabilityParameter>




<reference name="memberOf">





<identifier ID="group1">






<target>target1</target>





</identifier>




</reference>




<reference name="owner">





<identifier ID="2244">






<target>target2</target>





</identifier>




</reference>



</capabilityParameter>


</pso>

</lookupResponse>


3.4.1.4 modify

	
<simpleType name="ChangeType">



<restriction base="string">




<enumeration value="add"/>




<enumeration value="replace"/>




<enumeration value="delete"/>



</restriction>


</simpleType>


<complexType name="ModificationType">



<complexContent>




<extension base="spml:ExtensibleType">






<sequence>






<element name="component" type="spml:IdentifierType" minOccurs="0"/>






<element name="capabilityParameter" type="spml:CapabilityParameterType" minOccurs="0" maxOccurs="unbounded"/>





</sequence>





<attribute name="modificationType" type="spml:ChangeType" use="required"/>




</extension>



</complexContent>


</complexType>


<complexType name="ModifyRequestType">



<complexContent>




<extension base="spml:BatchableRequestType">





<sequence>






<element name="identifier" type="spml:PSOIdentifierType"/>






<element name="modification" type="spml:ModificationType"/>





</sequence>




</extension>



</complexContent>


</complexType>


<complexType name="ModifyResponseType">



<complexContent>




<extension base="spml:SpmlResponseType"/>



</complexContent>


</complexType>


<element name="modifyRequest" type="spml:ModifyRequestType"/>


<element name="modifyResponse" type="spml:ModifyResponseType"/>




3.4.1.4.1 Request (normative)

A requestor MUST send a <modifyRequest> to a provider in order to (ask the provider to) modify an existing object. 

Execution. A requestor MAY specify a type of execution for a modify operation. See Determining execution type.

Identifier. A <modifyRequest> MUST contain exactly one <identifier> element. An <identifier> element MUST contain a valid PSOIdentifier for an object that exists on a target that is exposed by the provider. 

Modification. A <modifyRequest> MUST contain exactly one <modification> element.  A <modification> element describes a set of changes to be applied (to the object that the <identifier> element specifies).  A <modification> element MUST have a “modificationType” attribute that specifies the type of change as one of add, modify or delete. 

A requestor MAY specify a change to a schema-defined element or attribute of the object to be modified. A requestor MAY specify any number of changes to capability-specific data associated with the object to be modified. 

A requestor MUST use a <component> element to specify a schema-defined element or attribute of the object to be modified. A requestor MUST use a <capabilityParameter> element to describe each change to a capability-specific data element that is associated with the object to be modified. 

Each <modification> element MUST contain a <component> element or (it MUST contain) at least one <capabilityParameter> element. A <modification> element MAY contain both a <component> element and one or more <capabilityParameter> elements. 

Modification component. The <component> sub-element of a <modification> specifies a schema-defined element or attribute of the object that is to be modified. 
- In the DSML profile, a <component> element MUST contain an expression that specifies a DSML attribute that is valid (according to the schema of the target) for the type of object that is to be modified. [Ed. Rework this to say “the DSML Binding for SPMLv2”.]
- In the XML Schema profile, a <component> element MUST contain an XPath expression that specifies an element or an attribute that is valid (according to the schema of the target) for the type of object that is to be modified.

Modification component value. A requestor must specify as the open content of the <modification> element any value that is to be added to, replaced within, or deleted from the element or attribute that the <component> element specifies.

· In the DSML profile, each attribute contains a set of values. A requestor that specifies a <component> element MUST specify a value that is to be added to, replaced within, or deleted from (the set of values that is associated with) the attribute that the <component> element specifies.

· In the XML Schema profile, a requestor that specifies a <component> element within a <modification> element with “modificationType=’add’” or (within a <modification> element with) “modificationType=’modify’” MUST specify a value that is to replace the element or attribute that the (XPath expression that is the value of the) <component> element specifies. 

· If the <component> element (XPath expression) specifies an XML element, then the value (that is the open content of the <modification> element) MUST be one or more XML elements that are valid (according to the schema of the target) for the element that the <component> element specifies. 

· If the <component> element (XPath expression) specifies an XML attribute, then the value MUST be valid (according to the schema of the target) for the attribute that the <component> element specifies.

· In the XML Schema profile, a requestor that specifies a <component> element within a <modification> element with “modificationType=’delete’” MUST NOT specify a value. The (XPath expression that is the value of the) <component> element MUST specify the set of elements or (MUST specify) the attribute that the provider should delete. 

· If the <component> element (XPath expression) specifies an XML element, then the value must be one or more XML elements that are valid (according to the schema of the target) for the element that the <component> element specifies. 

· If the <component> element (XPath expression) specifies an XML attribute, then the specified attribute MUST be optional (according to the schema of the target) for the object to be modified.

Modification capabilityParameter. A requestor MAY specify any number of <capabilityParameter> elements within a <modification> element. Each <capabilityParameter> element specifies capability-specific data (for example, references to another object) for the object to be modified. Because it is an ExtensibleType, a <capabilityParameter> element may validly contain any XML element or attribute.  The <capabilityParameter> element SHOULD contain elements that the provider will recognize as specific to a capability that the target supports for the object that is to be modified.

[Ed. Do we need more detail wrt DSML profile vs. XML Schema profile?]

3.4.1.4.2 Response (normative)

A provider that receives a <modifyRequest> from a requestor that the provider trusts MUST examine the content of the <modifyRequest>.  If the request is valid, the provider MUST apply each requested <modification> (to the object that is specified by the <identifier> corresponding to that <modification>) if it is possible to do so.  

Execution.  If an <lookupRequest> does not have an execution attribute, the provider MUST choose a type of execution for the requested operation. See the section entitled “Determining execution type”.

Response. The provider must return to the requestor a <modifyResponse>.  The <modifyResponse> must have a result attribute that indicates whether the provider successfully applied the requested modifications to each identified object.  See ResultCode for values of this attribute.

Error. If the provider cannot create the requested object, the <addResponse> must contain an error attribute that characterizes the failure.  See ErrorCode for values of this attribute. 

The provider MUST return an error if any of the following is true:
- The <modifyRequest> contains a <modification> for which there is no corresponding <identifier>.
- A <modification> contains neither a <component> nor a <capabilityParameter>.
- A <component> is empty (that is, a component element has no content).
- A <component> specifies an element or attribute that is not valid (according to the schema of the target) for the type of object to be modified.

The provider MAY return an error if:
- A <component> contains data that the provider does not recognize as specifying an XML element or attribute that is valid according to the target schema for the type of object to be modified.
- A <capabilityParameter> contains data that the provider does not recognize as capability-specific data (i.e., one or more XML elements that correspond to a capability that the target supports for the type of object to be modified).

3.4.1.4.3 Examples (non-normative)

In the following example, a requestor asks a provider to modify the email address for an existing Person object. 

	<modifyRequest>


<identifier ID=”2244”><target>target2</target></identifier>


<modification modificationType=”replace”>



<component>email</component>



joebob@example.com


</modification>

</modifyRequest>


The provider returns a <modifyResponse> element.  The result attribute of the <modifyResponse> element indicates that the modify request was successfully processed. The <modifyResponse> contains the <identifier> of the modified object just in case the operation changed the PSO-ID of the modified object.

[Ed. Since a modifyRequest can change the PSO-ID, we should probably mention this, and show an example of a modificationResponse returning the new PSO-ID.]

	<modifyResponse result = “urn:oasis:names:tc:SPML:2:0#success">


<identifier ID="2244"><target>target2</target></identifier>

</modifyResponse>


In the following example, a requestor asks a provider to modify an existing account.  The requestor wants to change the email address for the account.  The requestor also wants to remove the “owner” of the account.  NOTE:  The logic required to modify a reference may depend on the cardinality that is defined for that type of reference.  See Reference Capability below.

	<modifyRequest>


<identifier ID=”1431”><target>target1</target></identifier>


<modification modificationType=”delete”>



<capabilityParameter>




<reference name="owner" /> 



</capabilityParameter>


</modification>

</modifyRequest>


The provider returns a <modifyResponse> element.  The result attribute of the <modifyResponse> element indicates that the modify request was successfully processed. The <modifyResponse> contains the <identifier> of the modified object just in case the operation changed the PSO-ID of the modified object.

	<modifyResponse result = “urn:oasis:names:tc:SPML:2:0#success">


<identifier ID="1431"><target>target1</target></identifier>

</modifyResponse>


[Ed. I did the easiest one. Need examples of adding & replacing a reference.]

[Ed. Should we show examples of modifying references where the cardinality assumptions differ?  Can one specify cardinality for a reference? If so, how?]

3.4.1.5 delete

	
<complexType name="DeleteRequestType">



<complexContent>




<extension base="spml:BatchableRequestType">





<sequence>






<element name="identifier" type="spml:PSOIdentifierType"/>





</sequence>




</extension>



</complexContent>


</complexType>


<complexType name="DeleteResponseType">



<complexContent>




<extension base="spml:SpmlResponseType"/>



</complexContent>


</complexType>


<element name="deleteRequest" type="spml:DeleteRequestType"/>


<element name="deleteResponse" type="spml:DeleteResponseType"/>




3.4.1.5.1 Request (normative)

A requestor MUST send a <deleteRequest> to a provider in order to (ask the provider to) remove an existing object. 

Execution. A requestor MAY specify a type of execution for a delete operation. See Determining execution type.

Identifier. A <deleteRequest> MUST contain an <identifier> sub-element of type PSOIdentifierType.  The provider MUST delete the object that is specified by the <identifier> sub-element.
Capability-specific data. A <deleteRequest> MAY contain any number of <capabilityParameter> elements. The reason for this is that DeleteRequestType extends BatchableRequestType.  Because we want deleteRequests to be batchable, and because other batchable requests (such as addRequest and modifyRequest) must be able to contain capability-specific data, it is syntactically valid for a deleteRequest to contain capability-specific data.

A <deleteRequest> SHOULD NOT contain a <capabilityParameter> element.  The reason for this is that capability-specific data are meaningless to a delete operation.

3.4.1.5.2 Response (normative)

A provider that receives a <deleteRequest> from a requestor that the provider trusts MUST examine the content of the request.  If the request is valid, the provider MUST delete the object (that is specified by the identifier sub-element of the <deleteRequest>) if it is possible to do so.

Execution.  If an <deleteRequest> does not have an execution attribute, the provider MUST choose a type of execution for the requested operation. See the section entitled “Determining execution type”.

Response. The provider must return to the requestor a <deleteResponse>.  

Result. A <deleteResponse> must contain a result attribute that indicates whether the provider successfully deleted the specified object.  See ResultCode for values of this attribute.

Error. If the provider cannot delete the specified object, the <addResponse> must contain an error attribute that characterizes the failure.  See ErrorCode for values of this attribute. 

The provider MUST return an error if any of the following is true:
- the <identifier> sub-element of the <deleteRequest> is empty (that is, the identifier element has no content).  In this case, the <deleteResponse> SHOULD specify “error=’noSuchIdentifier’”.
- the <identifier> sub-element of the <deleteRequest> contains invalid data.  In this case the provider SHOULD return “error=’unsupportedIdentifierType’”.
- the <identifier> sub-element of the <deleteRequest> does not specify an object that exists.  In this case the <deleteResponse> MUST specify “error=’noSuchIdentifier’”.

The provider MAY return an error if any of the following is true:
- the <deleteRequest> contains a <capabilityParameter> 
- the <deleteRequest> contains a <capabilityParameter> that contains data.  

If a provider returns an error because a <deleteRequest> contains a <capabilityParameter>, then the <deleteResponse> SHOULD specify “error=’malformedRequest’”.
Since capability-specific data are irrelevant to a delete operation, a provider MAY choose to ignore any <capabilityParameter> sub-element that a <deleteRequest> element contains (rather than return an error). 
[Ed. Should we say that a provider SHOULD ignore capability-specific data in a delete request?]

3.4.1.5.3 Examples (non-normative)

In the following example, a requestor asks a provider to delete an existing Person object. 

	<deleteRequest>


<identifier ID=”2244”><target>target2</target></identifier>

</deleteRequest>


The provider returns a <deleteResponse> element.  The result attribute of the <deleteResponse> element indicates that the delete request was successfully processed. The <deleteResponse> contains no other data.

	<deleteResponse result = “urn:oasis:names:tc:SPML:2:0#success">

</deleteResponse>


3.4.2 Batch Capability

3.4.3 Async Capability

3.4.4 Search Capability

3.4.5 Password Capability

3.4.6 Suspend Capability

3.4.7 Bulk Capability

3.4.8 Reference Capability

3.5 Custom Capabilities

4 Schema

5 Security and privacy considerations (non-normative)

6 Conformance (normative)
Appendix A. Acknowledgments

Appendix B. Revision history

Appendix C. Notices

Appendix D. Glossary

Appendix E. Requirements

Appendix F. Use Cases






































































draft-pstc-spml2-core-01.doc

Page 1 of 32
Page 3 of 32
draft-pstc-spml2-core-01.doc

