1 Introduction

2 Concepts

3 Protocol

3.1 Request/Response Model

3.2 Identifiers

3.3 Selection

3.4 Transactional Semantics

3.5 Operations

3.5.1 Core Operations

3.5.2 Async Capability

3.5.3 Batch Capability

3.5.4 Bulk Capability

3.5.5 Password Capability

3.5.6 Reference Capability

The Reference Capability is defined in a schema that is associated with the following XML namespace: urn:oasis:names:tc:SPML:2:0:reference. This document includes the Reference Capability Schema as Appendix F.

	
<complexType name="ReferenceType">

<complexContent>

<extension base="spml:CapabilityDataType">

<sequence>

<element name="toPsoId" type="spml:PSOIdentifierType"/>

<element name="referenceData" type="spml:ExtensibleType"/>

</sequence>

<attribute name="typeOfReference" type="string" use="required"/>

</extension>

</complexContent>

</complexType>

<complexType name="ReferenceDefinitionType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="schemaEntity" type="spml:SchemaEntityRefType"/>

<element name="canReferTo" type="spml:SchemaEntityRefType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="typeOfReference" type="string" use="required"/>

</extension>

</complexContent>

</complexType>

<element name="reference" type="spmlref:ReferenceType"/>

<element name="referenceDefinition" type="spmlref:ReferenceDefinitionType"/>

The Reference Capability defines no operation. Instead, the Reference Capability allows a provider to declare, as part of the schema for a target, which types of objects support references to which other types of objects. These reference data flow through the core operations as capability-specific data.

· In order to create an object with references, a requestor specifies capability-specific data to the core ‘add’ operation.

· In order to add, remove or replace references to an object, a requestor specifies capability-specific data to the core ‘modify’ operation.

· In order to obtain references for an object, a requestor examines capability-specific data returned as output by the core ‘add’, ‘lookup’ and ‘search’ operations.

Motivation. The PSTC felt that defining a standard capability for references was important for several reasons.

· Managing references to other objects can be a very important part of managing objects.

· Object references to other objects present a scalability problem.

· Object references to other objects present an integrity problem.

Provisioning systems must often list, create, and delete connections between objects
in order to manage the objects themselves. In some cases, a provisioning system
must manage data that is part a specific connection (e.g., in order to specify
the expiration of a user’s membership in a group) – see the discussion of “Reference Data” below. Because connections to other objects can be very important, the PSTC felt it was important to be able to represent such connections generically.

The reference capability enables a requestor to manage an object’s references independent of the object’s schema. This is particularly important in the cases where a provider allows references to span targets. For example, a provisioning system must often maintain knowledge about which Persons own which accounts. In such cases, an Account object (that is contained by one target) may refer to a Person object (that is contained by another target) as its owner.

Scale is another significant aspect of references. The number of connections between objects may be an order of magnitude more than the number of objects themselves. Unconditionally including reference information in the XML representation of each object could greatly increase the size of that object’s XML representation. Imagine, for example, that each Account may refer to multiple Groups (or that a Group may refer to each of its members).

Defining reference as an optional capability (and allowing references to be omitted from each object’s schema) does two things. First, this allows a requestor to exclude an object’s references from the XML representation of each object (since a requestor can control which capability-specific data are included). Second, this allows providers to manage references separately from schema-defined attributes (which may help a provider cope with the scale of connections).

The ability to manage references separately from schema-defined data may also help providers to maintain the integrity of references. In the systems and applications that underly many provisioning target, deleting an object A may not delete another object B’s reference to object A. Allowing a provider to manage references separately allows the provider to control such behavior (and perhaps even to prevent the deletion of object A when another object B still refers to object A).

3.5.6.1 Reference Definitions

Reference Definitions. A provider declares each type of reference that a particular target supports (or declares each type of reference that a particular supported schema entity on a target supports) as an instance of reference definition.

A provider’s <listTargetsResponse> contains a list of targets that the provider exposes for provisioning. Part of each target declaration is the set of capabilities that the target supports. Each capability refers (by means of its “namespaceURI” attribute) to a specific capability. Any <capability> element that refers to the Reference Capability MAY contain (as open content) any number of reference definitions.

Each reference definition names a specific type of reference and also specifies:

· which schema entity (on the target that contains the capability element that contains the reference definition) can refer

· to which schema entity (on which target).

For normative specifics, see the “Reference Capability declarations” topic within the listTargets section.

Overlap. Any number of reference definitions may declare different “from- and to-” entity pairs for the same type of reference. For example, a reference definition may declare that an Account may refer to a Person as its “owner”. Another reference definition may declare that an OrganizationalUnit may refer to a Person as its “owner”. SPMLv2 specifies the mechanism--but does not define the semantics--of reference.

Direction. Each reference definition names a specific type of reference and specifies which schema entity (on which target?) can refer to which schema entity (on which target?). Any number of reference definitions may define “from- and to-” entity pairs for the same type of reference.

No Inverse. A standard SPMLv2 reference definition specifies nothing about an inverse relationship. For example, a reference definition that says an Account may refer to a Person as its “owner” does NOT imply that a Person may refer to Account.

Nothing prevents a provider from declaring (by means of a reference definition) that Person may refer to Account in a type of reference called “owns”, but nothing (at the level of this specification) associates these two types of references to say that “owns” is the inverse of “owner”.

No Cardinality. A reference definition specifies no restrictions on the number of objects to which an object may refer (by means of that defined type of reference). Thus, for example, an Account may refer to multiple Persons as its “owner”. This may be logically incorrect, or this may not be the desired behavior, but SPMLv2 does not require a provider to support restrictions on the cardinality of a particular type of reference.

In general, a requestor must assume that each defined type of reference is optional and many-to-many. This is particularly relevant when a requestor wishes to modify references. A requestor SHOULD NOT assume that a reference that the requestor wishes to modify is the object’s only reference of that type. A requestor also SHOULD NOT assume that a reference from one object to another object that the requestor wishes to modify is the only reference between the two objects. Although this may seem perverse, SPMLv2 allows one object “A” to have more than one reference of the same type to the same object “B”.

3.5.6.2 References

Reference Data. SPMLv2 allows each reference (i.e., each instance of ReferenceType) to contain additional reference data. Most references between objects require no additional data, but this supports cases in which a reference from one object to another may carry additional information “on the arrow” of the relationship. For example, a RACF user’s membership in a particular RACF group carries with it the additional information of whether that user has the ADMINISTRATOR or SPECIAL privilege within that group. Several other forms of group membership carry with them additional information about the member’s expiration. See the section entitled “Complex References” below.

Search. A requestor can search for objects based on reference values only if the provider represents each named type of reference (as an element or attribute) in the schema for a target. For example, a provider could represent a type of reference from Account to Person that is named “owner” as a single-valued attribute of Account. A provider could also represent the inverse relationship (e.g., “owns”) as a multi-valued attribute of Person.

A provider MAY represent reference relationships in the schema for a target, but (a provider) is not required to do so.

· A provider that wishes to allow requestors to search for objects based on reference values MUST represent each named type of reference (as an element or attribute) in the schema for a target.

· A provider that does not wish to allow requestors to search for objects based on reference values MUST NOT represent each named type of reference (as an element or attribute) in the schema for a target.

[Ed. Jeff Bohren is changing the XSD to support search on capability-specific data--including references.]

3.5.6.3 Complex References

The vast majority of reference types are simple: that is, one object’s reference to another object carries no additional information. However certain types of references may support additional information that is specific to a particular reference. For example, when a user is assigned to one or more Entrust GetAccess Roles, each role assignment has a start date and an end date. We describe a reference that contains additional data (that is specific to the reference) as “complex”.

RACF Group Membership is another example of a complex type of reference. Each RACF group membership carries with it additional data about whether the user has the SPECIAL, AUDITOR, or OPERATIONS privileges in that group.

· Group-SPECIAL
gives a group administrator control over all profiles within the group

· Group-AUDITOR
allows a user to monitor the use of the group's resources

· Group-OPERATIONS
allows a user to perform maintenance operations
on the group's resources
For purposes of this example, let us represent these three group-specific privileges as attributes of an XML type called “RacfGroupMembershipType”. Suppose that the XML Schema for such a type looks like the following:

	
<complexType name="RacfGroupMembershipType">

<complexContent>

<extension base="spml:ExtensibleType">

<attribute name="special" type="xsd:boolean" use="optional" default="false"/>

<attribute name="auditor" type="xsd:boolean" use="optional" default="false"/>

<attribute name="operations" type="xsd:boolean" use="optional" default="false"/>

</extension>

</complexContent>

</complexType>

<element name="racfGroupMembership" type="RacfGroupMembershipType"/>

[Ed. How does the provider declare the structure of complex reference data?
Is this only by prearrangement, or can the reference definition somehow declare this?

For example, could the reference definition refer to a schema entity?
Could the reference definition contain the XML schema declaration
(for the reference data structure appropriate to that type of reference?)]

Manipulating Reference Data. The only way to manipulate the reference data associated with a complex reference is by using the modify operation that is part of the Core schema. A requestor may add, replace or delete any capability-specific data that is associated with an object.

Capabilities Do Not Apply. SPML specifies no way to apply a capability-specific operation to a reference. Thus, for example, one can neither suspend nor resume a reference. This is because even a reference is not a provisioning service object. A reference is instead capability-specific data that is associated with an object.

You can think of a reference (or any item of capability-specific data) that is associated with an object as an “extra” attribute or as a sub-element of the object. The provider supports each “extra” (attribute or sub-element) data independent of the schema of the target that contains the object. The provider keeps all <capabilityData> separate from the regular schema-defined <data> within each <pso>.

Workaround: Relationship Objects. The limitation in SPML (that capabilities cannot apply to references) does not prevent a provider from offering this kind of rich function. There is an elegant way to represent a complex relationship that allows a requestor to operate directly on the relationship itself. A provider may model a complex relationship between two objects as a third object that refers to each of the first two objects.

This approach is analogous to a “linking record” in relational database design. In the “linking record” approach, the designer “normalizes” reference relationships into a separate table. Each row in a third table connects a row from one table to a row in another table. This approach allows each relationship to carry additional information that is specific to that relationship. Data specific to each reference are stored in the columns of the third table. Even when relationships do not need to carry additional information, this approach is often used when two objects may be connected by more than one instance of the same type of relationship, or when relationships are frequently added or deleted and referential integrity must be maintained.

Rather than have an object A refer to an object B directly, a third object C refers to object A and to object B. Since object C represents the relationship itself, object C refers to object A as its “fromObject” and object C refers to object B as its “toObject”.

A provider that wants to treat each instance of a (specific type of) relationship as an object does so by defining a schema entity to contain the additional information (specific to that type of relationship) in the schema for a target. The provider then declares two types of references that apply to that schema entity: a “fromObject” type of reference and a “toObject” type of reference. The provider may also declare that certain capabilities apply to that schema entity. This model allows a requestor to operate conveniently on each instance of a complex relationship.

For example, suppose that a provider models as a schema entity a type of relationship that has an effective date and has an expiration date. As a convenience to requestors, the provider might declare that this schema entity (that is, the “linking” entity) supports the Suspend Capability. The ‘suspend’ and ‘resume’ operations could manipulate the expiration date and the effective date without the requestor having to understand the structure of that schema entity. This convenience could be very valuable where the attribute values or element content that are manipulated have complex syntax, special semantics or implicit relationships with other elements or attributes.

The following example shows how a provider’s listTargetsResponse might reflect this approach. The sample schema for the “RACF” target is very simple (for the sake of brevity).

	<listTargetsResponse status=“success">

<target targetID=”RacfGroupMembershipIndependentRelationshipObject”>

<schema>

<xsd:schema targetNamespace="urn:example:schema:RACF" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:spml="urn:oasis:names:tc:SPML:2:0" elementFormDefault="qualified">

<complexType name="RacfUserProfile">

<attribute name="userid" type="string" use="required"/>

</complexType>

<complexType name="RacfGroupProfile">

<attribute name="groupName" type="string" use="required"/>

</complexType>

<complexType name="RacfGroupMembership">

<attribute name="special" type="boolean" use="optional" default=”false” />

<attribute name="auditor" type="boolean" use="optional" default=”false” />

<attribute name="operations" type="boolean" use="optional" default=”false” />

</complexType>

</xsd:schema>

<supportedSchemaEntity entityName=”RacfUserProfile”/>

<supportedSchemaEntity entityName=”RacfGroupProfile”/>

<supportedSchemaEntity entityName=”RacfGroupMembership”>

<annotation>

<documentation> Each instance of RacfGroupMembership refers to one instance of RacfUserProfile and to one instance of RacfGroupProfile.</documentation>

</annotation>

</supportedSchemaEntity>

</schema>

<capabilities>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:bulk”/>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:search”/>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:password”>

<appliesTo entityName=”RacfUserProfile”/>

</capability>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:suspend”>

<appliesTo entityName=”RacfUserProfile”/>

<appliesTo entityName=”RacfGroupProfile”/>

</capability>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:reference”>

<appliesTo entityName=”RacfGroupMembership”/>

<referenceDefinition typeOfReference=”fromUser”/>

<schemaEntity entityName=”RacfGroupMembership”/>

<canReferTo entityName=”RacfUserProfile” />

</referenceDefinition>

<referenceDefinition typeOfReference=”toGroup”/>

<schemaEntity entityName=”RacfGroupMembership”/>

<canReferTo entityName=”RacfGroupProfile”/>

</referenceDefinition>

</capability>

</capabilities>

</target>

</listTargetsResponse>

Variations. Naturally, many variations of this approach are possible. For example, an instance of RacfUserProfile could refer to an instance of RacfGroupMembership (rather than having an instance of RacfGroupMembership refer to both RacfUserProfile and an instance of RacfGroupProfile). However, such a variation would not permit an instance of RacfUserProfile to refer to more than one group (and could result in an orphaned relationship objects unless the provider carefully guards against this).

Bound Relationship Objects. One useful variation is to bind each relationship object beneath one of the objects it connects. For example, one could bind each instance of RacfGroupMembership beneath the instance of RacfUserProfile that would otherwise be its “fromUser”. This way, deleting an instance of RacfUserProfile also deletes all of its RacfGroupMemberships. This modeling variation makes clear that the relationship belongs with the “fromObject” and helps to prevent orphaned relationship objects.

The next example illustrates this variation.

	<listTargetsResponse status=“success">

<target targetID=”RacfGroupMembershipBoundRelationshipObject”>

<schema>

<xsd:schema targetNamespace="urn:example:schema:RACF" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:spml="urn:oasis:names:tc:SPML:2:0" elementFormDefault="qualified">

<complexType name="RacfUserProfile">

<attribute name="userid" type="string" use="required"/>

</complexType>

<complexType name="RacfGroupProfile">

<attribute name="groupName" type="string" use="required"/>

</complexType>

<complexType name="RacfGroupMembership">

<attribute name="special" type="boolean" use="optional" default=”false” />

<attribute name="auditor" type="boolean" use="optional" default=”false” />

<attribute name="operations" type="boolean" use="optional" default=”false” />

</complexType>

</xsd:schema>

<supportedSchemaEntity entityName=”RacfUserProfile” isContainer=”true” />

<annotation>

<documentation> An instance of RacfUserProfile may contain any number of instances of RacfGroupMembership.</documentation>

</annotation>

</supportedSchemaEntity>

</supportedSchemaEntity>

<supportedSchemaEntity entityName=”RacfGroupProfile”/>

<supportedSchemaEntity entityName=”RacfGroupMembership”>

<annotation>

<documentation> Each instance of RacfGroupMembership refers to one instance of RacfGroupProfile.</documentation>

</annotation>

</supportedSchemaEntity>

</schema>

<capabilities>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:bulk”/>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:search”/>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:password”>

<appliesTo entityName=”RacfUserProfile”/>

</capability>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:suspend”>

<appliesTo entityName=”RacfUserProfile”/>

<appliesTo entityName=”RacfGroupProfile”/>

</capability>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:reference”>

<appliesTo entityName=”RacfGroupMembership”/>

<referenceDefinition typeOfReference=”toGroup”/>

<schemaEntity entityName=”RacfGroupMembership”/>

<canReferTo entityName=”RacfGroupProfile”/>

</referenceDefinition>

</capability>

</capabilities>

</target>

</listTargetsResponse>

draft_pstc_spmlv2.doc

Page 1 of 9
Page 8 of 8
draft_pstc_spmlv2.doc

