1 Introduction

2 Concepts

3 Protocol

3.1 Request/Response Model

3.2 Profiles

3.3 Identifiers

3.4 Operations

3.4.1 Core Operations

3.4.2 Async Capability

3.4.3 Batch Capability

The Batch Capability is defined in a schema associated with the following XML namespace: urn:oasis:names:tc:SPML:2:0:batch

	<schema targetNamespace="urn:oasis:names:tc:SPML:2:0:batch" xmlns="http://www.w3.org/2001/XMLSchema" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:spml="urn:oasis:names:tc:SPML:2:0" xmlns:batch="urn:oasis:names:tc:SPML:2:0:batch" elementFormDefault="qualified">

<simpleType name="ProcessingType">

<restriction base="string">

<enumeration value="sequential"/>

<enumeration value="parallel"/>

</restriction>

</simpleType>

<simpleType name="OnErrorType">

<restriction base="string">

<enumeration value="resume"/>

<enumeration value="exit"/>

</restriction>

</simpleType>

<complexType name="BatchRequestType">

<complexContent>

<extension base="spml:SpmlRequestType">

<sequence>

<element name="batchableRequest" type="spml:BatchableRequestType" [minOccurs="0"] maxOccurs="unbounded"/>

</sequence>

<attribute name="processing" type="batch:ProcessingType" use="optional" default="sequential"/>

<attribute name="onError" type="batch:OnErrorType" use="optional" default="exit"/>

</extension>

</complexContent>

</complexType>

<complexType name="BatchResponseType">

<complexContent>

<extension base="spml:SpmlResponseType">

<sequence>

<element name="batchableResponse" type="spml:SpmlResponseType" [minOccurs="0"] maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>

</complexType>

<element name="batchRequest" type="batch:BatchRequestType"/>

<element name="batchResponse" type="batch:BatchResponseType"/>

</schema>

A provider that supports batch execution of requested operations for a target SHOULD declare that the target supports the Batch Capability. A provider that does not support batch execution of requested operations MUST NOT declare that the target supports the Batch Capability.

The Batch Capability defines one operation: batch.

3.4.3.1 batch

The batch operation combines any number of individual requests into a single request.

A batch is not a logical unit of work. Using a batch operation to combine individual requests does not imply atomicity (i.e., “all-or-nothing” semantics) for the group of batched requests. The failure of a nested request will not undo a nested request that has already completed.

BatchableRequestType. The core schema defines BatchableRequestType as the base type for any SPML request that a requestor may group into a batchRequest. The request types for ‘add’, ‘modify’ and ‘delete’ all extend BatchableRequestType. A custom capability may also define an operation whose request type extends BatchableRequestType.

Positional correspondence. The provider’s <batchResponse> contains an individual response for each individual request that the requestor’s <batchRequest> contained. Each individual response occupies the same position within the <batchResponse> that the corresponding individual request occupied within the <batchRequest>.

Processing Types. A requestor can specify whether the provider executes the individual requests one-by-one in the order that they occur within a <batchRequest>. The “processing” attribute of a <batchRequest> controls this behavior.

· When a <batchRequest> specifies “processing=’sequential’”, the provider must execute each requested operation one at a time and in the exact order that it occurs within the <batchRequest>.

· When a <batchRequest> specifies “processing=’parallel’”, the provider may execute the requested operations within the <batchRequest> in any order.

Individual errors. A requestor can specify whether the provider quits at the first error it encounters (in processing individual requests within a <batchRequest>) or continues despite any number of errors. The “onError” attribute of a <batchRequest> controls this behavior.

· When a <batchRequest> specifies “onError=’exit’”, the first error that a provider encounters (in processing individual operations within that batch) results in the termination of processing for the entire batch and all of the requests that did not get processes are marked as failed. When used with the processing attribute, onError provides the RA with the ability to guarantee execution order and pre-requisite processing in batch operations.

· When a <batchRequest> specifies “onError=’resume’”, the provider errors encountered processing individual operations within that batch are handles by the PSP and do not effect the attempted execution of the remaining operations in the batch. It is the responsibility of the PSP to maintain the positional correspondence of the individual operations and provide appropriate error reporting as described in section 7.3.6.

Overall error. When a requestor issues a <batchRequest> with “onError=’resume’” and one or more of the requests in that batch fails, then the provider will return a <batchResponse> with “result=’failure’” (even if some of the requests in that batch succeed). The requestor must examine every individual response within the overall <batchResponse> to determine which requests succeeded and which requests failed.

3.4.3.1.1 Request (normative)

A requestor MUST send a <batchRequest> to a provider in order to (ask the provider to) execute multiple requests as a set.

batchableRequest. A <batchRequest> MAY contain any number of <batchableRequest> elements.
[Ed. Shouldn’t BatchRequestType require at least one batchableRequest?]
processing. A requestor MAY specify a “processing” attribute in a batchRequest. If a requestor specifies a “processing” attribute, the value of the “processing” attribute must be one of the following: ‘sequential’ or ‘parallel’.

· A requestor who wants the provider to process the nested requests concurrently with each other MUST specify “processing=’parallel’”.

· A requestor who wants the provider to process the nested requests one-by-one and in the order that they appear MAY specify “processing=’sequential’”.

· A requestor who does not specify “processingType” implicitly asks the provider to process the nested requests sequentially.

onError. A requestor MAY specify an “onError” attribute in a batchRequest. If a requestor specifies an “onError” attribute, the value of the “onError” attribute must be one of the following: ‘exit’ or ‘resume’.

· A requestor who wants the provider to continue processing nested requests whenever processing one of the nested requests results in an error MUST specify “onError=’resume’”.

· A requestor who wants the provider to cease processing nested requests as soon as processing any of the nested requests results in an error MAY specify “onError=’exit’”.

· A requestor who does not specify an “onError” attribute implicitly asks the provider to cease processing nested requests as soon as processing any of the nested requests results in an error.

3.4.3.1.2 Response (normative)

The provider must examine the content of the <batchRequest>. If the request is valid, the provider MUST process each nested request (according to the effective “processing” and “onError” settings) if the provider possibly can.

processing. If a <batchRequest> specifies “processing=’parallel’”, the provider SHOULD begin executing each of the nested requests as soon as possible. (Ideally, the provider would begin executing all of the nested requests immediately and concurrently.) If the provider cannot begin executing all of the nested requests at the same time, then the provider SHOULD begin executing as many as possible of the nested requests as soon as possible.

If a <batchRequest> specifies “processing=’sequential’”, the provider MUST execute each of the nested requests one-by-one and in the order that each appears within the <batchRequest>. The provider MUST complete execution of each nested request before the provider begins to execute the next nested request.

onError. The effect (on the provider’s behavior) of the “onError” attribute of a <batchRequest> depends on the “processing” attribute of the <batchRequest>.

· If a <batchRequest> specifies “onError=’exit’” and (the <batchRequest> specifies) “processing=’sequential’” then the provider MUST NOT execute any (operation that is described by a) nested request that is subsequent to a nested request that produces an error.

If the provider encounters an error in executing (the operation that is described by) a nested request, the provider MUST report the error in the <batchableResponse> that corresponds to the nested request and then (the provider MUST) specify “result=’failure’” in every <batchableResponse> that corresponds to a subsequent nested request within the same <batchRequest>. The provider MUST also specify “result=’failure’” in the overall <batchResponse>.

· If a <batchRequest> specifies “onError=’exit’” and (the <batchRequest> specifies) “processing=’parallel’” then the provider’s behavior once an error occurs (in processing an operation that is described by a nested request) is not fully specified.

If the provider encounters an error in executing (the operation that is described by) a nested request, the provider MUST report the error in the <batchableResponse> that corresponds to the nested request. The provider MUST also specify “result=’failure’” in the overall <batchResponse>. However, the provider’s behavior with respect to any operation that is not yet complete is not fully specified.

The provider MAY stop executing any (operation that is described by a) nested request that has not yet completed or (the provider MAY) choose to complete the execution of any (operation that corresponds to a) nested request (within the same batchRequest and) for which the provider has already begun execution. The provider SHOULD NOT begin to execute any operation (that corresponds to a nested request within the same batchRequest and) for which the provider has not yet begun execution.

· If a <batchRequest> specifies “onError=’continue’” and (the <batchRequest> specifies) “processing=’parallel’”, then the provider MUST execute every (operation that is described by a) nested request within the <batchRequest>. If the provider encounters an error in executing any (operation that is described by a) nested request, the provider MUST report the error in the nested <batchableResponse> that corresponds to the nested request and then (the provider MUST) specify “result=’failure’” in the overall <batchResponse>.

· If a <batchRequest> specifies “onError=’continue’” and (the <batchRequest> specifies) “processing=’sequential’”, then the provider MUST execute every (operation that is described by a) nested request within the <batchRequest>. If the provider encounters an error in executing any (operation that is described by a) nested request, the provider MUST report the error in the nested <batchableResponse> that corresponds to the nested request and then (the provider MUST) specify “result=’failure’” in the overall <batchResponse>.

Response. The provider MUST return to the requestor a <batchResponse>.

Result. The <batchResponse> must contain a “result” attribute that indicates whether the provider successfully processed every nested request. See ResultCode for values of this attribute.

· If the provider successfully executed every operation described by a) nested request, the <batchResponse> MUST specify “result=’success’”.

· If the provider encountered an error in processing (the operation described by) any nested request, the <batchResponse> MUST specify “result=’failure’”.

batchableResponse. The <batchResponse> MUST contain a <batchableResponse> for each <batchableRequest> that the <batchRequest> contains. Each <batchableResponse> within the <batchResponse> corresponds positionally to a <batchableRequest> within the <batchRequest>. That is, each <batchableResponse> MUST appear in the same position within the <batchResponse> that the <batchableRequest> (to which the <batchableResponse> corresponds) appeared within the <batchRequest>.

The content of each <batchableResponse> depends on whether the provider actually executed the nested operation that corresponds to the <batchableResponse>.

· Each <batchableResponse> that corresponds to a nested request that the provider did not process MUST specify “result=’failed’”. (A provider might not process a nested request, for example, if the provider encountered an error processing an earlier nested request and the requestor specified both “processing=’sequential’” and “onError=’exit’”.)

· Each <batchableResponse> that corresponds to a nested request for an operation that the provider actually executed MUST contain the same data that the provider would have returned (in the response for the corresponding operation) if the corresponding operation had been requested individually (rather than as part of a batch operation).

Error. If something (other than the behavior specified by the “onError“ setting with respect to errors that occur in processing nested requests) prevents the provider from processing one or more of the (operations described by the) nested requests within a <batchRequest>, then the <batchResponse> MUST have an “error” attribute that characterizes the failure. See ErrorCode for values of this attribute.

3.4.3.1.3 Examples (non-normative)

In the following example, a requestor asks a provider to perform a series of operations. The requestor asks the provider first to add a Person object to one target and then to add an Account object to another target. (These are the first two examples of the add operation.)

	<batchRequest processing=”sequential” onError=”exit”>

<addRequest>

<container ID=”ou=Development, org=Example”<target>target2</target></container>

<parameters>

<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>

<email>joebob@example.com</email>

</Person>

</parameters>

</addRequest>

<addRequest>

<container><target>target1</target></container>

<parameters>

<Account accountName=”joebob”/>

</parameters>

<reference name="memberOf">

<identifier ID="group1">

<target>target1</target>

</identifier>

</reference>

<reference name="owner">

<identifier ID="2244">

<target>target2</target>

</identifier>

</reference>

</addRequest>

</batchRequest>

[Ed. Does the batchRequest contain two elements named <batchableRequest>
or does the batchRequest contain two elements named <addRequest>?
If each of the elements is named <batchableRequest>,
then how does the provider know to perform an add?]

The provider returns an <batchResponse> element. The “result” of the <batchResponse> indicates that all of the nested requests were processed successfully. The <batchResponse> contains an <addResponse> for each <addRequest> that the <batchRequest> contained. Each <addResponse> contains the same data that it would have contained if the corresponding <addRequest> had been requested individually.

[Ed. Does the batchResponse contain two elements named <batchableResponse>
or does the batchResponse contain two elements named <addResponse>?]

	<batchResponse result=“urn:oasis:names:tc:SPML:2:0#success">

<addResponse result=“urn:oasis:names:tc:SPML:2:0#success">

<pso>

<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>

<email>joebob@example.com</email>

</Person>

<id ID=”2244”><target>target2</target></id>

</pso>

</addResponse>

<addResponse result = “urn:oasis:names:tc:SPML:2:0#success">

<pso>

<Account accountName=”joebob”/>

<id ID=”1431”><target>target1</target></id>

<capabilityParameter>

<reference name="memberOf">

<identifier ID="group1">

<target>target1</target>

</identifier>

</reference>

<reference name="owner">

<identifier ID="2244">

<target>target2</target>

</identifier>

</reference>

</capabilityParameter>

</pso>

</addResponse>

</batchResponse>

3.4.4 Bulk Capability

Schema syntax for SPML version 2 password management operations is defined in a schema associated with the following XML namespace:

urn:oasis:names:tc:SPML:2:0:bulk

3.4.5 Password Capability

Schema syntax for SPML version 2 password management operations is defined in a schema associated with the following XML namespace:

urn:oasis:names:tc:SPML:2:0:passwd

3.4.6 Reference Capability

3.4.7 Search Capability

3.4.8 Suspend Capability

3.5 Custom Capabilities

4 Schema

5 Security and privacy considerations (non-normative)

6 Conformance (normative)

draft-pstc-spml2-core-01.doc

Page 1 of 97
Page 8 of 97
draft-pstc-spml2-core-01.doc

