[image: image1.png]OASIS

OASIS Service Provisioning Markup Language (SPML) Version 2

Draft Committee Specification 0.08
2005 May 19

Document identifier: draft-pstc-SPMLv2.doc

Location: http://www.oasis-open.org/committees/provision/docs/

Send comments to: pstc-comment@lists.oasis-open.org
Editor:

Gary Cole, Sun Microsystems (Gary.P.Cole@Sun.com)

Contributors:

Jeff Bohren, BMC

Gerry Woods, SOA Software

Doron Cohen, BMC

Darran Rolls, Sun Microsystems

Gavenraj Sodhi, CA

Hal Lockhart, BEA

Jeff Larson, Sun Microsystems

Rami Elron, BMC

Gary Cole, Sun Microsystems

Ron Jacobsen, CA

Abstract:

This specification defines the concepts and operations of an XML-based provisioning request-and-response protocol.

Status:

This is a candidate Committee Specification that is undergoing a vote of the OASIS membership in pursuit of OASIS Standard status.
If you are on the provision list for committee members, send comments there. If you are not on that list, subscribe to the provision-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to provision-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

Copyright (C) OASIS Open 2005. All Rights Reserved.

Table of contents

41
Introduction

41.1
Purpose

41.2
Organization

41.3
Audience

51.4
Notation

51.4.1
Normative sections

51.4.2
Normative terms

51.4.3
Typographical conventions

61.4.4
Namespaces

72
Concepts

72.1
Domain Model

72.1.1
Requestor

82.1.2
Provider

82.1.3
Target

92.1.4
Provisioning Service Object (PSO)

92.2
Core Protocol

102.3
Profile

113
Protocol

113.1
Request/Response Model

133.1.1
Conversational flow

133.1.2
Status and Error codes

153.1.3
Synchronous and asynchronous operations

183.1.4
Individual and batch requests

193.2
Identifiers

193.2.1
RequestID (normative)

203.2.2
Target Identifier (normative)

203.2.3
PSOIdentifier (normative)

223.3
Selection

233.3.1
SelectionType in a Request (normative)

243.3.2
SelectionType processing in a Response (normative)

253.3.3
SelectionType errors in a Response (normative)

283.4
Transactional Semantics

283.5
Operations

283.5.1
Core Operations

593.5.2
Async Capability

663.5.3
Batch Capability

733.5.4
Bulk Capability

783.5.5
Password Capability

863.5.6
Reference Capability

953.5.7
Search Capability

1083.5.8
Suspend Capability

1153.6
Custom Capabilities

1164
Conformance (normative)

1164.1
Core operations and schema are mandatory

1164.2
Standard capabilities are optional

1164.3
Custom capabilities

1175
Security and privacy considerations

1175.1
Threat model

1175.1.1
Unauthorized disclosure

1175.1.2
Message Replay

1185.2
Safeguards

1185.2.1
Authentication

1185.2.2
Confidentiality

120Appendix A. Core Schema

127Appendix B. Async Capability Schema

129Appendix C. Batch Capability Schema

131Appendix D. Bulk Capability Schema

133Appendix E. Password Capability Schema

135Appendix F. Reference Capability Schema

137Appendix G. Search Capability Schema

140Appendix H. Suspend Capability Schema

142Appendix I. Document References

144Appendix J. Acknowledgments

145Appendix K. Notices

Error! Bookmark not defined.Appendix L. Requirements

146Appendix M. Revision history

1 Introduction

1.1 Purpose

This specification defines the concepts and operations of an XML-based provisioning request-and-response protocol.

1.2 Organization

The body of this specification is organized into three major sections: Concepts, Protocol and Conformance.

· The Concepts section introduces the main ideas in SPMLv2. Subsections highlight significant features that later sections will discuss in more detail.

· The Protocol section first presents an overview of protocol features and then discusses the purpose and behavior of each protocol operation. The core operations are presented in an order that permits a continuing set of examples. Subsequent sections present optional operations.

Each section that describes an operation includes:

· The relevant XML Schema

· A normative subsection that describes the request for the operation

· A normative subsection that describes the response to the operation

· A non-normative sub-section that discusses examples of the operation
· The Conformance section describes the aspects of this protocol that a requestor or provider must support in order to be considered conformant.

· A Security and privacy considerations section describes risks that an implementer of this protocol should weigh in deciding how to deploy this protocol in a specific environment.

Appendices contain additional information that supports the specification, including references to other documents.

1.3 Audience

The PSTC intends this specification to meet the needs of several audiences.

One group of readers will want to know: "What is SPML?”
A reader of this type should pay special attention to the Concepts section.

A second group of readers will want to know: "How would I use SPML?"
A reader of this type should read the Protocol section
(with special attention to the examples).

A third group of readers will want to know: "How must I implement SPML?"
A reader of this type must read the Protocol section
(with special attention to normative request and response sub-sections).

A reader who is already familiar with SPML 1.0 will want to know: “What is new in SPMLv2?”
A reader of this type should read the Concepts section thoroughly
and also read the Appendix ?? which describes changes from SPML1.0 to SPMLv2.

1.4 Notation

1.4.1 Normative sections

Normative sections of this specification are labeled as such. The title of a normative section will contain the word “normative” in parentheses, as in the following title: “Syntax (normative)”.

1.4.2 Normative terms

This specification contains schema that conforms to W3C XML Schema and contains normative text that describes the syntax and semantics of XML-encoded policy statements.
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this specification are to be interpreted as described in IETF RFC 2119 [RFC2119]
"they MUST only be used where it is actually required for interoperation or to limit behavior which has potential for causing harm (e.g., limiting retransmissions)"

These keywords are capitalized when used to unambiguously specify requirements of the protocol or application features and behavior that affect the interoperability and security of implementations. When these words are not capitalized, they are meant in their natural-language sense.

1.4.3 Typographical conventions

This specification uses the following typographical conventions in text:

	Format
	Description
	Indicates

	xmlName
	monospace font
	The name of an XML attribute, element or type.

	“attributeName”
	monospace font
surrounded by
double quotes
	An instance of an XML attribute.

	‘attributeValue’
	monospace font
surrounded by
double quotes
	A literal value (of type string).

	“attributeName=’value’”
	monospace font name
followed by equals sign and value
surrounded by
single quotes
	An instance of an XML attribute value.

Read as “a value of (value) specified for an instance of the (attributeName) attribute.”

	{XmlTypeName}
 or
{ns:XmlTypeName}
	monospace font
surrounded by
curly braces
	The name of an XML type
that is defined as part of SPMLv2.

	<xmlElement> or
<ns:xmlElement>
	monospace font
surrounded by <>
	An instance of an XML element
that is defined as part of SPMLv2.

Terms in italic bold-face are intended to have the meaning defined in the Glossary.

Listings of SPML schemas appear like this.

Example code listings appear like this.

1.4.4 Namespaces

Conventional XML namespace prefixes are used throughout the listings in this specification to stand for their respective namespaces as follows, whether or not a namespace declaration is present in the example:

· The prefix dsml: stands for the Directory Services Markup Language namespace [DSML].
· The prefix xsd: stands for the W3C XML Schema namespace [XSD].

· The prefix spml: stands for the SPMLv2 Core Schema namespace
[SPMLv2-CORE].

· The prefix spmlasync: stands for the SPMLv2 Async Capability Schema namespace. [SPMLv2-ASYNC].

· The prefix spmlbatch: stands for the SPMLv2 Batch Capability Schema namespace
[SPMLv2-BATCH].

· The prefix spmlbulk: stands for the SPMLv2 Bulk Capability Schema namespace
[SPMLv2-BULK].

· The prefix spmlpass: stands for the SPMLv2 Password Capability Schema namespace
 [SPMLv2-PASS].

· The prefix spmlref: stands for the SPMLv2 Reference Capability Schema namespace
 [SPMLv2-REF].

· The prefix spmlsearch: stands for the SPMLv2 Search Capability Schema namespace
 [SPMLv2-SEARCH].

· The prefix spmlsuspend: stands for the SPMLv2 Suspend Capability Schema namespace
 [SPMLv2-SUSPEND].

2 Concepts

SPML Version 2 (SPMLv2) builds on the concepts defined in SPML Version 1.

The basic roles of Requesting Authority (RA) and Provisioning Service Provider (PSP) are unchanged. The core protocol continues to define the basis for interoperable management of Provisioning Service Objects (PSO). However, the concept of Provisioning Service Target (PST) has taken on new importance in SPMLv2.

2.1 Domain Model
The following section describes the main conceptual elements of the SPML domain model. The Entity Relationship Diagram (ERD) in Figure 1 shows the basic relationships between these elements.

[image: image2.wmf]RA

PSP

PST

PSO

Figure 1. Domain model elements
2.1.1 Requestor

A Requesting Authority (RA) or requestor is a software component that issues well-formed SPML requests to a Provisioning Service Provider. Examples of requestors include:

· Portal applications that broker the subscription of client requests to system resources

· Service subscription interfaces within an Application Service Provider
Trust relationship. In an end-to-end integrated provisioning scenario, any component that issues an SPML request is said to be operating as a requestor. This description assumes that the requestor and its provider have established a trust relationship between them. The details of establishing and maintaining this trust relationship are beyond the scope of this specification.

2.1.2 Provider

A Provisioning Service Provider (PSP) or provider is a software component that listens for, processes, and returns the results for well-formed SPML requests from a known requestor. For example, an installation of an Identity Management system could serve as a provider.

Trust relationship. In an end-to-end integrated provisioning scenario, any component that receives and processes an SPML request is said to be operating as a provider. This description assumes that the provider and its requestor have established a trust relationship between them. The details of establishing and maintaining this trust relationship are beyond the scope of this specification.

2.1.3 Target

A Provisioning Service Target (PST) or target represents a destination or endpoint that a provider makes available for provisioning actions.

A target is not a provider. A requestor asks a provider to act upon objects that the provider manages. Each target is a container for objects that a provider manages.

A target may not be an actual endpoint. A target may represent a traditional user account source (such as a Windows NT domain or a directory service instance), or a target may represent an abstract collection of endpoints.

Every provider exposes at least one target. Each target represents a destination or endpoint (e.g., a system, application or service—or a set of systems, applications, and services) to which the provider can provision (e.g., create or modify accounts).

A target is a special, top-level object that:

· A requestor can discover from the provider
· No requestor can add, modify, delete or otherwise act upon

· May contain any number of provisioning service objects (PSO) upon which a requestor may act

· May contain a schema that defines the XML structure of the provisioning service objects (PSO) that the target may contain

· May define which schema entities the target supports

· May expose capabilities:

· That apply to every supported schema entity

· That apply only to specific schema entities
The SPMLv2 model does not restrict a provider’s targets other than to specify that:

· A provider (PSP) must uniquely identify each target that it exposes.

· A provider must uniquely identify each object (PSO) that a target contains.

· Exactly one target must contain each object (PSO) that the provider manages.

2.1.3.1 Schema

The schema for each target defines the XML structure of the objects (PSO) that the target may contain.

SPMLv2 does not specify a required format for the schema. For example, a target schema could be XML Schema [XSD] or (a target schema could be) SPML1.0 Schema [SPMLv2-Profile-DSML].

Each target schema includes a schema namespace. The schema namespace indicates (to any requestor that recognizes the schema namespace) how to interpret the schema.

A provider must present any object (to a requestor) as XML that is valid according to the schema of the target that contains the object. A requestor must accept and manipulate, as XML that is valid according to the schema of the target, any object that a target contains.

2.1.3.2 Supported Schema Entities

A target may declare that it supports only a subset of the entities (e.g., objectclasses or top-level elements) in its schema. A target that does not declare such a subset is assumed to support every entity in its schema.

A provider must implement the basic SPML operations for objects on each target that are instances of each schema entity that the target supports.

2.1.3.3 Capability

A target may also expose a set of capabilities that it supports. Each capability defines optional operations or semantics.

A capability must be either "standard" or "custom":

· The OASIS PSTC defines each standard capability in an SPML namespace.
See the section entitled “Namespaces”.

· Anyone may define a custom capability in another namespace.

A target may support a capability for all of its supported schema entities or (a target may support a capability) only for specific subset of its supported schema entities. Each capability may specify any number of supported schema entities to which it applies. A capability that does not specify a supported schema entity is assumed to apply to every schema entity that the target supports.

Optional operations. If a capability defines an optional operation and if the target supports that capability for a schema entity of which an object is an instance, then the provider must support that optional operation for that object. For example, if a target supports the Password Capability for User objects (but not for Group objects), then a requestor may ask the provider to perform the ‘resetPassword’ operation for any User object (but the provider will fail any request to ‘resetPassword’ for a Group).
2.1.4 Provisioning Service Object (PSO)
A Provisioning Service Object (PSO), sometimes simply called an object, represents a data entity or an information object on a target. For example, a provider would represent each account that the provider manages as an object.

NOTE: Within this document, the term “object” (unless otherwise qualified) refers to a PSO.

Every object is contained by exactly one target. Each object has a unique identifier (PSO-ID).
2.2 Core Protocol

SPMLv2 retains the SPML1.0 concept of a “core protocol”. The SPMLv2 core schema defines:

· Basic operations (such as ‘add’, ’modify’ and ‘delete’)

· Basic and extensible data elements

· The means to expose individual targets and optional operations
The SPMLv2 core schema also defines modal mechanisms that allow a requestor to:

· Specify that a requested operation must be executed asynchronously
(or to specify that a requested operation must be executed synchronously)

· Recognize that a provider has chosen to execute an operation asynchronously

· Obtain the status of an asynchronous request

· Cancel an asynchronous request

Conformant SPMLv2 implementations must support the core protocol, including:

· The new ‘listTargets’ operation

· The basic operations for every schema entity that a target supports
· The modal mechanisms for asynchronous operations

(For more information, see the section entitled “Conformance”).

2.3 Profile

SPMLv2 defines two “profiles” in which a requestor and provider may exchange SPML protocol:

· XML Schema as defined in the “SPMLv2 XSD Profile” [SPMLv2-Profile-XSD].
· DSMLv2 as defined in the “SPMLv2 DSMLv2 Profile” [SPMLv2-Profile-DSML].
A requestor and a provider may exchange SPML protocol in any profile to which they agree.

SPML 1.0 defined file bindings and SOAP bindings that assumed the SPML1.0 Schema for DSML [SPML-Bind]. The SPMLv2 DSMLv2 Profile provides a degree of backward compatibility with SPML 1.0. The DSMLv2 profile supports a schema model similar to that of SPML 1.0.

The DSMLv2 Profile may be more convenient for applications that access mainly targets that are LDAP or X500 directory services. The XSD Profile may be more convenient for applications that access mainly targets that are web services.

3 Protocol

The general model adopted by this protocol is that a requestor (client) asks a provider (server) to perform operations. In the simplest case, each request for an SPML operation is processed individually and is processed synchronously. The “Request/Response Model” section below presents this general model and discusses mechanisms that govern asynchronous execution. The Identifiers and Selection sections also describe aspects (of the protocol) that apply to many operations.
In order to encourage adoption of this standard, this specification minimizes the set of operations that a provider must implement. The Core Operations section discusses these required operations.

This specification also defines optional operations. Some operations are optional (rather than required) because the operations may be more difficult for a provider to implement for certain kinds of targets. Some operations are optional because the operations may apply only to specific types of objects on a target. This specification defines a set of standard capabilities, each of which groups optional operations that are functionally related. The remainder of the Operations section discusses optional operations (such as search) that are associated with SPMLv2’s standard capabilities.

The capability mechanism in SPMLv2 is open and allows an individual provider (or any third party) to define additional custom capabilities. See Custom Capabilities later in this section.

3.1 Request/Response Model

The general model adopted by this protocol is that a requestor (client) asks a provider (server) to perform an operation. A requestor asks a provider to perform an operation by sending to the provider an SPML request that describes the operation. The provider examines the request and, if the provider determines that the request is valid, the provider does whatever is necessary to implement the requested operation. The provider also returns to the requestor an SPML response that details any status or error that pertains to the request.

	
<complexType name="ExtensibleType">

<sequence>

<any namespace="##other" minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

<anyAttribute namespace="##other" processContents="lax"/>

</complexType>

<simpleType name="ExecutionModeType">

<restriction base="string">

<enumeration value="synchronous"/>

<enumeration value="asynchronous"/>

</restriction>

</simpleType>

<complexType name="CapabilityDataType">

<complexContent>

<extension base="spml:ExtensibleType">

<attribute name="mustUnderstand" type="boolean" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="RequestType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="capabilityData" type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="requestID" type="xsd:ID" use="optional"/>

<attribute name="executionMode" type="spml:ExecutionModeType" use="optional"/>

</extension>

</complexContent>

</complexType>

<simpleType name="StatusCodeType">

<restriction base="string">

<enumeration value="success"/>

<enumeration value="failure"/>

<enumeration value="pending"/>

</restriction>

</simpleType>

<simpleType name="ErrorCode">

<restriction base="string">

<enumeration value="malformedRequest"/>

<enumeration value="unsupportedOperation"/>

<enumeration value="unsupportedIdentifierType"/>

<enumeration value="noSuchIdentifier"/>

<enumeration value="customError"/>

<enumeration value="unsupportedExecutionMode"/>

<enumeration value="invalidContainment"/>

<enumeration value="unsupportedSelectionType"/>

</restriction>

</simpleType>

<simpleType name="ReturnDataType">

<restriction base="string">

<enumeration value="none"/>

<enumeration value="identifier"/>

<enumeration value="data"/>

<enumeration value="everything"/>

</restriction>

</simpleType>

<complexType name="ResponseType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="capabilityData" type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded"/>

<element name="errorMessage" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="status" type="spml:StatusCodeType" use="required"/>

<attribute name="requestID" type="xsd:ID" use="optional"/>

<attribute name="error" type="spml:ErrorCode" use="optional"/>

</extension>

</complexContent>

</complexType>

The following subsections describe aspects of this request/response model in more detail:

· the exchange of requests and responses between requestor and provider

· synchronous and asynchronous execution of operations

· individual and batch requests
3.1.1 Conversational flow

A requestor asks a provider to do something by issuing an SPML request. A provider responds exactly once to each request. Therefore, the simplest conversation (i.e., pattern of exchange) between a requestor and a provider is an orderly alternation of request and response. However, the SPML protocol does not require this. A requestor may issue any number of concurrent requests to a single provider. A requestor may issue any number of concurrent requests to multiple providers.

Recommend requestID. Each SPML request should specify a reasonably unique identifier as the value of “requestID”. See “Request Identifier (normative)”. This allows a requestor to control the identifier for each requested operation and (also allows the requestor) to match each response to the corresponding request without relying on the transport protocol that underlies the SPML protocol exchange.

3.1.2 Status and Error codes

A provider’s response always specifies a “status”. This value tells the requestor what the provider did with (the operation that was described by) the corresponding request.

If a provider’s response specifies “status=’failure’”, then the provider’s response must also specify an “error”. This value tells the requestor what type of problem prevented the provider from executing (the operation that was described by) the corresponding request.

The “status” and “error” attributes of a response apply to (the operation that is described by) the corresponding request. This is straightforward for most requests. The status and batch operations present the only subtleties.

· A status request asks for the status of another operation that the provider is already executing asynchronously. See “Synchronous and asynchronous operations” below. A status response has status and error attributes that tell the requestor what happened to the status request itself. However, the response to a successful status operation also contains a nested response that tells what has happened to the operation that the provider is executing asynchronously.

· A batch request contains nested requests (each of which describes an operation). The response to a batch request contains nested responses (each of which corresponds to a request that was nested in the batch request). See “Individual and batch requests” below.
3.1.2.1 Status (normative)

A provider’s response MUST specify “status” as one of the following values: ‘success’, ‘failure’ or ‘pending’.

· A response that specifies “status=’success’”
indicates that the provider has completed the requested operation.
In this case, the response contains any result of the operation
and the response MUST NOT specify “error” (see below).

· A response that specifies “status=’failure’”
indicates that the provider could not complete the requested operation.
In this case, the response MUST specify an appropriate value of “error” (see below).

· A response that specifies “status=’pending’”
indicates that the provider will execute the requested operation asynchronously
(see “Synchronous and asynchronous operations” below).
In this case, the response acknowledges the request and contains the “requestID” value that identifies the asynchronous operation.

3.1.2.2 Error (normative)

A response that specifies “status=’failure’” MUST specify an appropriate value of “error”:

· A response that specifies “error=’malformedRequest’”
indicates that the provider could not interpret the request.
This includes, but is not limited to, parse errors.

· A response that specifies “error=’unsupportedOperation’”
indicates that the provider does not support the operation that the request specified.

· A response that specifies “error=’unsupportedIdentifierType’”
indicates that the provider does not support the type of identifier specified in the request.

· A response that specifies “error=’noSuchIdentifier’”
indicates that the provider (supports the type of identifier specified in the request,
but the provider) cannot find the object to which an identifier refers.

· A response that specifies “error=’unsupportedExecutionMode’”
indicates that the provider does not support the requested mode of execution.

· A response that specifies “error=’invalidContainment’”
indicates that the provider cannot add the specified object to the specified container.

· The request may not specify a valid container--especially if the request specifies
as the container an object on the target (rather than the target itself).
The target schema implicitly or explicitly declares each supported schema entity.
An explicit declaration of a supported schema entity specifies whether an instance
of that schema entity may contain other objects.

· The request may have specified a container that is not valid for the specified object.
The target (or a system or application that underlies the target) may restrict the types of objects that the provider can add to the specified container. The target (or a system or application that underlies the target) may restrict the containers to which the provider can add the specified object.

· A response that specifies “error=’customError’” indicates that the provider has encountered an error that none of the standard error code values describes.
In this case, the provider’s response SHOULD provide error information in a format that is available to the requestor. SPMLv2 does not specify the format of a custom error.
3.1.3 Synchronous and asynchronous operations

A provider may execute a requested operation either synchronously or asynchronously.
· Synchronous: operation before response. If a provider executes a requested operation synchronously, the provider completes the requested operation before the provider returns a response to the requestor. The response will include the status and any error or result.

· Asynchronous: response before operation. If a provider executes a requested operation asynchronously, the provider returns to the requestor a response (that indicates that the operation will be executed asynchronously) before the provider executes the requested operation. The response will specify “status=’pending’” and will specify a “requestID” value that the requestor must use in order to cancel the asynchronous operation or (in order to) obtain the status or results of the asynchronous operation.
· If a request specifies “requestID”, then the provider’s response to that request will specify the same “requestID” value.

[image: image3]
· If the request omits “requestID”, then the provider’s response to that will specify a “requestID” value that is generated by the provider.

[image: image4]
A requestor may specify the execution mode for an operation in its request or (a requestor may omit the execution mode and thus) allow the provider to decide the execution mode (for the requested operation). If the requestor specifies an execution mode that the provider cannot support for the requested operation, then the provider will fail the request.

3.1.3.1 ExecutionMode attribute

A requestor uses the optional “executionMode” attribute of an SPML request to specify that the provider must execute the specified operation synchronously or (to specify that the provider must execute the specified operation) asynchronously. If a requestor omits the “executionMode” attribute from an SPML request, the provider decides whether to execute the requested operation synchronously or (to execute the requested operation) asynchronously.

3.1.3.2 Async Capability

A provider uses the Async Capability that is defined as part of SPMLv2 to tell any requestor that the provider supports asynchronous execution of requested operations on objects contained by that target. A target may further refine this declaration to apply only to specific types of objects (i.e., for a specific subset of supported schema entities) on the target.

SPMLv2’s Async Capability also defines two operations that a requestor may use to manage other operations that a provider is executing asynchronously:

· A ‘status’ operation allows a requestor to check the status (and optionally results) of an operation (or of all operations)

· A ‘cancel’ operation asks the provider to stop executing an operation.

For more information, see the Async Capability section.

3.1.3.3 Determining execution mode

By default, a requestor allows a provider to decide whether to execute a requested operation synchronously or asynchronously. A requestor that needs the provider to execute a requested operation in a particular manner must specify this in the request. Each subsection that follows describes one of the four possibilities:

· Requestor specifies synchronous execution
· Requestor specifies asynchronous execution
· Provider chooses synchronous execution
· Provider chooses asynchronous execution
The following subsections normatively apply to every SPMLv2 operation unless the normative text that describes an operation specifies otherwise.

3.1.3.3.1 Requestor specifies synchronous execution (normative)

A requestor MAY specify that an operation must execute synchronously. A requestor that wants the provider to execute an operation synchronously MUST specify “executionMode=‘synchronous’“ in the SPML request.

If a requestor specifies that an operation must be executed synchronously and the provider cannot execute the requested operation synchronously, then the provider MUST fail the operation. If a provider fails an operation because the provider cannot execute the operation synchronously, then the provider’s response MUST specify “status=’failed’” and “error=’unsupportedExecutionMode’”.

If a requestor specifies that an operation must be executed synchronously and the provider does not fail the request, then the provider implicitly agrees to execute the requested operation synchronously. The provider MUST acknowledge the request with a response that contains any status and any error or output of the operation. The provider’s response MUST NOT specify “status=’pending’”. The provider’s response MUST specify either “status=’succeeded’” or “status=’failed’”.

· If the provider’s response specifies “status=’failed’”, then the provider’s response must have an “error” attribute.

· If the provider’s response specifies “status=’succeeded’”, then the provider’s response MUST contain any additional results (i.e., output) of the completed operation.

3.1.3.3.2 Requestor specifies asynchronous execution (normative)

A requestor may specify that an operation must execute asynchronously. A requestor that wants the provider to execute an operation asynchronously MUST specify “executionMode=‘asynchronous’” in the SPML request.

If a requestor specifies that an operation must be executed asynchronously and the provider cannot execute the requested operation asynchronously, then the provider MUST fail the operation. If the provider fails the operation because the provider cannot execute the operation asynchronously, then the provider’s response MUST specify “status=’failed’” and (the provider’s response MUST specify) “error=’unsupportedExecutionMode’”.

If a requestor specifies that an operation must be executed asynchronously and the provider does not fail the request, then the provider implicitly agrees to execute the requested operation asynchronously. The provider MUST acknowledge the request with a synchronous response that indicates that the operation will execute asynchronously. The provider’s response MUST specify “status=’pending’” and (the provider’s response MUST specify) “requestID=’<value>’”.

· If the request specifies a “requestID” value, then the provider’s response MUST specify the same “requestID” value.

· If the request omits “requestID”, then the provider’s response MUST specify a “requestID” value that uniquely identifies the requested operation within the namespace of the provider.

If the provider’s response indicates that the requested operation will execute asynchronously, the requestor may continue with other processing. If the requestor wishes to obtain the status and results of the requested operation (or to cancel the requested operation), the requestor MUST use the “requestID” value that is returned in the provider’s response to identify the operation.

See also the sections entitled “Async Capability” and “Results of asynchronous operations (normative)”.

3.1.3.3.3 Provider chooses synchronous execution (normative)

A requestor MAY allow the provider to decide whether to execute a requested operation synchronously or asynchronously. A requestor that wants to let the provider decide the type of execution for an operation MUST omit the “executionMode” attribute of the SPML request.

If a requestor lets the provider decide the type of execution for an operation and the provider chooses to execute the requested operation synchronously, then the provider’s response MUST indicate that the requested operation was executed synchronously. The provider’s response MUST NOT specify “status=’pending’”. The provider’s response MUST specify either “status=‘succeeded’” or “status=’failed’”.

· If the provider’s response specifies “status=’failed’”, then the provider’s response must have an “error” attribute.

· If the provider’s response specifies “status=‘succeeded’”, then the provider’s response MUST contain any additional results (i.e., output) of the completed operation.

3.1.3.3.4 Provider chooses asynchronous execution (normative)

A requestor MAY allow a provider to decide whether to execute a requested operation synchronously or asynchronously. A requestor that wants to let the provider decide the type of execution for an operation MUST omit the “executionMode” attribute of the SPML request.

If a requestor lets the provider decide the type of execution for an operation and the provider chooses to execute the requested operation asynchronously, then the provider’s response must indicate that the the requested operation will execute asynchronously. The provider MUST acknowledge the request with a response that indicates that the operation will execute asynchronously. The provider’s response MUST specify “status=’pending’” and (the provider’s response MUST specify) “requestID=’<value>’”.

· If the request specifies a “requestID” value, then the provider’s response MUST specify the same “requestID” value.

· If the request omits “requestID”, then the provider’s response MUST specify a “requestID” value that uniquely identifies the requested operation within the namespace of the provider.

If the provider’s response indicates that the requested operation will execute asynchronously, the requestor may continue with other processing. If the requestor wishes to obtain the status and results of the requested operation (or to cancel the requested operation), the requestor MUST use the “requestID” value that is returned in the provider’s response to identify the operation.

See also the sections entitled “Async Capability” and “Results of asynchronous operations (normative)”.

3.1.3.4 Results of asynchronous operations (normative)

A provider that supports asynchronous execution of requested operations MUST maintain the status and results of each asynchronously executed operation during the period of time that the operation is executing and for some reasonable period of time after the operation completes. Maintaining this information allows the provider to respond to status requests.

A provider that supports asynchronous execution of requested operations SHOULD publish out-of-band (i.e., make available to requestors in a manner that is not specified by this document) any limit on the how long after the completion of an asynchronous operation the provider will keep the status and results of that operation.

3.1.4 Individual and batch requests

A requestor generally requests each operation individually. SPMLv2 also defines a capability to batch requests. If the provider supports this batch capability, a requestor may group any number of requests (e.g., requests to ‘add’, ‘modify’ or ‘delete’) into a single request.

Individual. The SPMLv2 core protocol allows a requestor to ask a provider to execute an individual operation. Each request that is part of the SPMLv2 core schema asks a provider to perform a single operation.

Batch. SPMLv2 defines ‘batch’ as an optional operation that allows a requestor to combine any number of requests into a single request. See the Batch Capability section.

Identifiers

	
<complexType name="IdentifierType">

<complexContent>

<extension base="spml:ExtensibleType">

<attribute name="ID" type="string" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="PSOIdentifierType">

<complexContent>

<extension base="spml:IdentifierType">

<sequence>

<element name="containerID" type="spml:PSOIdentifierType" minOccurs="0"/>

</sequence>

<attribute name="targetID" type="string" use="optional"/>

</extension>

</complexContent>

</complexType>

SPMLv2 uses several different types of identifiers.

· An instance of {xsd:string} identifies a target.
A target identifier must be unique within the (namespace of the) provider.

· An instance of {xsd:ID} identifies a request or an operation.

· An instance of {PSOIdentifierType} identifies an object on a target.
An instance of {PSOIdentifierType} combines a target identifier with an object identifier.
The target identifier MUST be unique within the (namespace of the) provider.
The object identifier MUST be unique within the (namespace of the) target.

3.1.5 RequestID (normative)

RequestID in a request. A requestor SHOULD specify a reasonably unique value for the “requestID” attribute in each request. A requestID value need not be globally unique. A requestID value needs only to be sufficiently unique to identify each outstanding request. (That is, a requestor SHOULD specify as the value of “requestID” in each SPML request a value that is sufficiently unique to identify each request for which the requestor has not yet received the corresponding response.)

A requestor that uses a transport protocol that is synchronous (such as SOAP/HTTP) MAY omit “requestID”. The synchronous nature of the transport protocol exchange itself ensures that the requestor can match the provider’s response to the request. (The provider’s response will contain any requestID that is necessary—for example, because the provider executes the requested operation asynchronously. See “RequestID in a response” immediately below.)

RequestID in a response. A provider’s response to a request that specifies “requestID” MUST specify the same “requestID” value.

A provider’s response to a request that does not specify a value for “requestID” MAY omit the “requestID” attribute UNLESS the provider executes the requested operation asynchronously.

If the provider executes asynchronously (the operation that was described by) a request that omitted “requestID”, then the provider MUST generate a value that uniquely identifies the operation to the provider and (the provider MUST) specify this value as the value of the “requestID” attribute in the provider’s response. (This allows the requestor to cancel or to obtain the status of the operation that the provider is executing asynchronously. See Async Capability.)

3.1.6 Target Identifier (normative)

Each of a provider’s targets has a string identifier. Within a provider’s listTargets response, the “targetID” attribute of each <target> element specifies this identifier.

TargetId is unique within provider. Each <target> in a provider’s <listTargetsResponse> MUST specify a value for “targetID” that uniquely identifies the target within the namespace of the provider.

Wherever targetID occurs in a request or in a response, the targetID must correspond to one of the provider’s targets. (That is, the value of any “targetID” attribute that a request specifies or (that a request) indirectly contains MUST match the value of the “targetID” attribute that a <target> element in the provider’s <listTargetsResponse> specifies.)

If a request contains an invalid targetID, the provider’s response MUST specify “error=’noSuchIdentifier’”.
3.1.7 PSOIdentifier (normative)

PSOIdentifier must be unique. A provider MUST ensure that each object’s PSO-ID is unique (within the namespace of the provider). Since every PSOIdentifier also specifies the target that contains the object, the value that identifies an object must be unique within the namespace of the target.

TargetID. Any instance of {PSOIdentifierType} MAY specify “targetID”.

· If the provider's <listTargetsResponse> contains only one <target>,
then an instance of {PSOIdentifierType} MAY omit "targetID".

· If the provider's <listTargetsResponse> contains more than one <target>,
then any instance of {PSOIdentifierType} MUST specify "targetID".
The value of “targetID” MUST identify a valid target. (That is, the value of “targetID” MUST match the “targetID” of a <target> in the provider’s <listTargetsResponse>. See the section entitled “Target Identifier (normative)” above.)

containerID. Any instance of {PSOIdentifierType} MAY contain at most one <containerID>. Any <containerID> MUST identify an existing object that exists on the target. (That is, the content of any <containerID> in an instance of {PSOIdentifierType} MUST match the <psoID> of an object that exists on a target. In addition, the value of any "targetID" attribute in the <containerID> element MUST match the value of the "targetID" attribute of the instance of {PSOIdentifierType} that contains the <containerID>.)

ID. Any instance of {PSOIdentifierType} MUSTMAY specify “ID”. This depends on the profile that the requestor and provider have agreed to use.
· The DSML Profile and the XML Schema Profile both specify that an instance of {PSOIdentifierType} MUST specify "ID". The value of “ID” MUST uniquely identify an object within the namespace of the target that “targetID” specifies.

· Another profile may specify that an instance of {PSOIdentifierType} MAY omit "ID".

Content depends on profile. The content of an instance of {PSOIdentifierType} depends on the profile that a requestor and provider agree to use.

· Both the DSML profile and the XML Schema Profile specify that an instance of {PSOIdentifierType} MUST have an "ID" attribute (see the topic immediately above). Neither the DSML profile nor the XML Schema Profile specifies the content of an instance of {PSOIdentifierType}.

· Another profile may specify the content of an instance of {PSOIdentifierType}.

Caution: PSOIdentifier is mutable. A provider MAY change the PSO-ID for an object. For example, moving an organizational unit (OU) beneath a new parent within a directory service will change the distinguished name (DN) of the organizational unit. If the provider exposes the directory service DN as the object’s PSO-ID, then this operation will change the object’s PSO-ID.

Recommend immutable PSOIdentifier. A provider SHOULD expose an immutable value (such as a globally unique identifier or “guid”) as the PSO-ID for each object.
Selection

3.1.8 QueryClauseType

SPMLv2 defines a {QueryClauseType} that is used to select objects. Each instance of {QueryClauseType} represents a selection criterion.

	
<complexType name="QueryClauseType">

<complexContent>

<extension base="spml:ExtensibleType">

</extension>

</complexContent>

</complexType>

{QueryClauseType} specifies no element or attribute. This type is a semantic marker.

· Any capability may define elements of (types that extend) QueryClauseType. These queryClauses allow a requestor to search for objects based on capability-specific data.
(For example, the SPML Reference Capability defines a <hasReference> element that enables a requestor to query for objects that have a specific reference.
The SPML Suspend Capability defines an <isActive> element that enables a requestor to query for objects that are enabled or disabled.)

· An instance of {SelectionType}, which extends {QueryClauseType}, may filter a set of objects. {SelectionType} may also be used to specify a particular element or attribute of an object. See the section entitled “SelectionType” below.

· The SPMLv2 Search Capability defines three logical operators that indicate how a provider should combine selection criteria. Each logical operator is an instance of {LogicalOperatorType}, which extends {QueryClauseType}.
See the section entitled “Logical Operators” below.

3.1.9 Logical Operators

The SPMLv2 Search Capability defines three logical operators that indicate how a provider should combine selection criteria.

· The logical operator <and> specifies a conjunct
(that is, the <and> is true if and only if every selection criterion that the <and> contains is true).

· The logical operator <or> specifies a disjunct
(that is, the <or> is true if any selection criterion that the <or> contains is true).

· The logical operator <not> specifies negation
(that is, the <not> is true if and only if the selection criterion that the <not> contains is false.)

	
<complexType name="LogicalOperatorType">

<complexContent>

<extension base="spml:QueryClauseType">

</extension>

</complexContent>

</complexType>

<element name="and" type="spmlsearch:LogicalOperatorType"/>

<element name="or" type="spmlsearch:LogicalOperatorType"/>

<element name="not" type="spmlsearch:LogicalOperatorType"/>

3.1.10 SelectionType

SPMLv2 defines a {SelectionType} that is used in two different ways:

· An instance of {SelectionType} may specify an element or attribute of an object.
For example, the <component> of a <modification> specifies the part of an object that a modify operation (or a bulkModify operation) will change.

· An instance of {SelectionType} may filter a set of objects.
For example, a <query> may contain a <select> that restricts, based on the schema-defined XML representation of each object, the set of objects that a search operation returns
(or that a bulkModify operation changes or that a bulkDelete operation deletes).

	
<complexType name="SelectionType">

<complexContent>

<extension base="spml:QueryClauseType">

<sequence>

<element name="namespacePrefixMap" type="spml:NamespacePrefixMappingType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="path" type="string" use="required"/>

<attribute name="namespaceURI" type="string" use="required"/>

</extension>

</complexContent>

</complexType>

<element name="select" type="spml:SelectionType"/>

SelectionType. An instance of {SelectionType} has a “path” attribute which value is an expression. An instance of {SelectionType} also contains a “namespaceURI” attribute that indicates (to any provider that recognizes the namespace) the language in which the value of the “path” attribute is expressed.

Namespace Prefix Mappings. An instance of {SelectionType} may also contain any number of <namespacePrefixMap> elements (see the normative section that follows next). Each <namespacePrefixMap> allows a requestor to specify the URI of an XML namespace for a namespace prefix that occurs (or that may occur) in the value of the “path” attribute.

3.1.10.1 SelectionType in a Request (normative)

namespaceURI. An instance of {SelectionType} MUST have a “namespaceURI” attribute. The value of the “namespaceURI” attribute MUST specify the XML namespace of a query language. (The value of the “path” attribute must be an expression that is valid in this query language—see below.)

path. An instance of {SelectionType} MUST have a “path” attribute. The value of the “path” attribute MUST be an expression that is valid in the query language that the “namespaceURI” attribute specifies. The “path” value serves different purposes in different contexts.

· Within a <modification> element, the value of the “path” attribute MUST specify a target schema entity (i.e., an element or attribute) of the object that the provider is to modify.

· Within a <query> element, the value of the“path” attribute MUST specify a filter that selects objects based on:

· The presence (or absence) of a specific element or attribute

· The presence (or absence) of a specific value in the content of an element
or (the presence of absence of a specific value) in the value of an attribute

The value of the “path” attribute MUST be expressed in terms of elements or attributes that are valid (according to the schema of the target) for the type of object on which the provider is requested to operate.
Namespace prefix mappings. An instance of {SelectionType} MAY contain any number of <namespacePrefixMap> elements.

· Each <namespacePrefixMap> MUST have a “prefix” attribute whose value specifies a namespace prefix (that may occur in the filter expression that is the value of the “path” attribute).

· Each <namespacePrefixMap> MUST have a “namespace” attribute whose value is the URI for an XML namespace.

A requestor SHOULD use these mappings to define any namespace prefix that the (value of the) “path” attribute contains.

3.1.10.2 SelectionType Processing (normative)

A provider MUST evaluate an instance of {SelectionType} in a manner that is appropriate to the context in which the instance of {SelectionType} occurs:

· Within a <modification> element, a provider must resolve the value of the “path” attribute to a schema entity (i.e., to an element or attribute) of the object that the provider is to modify.

· Within a <query> element, a provider must evaluate the value of the “path” attribute as a filter expression that selects objects based on:

· The presence (or absence) of a specific element or attribute

· The presence (or absence) of a specific value in the content of an element
or (the presence of absence of a specific value) in the value of an attribute

Namespace prefix mappings. A provider SHOULD use any instance of <namespacePrefixMap> that an instance of {SelectionType} contains in order to resolve any namespace prefix that the value of the “path” attribute contains.

3.1.10.3 SelectionType Errors (normative)

A provider’s response (to a request that contains an instance of {SelectionType}) MUST specify an error if any of the following is true:

· The provider does not recognize the value of the “namespaceURI” attribute as indicating an expression language that the provider supports.

· The provider does not recognize the value of the “path” attribute as an expression that is valid in the language that the “namespaceURI” attribute specifies.

· The provider does not recognize the value of a “path” attribute as an expression that refers to a schema entity (i.e., element or attribute) that is valid according to the schema of the target.

· The provider does not support the expression that SelectionType#path specifies.
(For example, the expression may be too complex or the expression may contain syntax that the provider does not support.)
In all of the cases described above, the provider’s response MUST specify either "error='unsupportedSelectionType'" or “error=’customError’”.

· In general, the provider’s response SHOULD specify “error=’unsupportedSelectionType’”. The provider’s response MAY also contain instances of <errorMessage> that describe more specifically the problem with the request.

· However, a provider’s response MAY specify “error=’customError’”
if the provider is able to indicate more specifically the problem with the request.

3.1.11 SearchQueryType

SPMLv2 defines a {SearchQueryType} that is used to select objects on a target.

	
<complexType name="SearchQueryType">

<complexContent>

<extension base="spml:QueryClauseType">

<sequence>

<annotation>

<documentation>Open content is one or more instances of QueryClauseType (including SelectionType) or LogicalOperator.</documentation>

</annotation>

<choice>

<element name="basePsoID" type="spml:PSOIdentifierType"/>

</choice>

</sequence>

<attribute name="targetID" type="string" use="optional"/>

<attribute name="scope" type="spmlsearch:ScopeType" use="optional"/>

<attribute name="maxReturn" type="xsd:int" use="optional"/>

</extension>

</complexContent>

</complexType>

<element name="query" type="spmlsearch:SearchQueryType"/>

targetID specifies the target on which to search for objects.

basePsoID specifies the starting point for a query. Any <basePsoID> MUST identify an existing object to use as a base context or “root” for the search. That is, a <query> that contains <basePsoID> may select only the specified container and objects in that container.

Scope indicates whether the query should select the container itself, objects directly contained, or any object directly or indirectly contained.

The “scope” attribute restricts the search operation to one of the following:

· To the base context itself.

· To the base context and its direct children.

· To the base context and any of its descendants.
3.1.11.1 SearchQueryType in a Request (normative)

targetID. A <query> MAY specify “targetID”.

· If the provider's <listTargetsResponse> contains only one <target>,
then a requestor MAY omit the “targetID” attribute of {searchQueryType}.

· If the provider's <listTargetsResponse> contains more than one <target>,
then a requestor MUST specify the “targetID” attribute of {searchQueryType}.

basePsoID. A <query> MAY contain at most one <basePsoID>.

· A requestor that wants to search the entire namespace of a target
MUST NOT supply <basePsoID>.

· A requestor that wants to search beneath a specific object on a target
MUST supply <basePsoID>. Any <basePsoID> MUST identify an object that exists on the target. (That is, any <basePsoID> MUST match the <psoID> of an object that already exists on the target.)
scope. A <query> MAY have a “scope” attribute. The value of the “scope” attribute specifies the set of objects against which the provider should evaluate the <select> element:

· A requestor that wants the provider to search only the object identified by <basePsoID>
MUST specify “scope=’pso’”. (NOTE: It is an error to specify "scope='pso'" in a <query> that does not contain <basePsoID>. The target is not an object.)
See the section below entitled “SearchQueryType Errors (normative)”.
· A requestor that wants the provider to search only direct descendants of the target or (that wants to search only direct descendants) of the object specified by <basePsoID> MUST specify “scope=’oneLevel’”.

· A requestor that wants the provider to search any direct or indirect descendant of the target or (that wants to search any direct or indirect descendant) of the object specified by <basePsoID> MUST specify “scope=’subTree’”.

Open content. A <query> MUST contain (as open content) exactly one instance of a type that extends {QueryClauseType}.

· Any capability may define elements of (a type that extends) {QueryClauseType}. These elements allow a requestor to select objects based on capability-defined data.
See the section entitled "QueryClauseType" above.

· A <select> element is an instance of {SelectionType} which extends {QueryClauseType} to filter objects based on schema-defined content. See the section entitled “SelectionType in a Request (normative)“.

· Logical Operators such as <and>, <or> and <not> combine individual selection criteria.
A logical operator MUST contain at least one instance of a type that extends {QueryClauseType} or a (logical operator MUST contain at least one) logical operator.
See the section entitled "Logical Operators" above.
3.1.11.2 SearchQueryType Errors (normative)

The response to a request that contains a <query> (i.e., an instance of {SearchQueryType}) MUST specify an appropriate value of “error” if any of the following is true:

· If the <query> in a <searchRequest> specifies “scope=’pso’” but does not contain <basePsoID>. (The target itself is not a PSO.)

· If the "targetID" of the <query> does not specify a valid target.

· A <query> specifies "targetID" and (the <query> also) contains <basePsoID>, but the value of "targetID" in the <query> does not match the value of "targetID" in the "basePsoID".

· A <query> contains a <basePsoID> that does not identify an object that exists on a target.
(That is, the <basePsoID> does not match the <psoID> of any object that exists on a target.)

· If the provider cannot evaluate an instance of {QueryClauseType} that the <query> contains.

· If the open content of the <query> is too complex for the provider to evaluate.

· If the open content of the <query> contains a syntactic error
(such as an invalid structure of logical operators or query clauses).

· If the provider does not recognize an element of open content that the <query> contains.

Also see the section entitled "SelectionType Errors (normative)".

Transactional Semantics

SPMLv2 specifies no transactional semantics. This specification defines no operation that implies atomicity. At the time of this writing, no core operation and no operation defined by one of SPMLv2’s standard capabilities defines a logical unit of work that can be committed or rolled back as a unit.

Provisioning operations are notoriously difficult to undo and redo. For security reasons, many systems and applications will not allow certain identity management operations to be fully reversed or repeated. (More generally, support for transactional semantics suggests participation in externally managed transactions. These protocols are beyond the scope of this specification.)

Any transactional semantics should be defined as a capability (or possibly as more than one capability). See the section entitled “Custom Capabilities”. A transactional capability would define optional operations that imply atomicity or allow the requestor to specify atomicity.

Any provider that is able to support transactional semantics should then declare its support for such a capability as part of the provider’s response to the listTargets operation (as the provider would declare its support for any other capability).

3.2 Operations

The first subsection discusses the required Core Operations.

Subsequent subsections discuss any optional operation that is associated with each of the standard capabilities:

· Async Capability
· Batch Capability
· Bulk Capability
· Password Capability
· Reference Capability
· Search Capability
· Suspend Capability
3.2.1 Core Operations

Schema syntax for the SPMLv2 core operations is defined in a schema associated with the following XML namespace: urn:oasis:names:tc:SPML:2:0 [SPMLv2-CORE]. The Core Schema is included as Appendix A to this document.

A conformant provider must implement all the operations defined in the core schema. For more information, see the section entititled Conformance.

The SPMLv2 core operations include:

· a discovery operation (listTargets) on the provider

· several basic operations (add, lookup, modify, delete) that apply to objects on a target
3.2.1.1 listTargets

The listTargets operation enables a requestor to determine the set of targets that a provider makes available for provisioning and (the listTargets operation also enables a requestor) to determine the set of capabilities that the provider supports for each target.

The subset of the Core Schema that is most relevant to the listTargets operation follows.

	
<complexType name="SchemaType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="supportedSchemaEntity" type="spml:SchemaEntityRefType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="ref" type="anyURI" use="optional”/>

</extension>

</complexContent>

</complexType>

<complexType name="SchemaEntityRefType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

</sequence>

<attribute name="targetID" type="string" use="optional”/>

<attribute name="entityName" type="string" use="optional”/>

<attribute name="isContainer" type="xsd:boolean" use="optional”/>

</extension>

</complexContent>

</complexType>

<complexType name="CapabilityType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="appliesTo" type="spml:SchemaEntityRefType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="namespaceURI" type="anyURI”/>

<attribute name="location" type="anyURI" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="CapabilitiesListType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="capability" type="spml:CapabilityType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="TargetType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="schema" type="spml:SchemaType" maxOccurs="unbounded"/>

<element name="capabilities" type="spml:CapabilitiesListType" minOccurs="0" maxOccurs="1"/>

</sequence>

<attribute name="targetID" type="string" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="ListTargetsRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence/>

</extension>

</complexContent>

</complexType>

<complexType name="ListTargetsResponseType">

<complexContent>

<extension base="spml:ResponseType">

<sequence>

<element name="target" type="spml:TargetType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>

</complexType>

<element name="listTargetsRequest" type="spml:ListTargetsRequestType"/>

<element name="listTargetsResponse" type="spml:ListTargetsResponseType"/>

ListTargets must be synchronous. Because the requestor cannot know (at the time the requestor asks to listTargets) whether the provider supports asynchronous execution, the ‘listTargets’ operation must be synchronous.
ListTargets is not batchable. Because the requestor cannot know (at the time the requestor asks the provider to listTargets) whether the provider supports the batch capability, a requestor must not nest a ‘listTargets’ request in a batch request.
3.2.1.1.1 Request (normative)

A requestor MUST send a <listTargetsRequest> to a provider in order to ask the provider to declare the set of targets that the provider exposes for provisioning operations.

Execution. A requestor MUST NOT specify “executionMode=‘asynchronous’” in a <listTargetsRequest>. A requestor MUST specify “executionMode=‘synchronous’” or (a requestor MUST) omit the execution attribute. This is because a requestor SHOULD examine each target definition to see whether the target supports the Async Capability before making a request that specifies “executionMode=‘asynchronous’” (rather than assuming that the provider supports asynchronous execution of requested operations). Since a requestor typically must perform the listTargets operation only once at the beginning of a session, this restriction should not be too onerous.

For more information, see the section entitled “Determining execution type”.

No required content. A <listTargetsRequest> requires no sub-element (i.e., to act as an argument).

3.2.1.1.2 Response (normative)

A provider that receives a <listTargetsRequest> from a requestor that it trusts MUST return to the requestor a <listTargetsResponse>.

Execution. A provider MUST execute a listTargets operation synchronously. This is because a provider must allow the requestor to examine each target definition to see whether the target supports the Async Capability (and thus whether the provider might choose to execute a requested operation asynchronously) before the provider chooses to execute a requested operation asynchronously. Since a requestor typically must perform the listTargets operation only once at the beginning of a session, this restriction should not be too onerous.

If a requestor specifies “executionMode=‘asynchronous’”, a provider MUST fail the operation with “error=’unsupportedExecutionMode’”.

For more information, see the section entitled “Determining execution type”.

Status. A <listTargetsResponse> MUST have a “status” attribute that indicates whether the provider successfully processed the request. See “Status (normative)” for values of this attribute.

Error. If the provider cannot return a list of its targets, the <listTargetsResponse> MUST contain an error attribute that characterizes the failure. See “Error (normative)” for values of this attribute.

Target. A <listTargetsResponse> that specifies “status=’succeeded’” MUST contain at least one <target> element. Each <target> MAY have a “targetID” attribute.

· If the <listTargetsResponse> contains only one <target>
then the <target> MAY omit “targetID”.

· If the <listTargetsResponse> contains more than one <target>
then each <target> MUST specify “targetID”.

Any value of “targetID” MUST identify each target uniquely within the namespace of the provider.
Schema. A <target> MUST contain at least one <schema> element. Each <schema> element MUST contain (or MUST refer to) some form of XML Schema that defines the structure of XML objects.

Schema content. Each <schema> element MAY include any number of <xsd:schema> elements.

· If an <spml:schema> element contains no <xsd:schema> element,
then that <spml:schema> element MUST have a valid “ref” attribute (see below).

· If an <spml:schema> element contains at least one <xsd:schema> element,
then this takes precedence over the value of any “ref” attribute of that <spml:schema>.
In this case, the requestor SHOULD ignore the value of any “ref” attribute.

Each <xsd:schema> element (that an <spml:schema> element contains) MUST include the XML namespace of the schema.

Schema ref. Each <spml:schema> MAY have a “ref” attribute. If an <spml:schema> element has a “ref” attribute, then:

· The “ref” value MUST be a URI that uniquely identifies the schema.

· The “ref” value MAY be a location of a schema document
(e.g. the physical URL of an XSD file).

A requestor should ignore any “ref” attribute of an <spml:schema> element that contains an <xsd:schema>. (See “Schema content” immediately above.)

Supported Schema Entities. A target MAY declare as part of its <spml:schema> the set of schema entities for which the target supports the basic SPML operations (i.e., add, lookup, modify and delete). The target <spml:schema> MAY contain any number of <supportedSchemaEntity> elements. Each <supportedSchemaEntity> MUST refer to an entity in the target schema. (See “SupportedSchemaEntity entityName” and “SupportedSchemaEntity targetID” below.)

A provider that explicitly declares a set of schema entities that a target supports has implicitly declared that the target supports only those schema entities. If a target schema contains at least one <supportedSchemaEntity>, then the provider MUST support the basic SPML operations for (objects on that target that are instances of) any target schema entity to which a <supportedSchemaEntity> refers.

A provider that does not explicitly declare as part of a target at least one schema entity that the target supports has implicitly declared that the target supports every schema entity. If a target schema contains no <supportedSchemaEntity>, then the provider MUST support the basic SPML operations for (objects on that target that are instances of) any top-level entity in the target schema.

A provider SHOULD explicitly declare the set of schema entities that each target supports. In general, the syntactic convenience of omitting the declaration of supported schema entities (and thereby implicitly declaring that the provider supports all schema entitities) is not worth the burden that this imposes on each requestor. When a provider omits the declaration of supported schema entitities, each requestor must determine the set of schema entities that the target supports. This process is especially laborious for a requestor that functions without a lot of a priori knowledge.

SupportedSchemaEntity entityName. Each <supportedSchemaEntity> MUST refer to an entity in the schema (of the target that contains the <supportedSchemaEntity>):

· In the XSD Profile [SPMLv2-Profile-XSD], each <supportedSchemaEntity> MUST specify a QName (as the value of its “entityName” attribute).
· In the DSMLv2 Profile [SPMLv2-Profile-DSML], each <supportedSchemaEntity> MUST specify the name of an objectclass (as the value of its “entityName” attribute).

SupportedSchemaEntity targetID. A <supportedSchemaEntity> MAY specify a “targetID” value:
· A provider MAY omit “targetID” in any <supportedSchemaEntity>.
(That is, a provider MAY omit the optional “targetID” attribute of {SchemaEntityRefType} in a <supportedSchemaEntity> element.)

· Any “targetID” in a <supportedSchemaEntity> MUST refer to the containing target.
(That is, the value of any “targetID” attribute that a <supportedSchemaEntity> specifies MUST match the value of the “targetID” attribute of the <target> element that contains the <supportedSchemaEntity> element.)

SupportedSchemaEntity isContainer. A <supportedSchemaEntity> MAY have an “isContainer” attribute that specifies whether an (object that is an) instance of the supported schema entity may contain other objects.

· If a <supportedSchemaEntity> specifies “isContainer=’true’”, then a provider
MUST allow a requestor to add an object beneath any instance of the schema entity.

· If a <supportedSchemaEntity> specifies “isContainer=’false’”
(or if a <supportedSchemaEntity> does not specify “isContainer”), then a provider MUST NOT allow a requestor to add an object beneath any instance of the schema entity.

Capabilities. A target may also declare a set of capabilities that it supports. Each capability defines optional operations or semantics. For general information, see the Capability topic within the Concepts section.

A <target> element MAY contain at most one <capabilities> element. A <capabilities> element MAY contain any number of <capability> elements.

Capability. Each <capability> declares support for exactly one capability:

· Each <capability> element MUST specify (as the value of its “namespaceURI” attribute) an XML namespace that identifies the capability.

· Each <capability> element MAY specify (as the value of its “location” attribute) the URL of an XML schema that defines any structure that is associated with the capability
(e.g., an SPML request/response pair that defines an operation—see below).

Capability operations. An XML schema document that a capability “location” attribute specifies MAY define operations. An XML schema document for a capability MUST define any operation as a paired request and response such that both of the following are true:

· The (XSD type of the) request (directly or indirectly) extends {RequestType}
· The (XSD type of the) response (directly or indirectly) extends {ResponseType}
Capability appliesTo. A target may support a capability for all of the target’s supported schema entities or only for a specific subset of the target’s supported schema entities. Each capability element may specify any number of supported schema entities to which it applies. A capability that does not specify a supported schema entity to which it applies must apply to every supported schema entity.

A <capability> element MAY contain any number of <appliesTo> elements.

A <capability> element that contains no <appliesTo> element MUST apply to every schema entity that the target supports. If the XML schema for the capability defines an operation, the provider MUST support the capability-defined operation for (any object that is instance of) any schema entity that the target supports. If the capability implies semantic meaning, then the provider SHOULD apply that semantic meaning to (every object that is an instance of) any schema entity that the target supports.

Capability appliesTo entityName. Each <appliesTo> element MUST have an “entityName” attribute that refers to a supported schema entity of the containing target. (See the discussion of "Supported Schema Entities entityName" earlier in this section.)

· In the XSD Profile, each <appliesTo> element MUST specify a QName
(as the value of its “entityName” attribute).
· In the DSMLv2 Profile [SPMLv2-Profile-DSML], each <appliesTo> element MUST specify the name of an objectclass (as the value of its “entityName” attribute).

An <appliesTo> element MAY have a “targetID” attribute.

· A provider MAY omit “targetID” in any <appliesTo>.
(That is, a provider MAY omit the optional “targetID” attribute of {SchemaEntityRefType} in an <appliesTo> element.)

· Any “targetID” MUST refer to the containing target.
(That is, any “targetID” attribute of an <appliesTo> element
MUST contain the same value as the “targetID” attribute
of the <target> element that contains the <appliesTo> element.)

Capability content. SPMLv2 specifies only the optional <appliesTo> element as content for most capability elements. However, a declaration of support for the reference capability is special.

A <capability> element that refers to the Reference Capability (i.e., any <capability> that specifies “namespaceURI=’urn:oasis:names:tc:SPML:2.0:reference’”) MUST contain (as open content) at least one <referenceDefinition> element.
(For normative specifics, please see the “Reference Definition” topic below.
For background and for general information, please see the Reference Capability section.
For Reference Capability Schema, please see Appendix F.)

ReferenceDefinition. Each <referenceDefinition> element MUST be an instance of {spmlref:ReferenceDefinitionType}. Each reference definition names a type of reference, specifies a “from” schema entity and specifies a set of “to” schema entities. Any instance of the “from” schema entity may refer to any instance of any “to” schema entity using the type of reference that the reference definition names.
ReferenceDefinition typeOfReference. Each <referenceDefinition> element MUST have a “typeOfReference” attribute that names the type of reference.
ReferenceDefinition schemaEntity. Each <referenceDefinition> element MUST contain exactly one <schemaEntity> sub-element that specifies a “from” schema entity for that type of reference.

· The <schemaEntity> MUST have an “entityName” attribute that refers to a supported schema entity of the containing target. (See the discussion of “Supported Schema Entities” earlier in this section.)

· The <schemaEntity> MAY have a “targetID” attribute. Any “targetID” that the <schemaEntity> specifies MUST refer to the containing target.
(That is, any“targetID” value that a <schemaEntity> specifies
MUST match the value of the “targetID” attribute of the <target> element
that contains the <referenceDefinition>.)

ReferenceDefinition canReferTo. Each <referenceDefinition> element MAY contain any number of <canReferTo> sub-elements, each of which specifies a valid “to” schema entity. A <referenceDefinition> element that contains no <canReferTo> element implicitly declares that any instance of any schema entity on any target is a valid “to” schema entity.

· A <canReferTo> element MUST have an “entityName” attribute that refers to a supported schema entity. The value of the “entityName” attribute MUST be the name of a top-level entity that is valid in the schema.

· A <canReferTo> element SHOULD have a “targetID” attribute.

· If the <listTargetsResponse> contains only one <target>,
then any <canReferTo> element MAY omit “targetID”.

· If the <listTargetsResponse> contains more than one <target>,
then any <canReferTo> element MUST specify “targetID”.

· If the <canReferTo> element specifes “targetID”,
then the “entityName” attribute (of the <canReferTo> element)
MUST refer to a supported schema entity of the specified target
(i.e., the <target> whose “targetID” value matches
the “targetID” value that the <canReferTo> element specifies).

· If the <canReferTo> element does not specify “targetID”,
then the “entityName” attribute (of the <canReferTo> element)
MUST refer to a supported schema entity of the containing target
(i.e., the <target> that contains the <referenceDefinition>).

3.2.1.1.3 Examples (non-normative)

In the following example, a requestor asks a provider to list the targets that the provider exposes for provisioning operations.

	<listTargetsRequest/>

The provider returns a <listTargetsResponse>. The “status” attribute of the <listTargetsResponse> element indicates that the listTargets request was successfully processed. The <listTargetsResponse> contains two <target> elements. Each <target> describes an endpoint that is available for provisioning operations.

	<listTargetsResponse status=“success">

<target targetID=”target1”>

<schema>

<xsd:schema targetNamespace="urn:example:schema:target1" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:spml="urn:oasis:names:tc:SPML:2:0" elementFormDefault="qualified">

<complexType name="Account">

<sequence>

<element name="description" type="string" minOccurs="0"/>

</sequence>

<attribute name="accountName" type="string" use="required"/>

</complexType>

<complexType name="Group">

<sequence>

<element name="description" type="string" minOccurs="0"/>

</sequence>

<attribute name="groupName" type="string" use="required"/>

</complexType>

</xsd:schema>

<supportedSchemaEntity entityName=”Account”/>

<supportedSchemaEntity entityName=”Group”/>

</schema>

<capabilities>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:bulk”/>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:search”/>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:password”>

<appliesTo entityName=”Account”/>

</capability>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:suspend”>

<appliesTo entityName=”Account”/>

</capability>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:reference”>

<appliesTo entityName=”Account”/>

<referenceDefinition typeOfReference=”owner”/>

<schemaEntity entityName=”Account”/>

<canReferTo entityName=”Person” targetID=“target2”/>

</referenceDefinition>

<referenceDefinition typeOfReference=”memberOf”/>

<schemaEntity entityName=”Account”/>

<canReferTo entityName=”Group”/>

</referenceDefinition>

</capability>

</capabilities>

</target>

<target targetID=“target2”>

<schema>

<xsd:schema targetNamespace="urn:example:schema:target2" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:spml="urn:oasis:names:tc:SPML:2:0" elementFormDefault="qualified">

<complexType name="Person">

<sequence>

<element name="dn" type="string"/>

<element name="email" type="string" minOccurs="0"/>

</sequence>

<attribute name="cn" type="string" use="required"/>

<attribute name="firstName" type="string" use="required"/>

<attribute name="lastName" type="string" use="required"/>

<attribute name="fullName" type="string" use="required"/>

</complexType>

<complexType name="Organization" isContainer=”true”>

<sequence>

<element name="dn" type="string"/>

<element name="description" type="string" minOccurs="0"/>

</sequence>

<attribute name="cn" type="string" use="required"/>

</complexType>

<complexType name="OrganizationalUnit" isContainer=”true”>

<sequence>

<element name="dn" type="string"/>

<element name="description" type="string" minOccurs="0"/>

</sequence>

<attribute name="cn" type="string" use="required"/>

</complexType>

</xsd:schema>

<supportedSchemaEntity entityName=”Person”/>

<supportedSchemaEntity entityName=”Organization” isContainer=”true”/>

<supportedSchemaEntity entityName=”OrganizationalUnit” isContainer=”true”/>

</schema>

<capabilities>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:bulk”/>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:search”/>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:password”>

<appliesTo entityName=”Person”/>

</capability>

<capability identifier=”urn:oasis:names:tc:SPML:2.0:suspend”>

<appliesTo entityName=”Person”/>

</capability>

<capability identifier=”urn:oasis:names:tc:SPML:2.0:reference”>

<appliesTo entityName=”Person”/>

<referenceDefinition typeOfReference=”owns”/>

<schemaEntity entityName=”Person”/>

<canReferTo entityName=”Account” targetID=“target1”/>

</referenceDefinition>

</capability>

</capabilities>

</target>

</listTargetsResponse>

This example <listTargetsResponse> contains two instances of <target>: target1 and target2. Each of these targets contains a simple schema.

The schema for target1 defines two entities: Account and Group. The schema for target1 declares both of these entities as supported schema entities. The provider declares that target1 supports the Bulk capability and Search capability for both Account and Group. The provider also declares that target1 supports the Password, Suspend, and Reference capabilities for Account.

The schema for target2 defines three entities: Person, Organization and OrganizationalUnit. The schema for target2 declares all of these entities as supported schema entities. The provider declares that target2 supports the Bulk capability and Search capability for both schema entities. The provider also declares that target2 supports the Password, Suspend, and Reference capabilities for Person.

Reference Definitions. Within target1’s declaration of the Reference Capability for Account, the provider also declares two types of references: owner and memberOf. The provider declares that an instance of Account on target1 may refer to an instance of Person on target2 as its owner. An instance of Account on target1 may also use a memberOf type of reference to refer to an instance of Group on target1.

Within target2’s declaration of the Reference Capability for Person, the provider declares that a Person on target2 may own an account on target1. (That is, an instance of Person on target2 may use an owns type of reference to refer to an instance of Account on target1.) Note that the “owns” type of reference may be (but is not necessarily) an inverse of the “owner” type of reference. For more information, please see the “Reference Capability” section.

NOTE: Subsequent examples within this section will build on this example, using the target definitions returned in this example. Examples will also build upon each other. An object that is created in the example of the add operation will be modified or deleted in later examples.
3.2.1.2 add

The add operation enables a requestor to create a new object on a target and (optionally) to bind the object beneath a specified parent object (thus forming a hierarchy of containment).

The subset of the Core Schema that is most relevant to the add operation follows.

	
<complexType name=”CapabilityDataType”>

<complexContent>

<extension base="spml:ExtensibleType">

<attribute name="mustUnderstand" type="boolean" use="optional"/>

</extension>

</complexContent>

</complexType>

<simpleType name="ReturnDataType">

<restriction base="string">

<enumeration value="none"/>

<enumeration value="identifier"/>

<enumeration value="data"/>

<enumeration value="everything"/>

</restriction>

</simpleType>

<complexType name="PSOType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType”/>

<element name="data" type="spml:ExtensibleType”/>

<element name="capabilityData" type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="AddRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType" minOccurs="0"/>

<element name="containerID" type="spml:PSOIdentifierType" minOccurs="0"/>

<element name="data" type="spml:ExtensibleType"/>

</sequence>

<attribute name="targetID" type="string" use="optional">

<attribute name="returnData" type="spml:ReturnDataType" use="optional" default="everything"/>

</extension>

</complexContent>

</complexType>

<complexType name="AddResponseType">

<complexContent>

<extension base="spml:ResponseType">

<sequence>

<element name="pso" type="spml:PSOType" minOccurs="0"/>

</sequence>

</extension>

</complexContent>

</complexType>

<element name="addRequest" type="spml:AddRequestType"/>

<element name="addResponse" type="spml:AddResponseType"/>

3.2.1.2.1 Request (normative)

A requestor MUST send an <addRequest> to a provider in order to (ask the provider to) create a new object.

Execution. A requestor MAY specify a type of execution for the add operation. See the section entitled “Determining execution type”.

TargetId. An <addRequest> SHOULD specify “targetID”.

· If the provider exposes only one target in its <listTargetsResponse>,
then a requestor MAY omit the "targetID" attribute of an <addRequest>.

· If the provider exposes more than one target in its <listTargetsResponse>,
then a requestor MUST specify the "targetID" attribute of an <addRequest>.
Any "targetID" value must specify a valid target. (That is, the value of any "targetID" in an <addRequest> MUST match the "targetID" of a <target> that is contained in the provider's <listTargetsResponse>.)
psoID. An <addRequest> MAY contain a <psoID>. (A requestor supplies <psoID> in order to suggest to the provider an identifier for the new object. The provider determines the actual identifier for the new object and returns the actual identifier in the <addResponse> to the requestor. Also see the section entitled “PSOIdentifier (normative)”.)

ContainerId. An <addRequest> MAY contain a <containerID>. (A requestor supplies <containerID> in order to specify an existing object under which the the new object should be bound.)

· A requestor that wants to bind a new object in the top-level namespace of a target
MUST NOT supply <containerID>.

· A requestor that wants to bind a new object beneath a specific object on a target
MUST supply <containerID>. Any <containerID> must identify an existing object.
(That is, the content of <containerID> in an <addRequest> must match the <psoID> of an object that already exists on the target.)
Data. An <addRequest> MUST contain a <data> element that supplies initial content for the new object. A <data> element MUST contain only elements and attributes defined by the target schema as valid for the schema entity of which the object to be added is an instance.

CapabilityData. An <addRequest> element MAY contain any number of <capabilityData> elements. Each <capabilityData> element contains an item of capability-specific data—for example, a reference to another object. (For more information, see the “Reference Capability” section.)

ReturnData. An <addRequest> MAY have a “returnData” attribute that tells the provider which types of data to include in the provider’s response.

· A requestor that wants the provider to return nothing of the added object
MUST specify “returnData=’nothing’”.
· A requestor that wants the provider to return only the identifier of the added object
MUST specify “returnData=’identifier’”.
· A requestor that wants the provider to return the identifier of the added object
plus the XML representation of the object (as defined in the schema of the target)
MUST specify “returnData=’data’”.
· A requestor that wants the provider to return the identifier of the added object
plus the XML representation of the object (as defined in the schema of the target)
plus any capability-specific data that is associated with the object
MAY specify “returnData=’everything’” or MAY omit the “returnData” attribute
(since “returnData=’everything’” is the default).
3.2.1.2.2 Response (normative)

A provider that receives an <addRequest> from a requestor that the provider trusts MUST examine the content of the <addRequest>. If the request is valid, the provider MUST create the requested object under the specified parent (i.e., target or container object) if it is possible to do so.

Data. The provider MUST create the object with any XML element or attribute contained by the <data> element in the <addRequest>.

CapabilityData. The provider SHOULD associate with the created object the content of each <capabilityData> that the <addRequest> contains. The “mustUnderstand” attribute of each <capabilityData> indicates whether the provider MUST associate the content of the <capabilityData> with the created object.

· If a <capabilityData> element specifies “mustUnderstand=’true’”
then the provider MUST associated the content of the <capabilityData> element with the created object. If the provider cannot associate the <capabilityData> content with the created object then the <addResponse> MUST specify “status=’failure’”.

· If a <capabilityData> element specifies “mustUnderstand=’false’”
or (if a <capabilityData> element) does not specify “mustUnderstand”,
then the provider SHOULD associate the content of the <capabilityData> element with the created object. However, if the provider cannot associate the <capabilityData> content with the created object then) the <addResponse> SHOULD specify “status=’success’”.

The <addResponse> SHOULD contain an <errorMessage> for each <capabilityData> element that the provider could not associate with the created object.

Execution. If an <addRequest> does not specify a type of execution, a provider MUST choose a type of execution for the requested operation. See the section entitled “Determining execution type”.

Response. The provider must return to the requestor an <addResponse>.

Status. The <addResponse> MUST have a “status” attribute that indicates whether the provider successfully created the requested object. See Status (normative)“”
 for values of this attribute.

pso and returnData. If the provider successfully created the requested object, the <addResponse> MUST contain an <pso> element that contains the (XML representation of the) newly created object.

· A <pso> element MUST contain a <psoID> element.

· If the <addRequest> specified “returnData=’none’”,
then the <psoID> element MUST be empty.

· Otherwise, if the <addRequest> specified “returnData=’identifier’”
or (if the <addRequest> specified) “returnData=’data’”
or (if the <addRequest> specified) “returnData=’everything’”
or (if the <addRequest>) omitted the “returnData” attribute,
then the <psoID> element MUST contain the identifier of the newly created object.
See the section entitled “PSOIdentifier”.

· A <pso> element MUST contain a <data> element.

· If the <addRequest> specified “returnData=’none’”
or (if the <addRequest> specified) “returnData=’identifier’”,
then the <data> element MUST be empty.

· Otherwise, if the <addRequest> specified “returnData=’data’”
or (if the <addRequest> specified) “returnData=’everything’”
or (if the <addRequest>) omitted the “returnData” attribute,
then the <data> element MUST contain the XML representation of the object.
This XML must be valid according to the schema of the target for the schema entity of which the newly created object is an instance.

· A <pso> element MAY contain any number of <capabilityData> elements. Each <capabilityData> element contains an item of capability-specific data that is associated with the newly created object (for example, a reference to another object).

· If the <addRequest> specified “returnData=’none’”
or (if the <addRequest> specified) “returnData=’identifier’”
or (if the <addRequest> specified) “returnData=’data’”,
then the <addResponse> MUST NOT contain a <capabilityData> element.

· Otherwise, if the <addRequest> specified “returnData=’everything’”
or (if the <addRequest>) omitted the “returnData” attribute,
then the <addResponse> MUST contain a <capabilityData> element for each item of capability-specific data that is associated with the newly created object.
Error. If the provider cannot create the requested object, the <addResponse> MUST contain an “error” attribute that characterizes the failure. See “Error (normative)” for values of this attribute.

The provider MUST return an error if any of the following is true:

· An <addRequest> specifies "targetID", but the value of “targetID” does not identify a target that the provider supports.

· An <addRequest> specifies "targetID" and (the <addRequest> also) contains <containerID>, but the value of the "targetID" attribute in the <addRequest> does not match the value of the "targetID" attribute in the <containerID>.

· An <addRequest> contains <containerID>, but the content of <containerID> does not identify an object that exists. (That is, <containerID> does not match the <psoID> of an object that exists.)

· An <addRequest> contains <containerID>, but the <supportedSchemaEntity> (of which <containerID> identifies an instance) does not specify “isContainer=’true’”
In this case, the <addResponse> SHOULD specify “error=’invalidContainment’”.

· An <addRequest> contains <containerID> but the target does not allow the specified parent object to contain the object to be created.
In this case, the <addResponse> SHOULD specify “error=’invalidContainment’”.

· The <data> element is missing an element or attribute that is required (according to the schema of the target) for the object to be added.

· A <capabilityData> element specifies “mustUnderstand=’true’” and the provider cannot associate the content of the <capabilityData> with the object to be created.

The provider MAY return an error if:

· The <data> element contains data that the provider does not recognize as valid according to the target schema for the type of object to be created.

· The provider does not recognize the content of a <capabilityData> element as specific to any capability that the target supports (for the schema entity of which the object to be created is an instance).

3.2.1.2.3 Examples (non-normative)

In the following example, a requestor asks a provider to add a new person. The requestor specifies the attributes required for the Person schema entity (cn, firstName, lastName and fullName). The requestor also supplies an optional email address for the person. This example assumes that a container named “ou=Development, org=Example” already exists.

	<addRequest targetID=“target2”>

<containerID ID=”ou=Development, org=Example”/>

<data>

<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>

<email>joebob@example.com</email>

</Person>

</data>

</addRequest>

The provider returns an <addResponse> element. The “status” attribute of the <addResponse> element indicates that the add request was successfully processed. The <addResponse> contains an <identifier> element that identifies the newly created object. This requestor will need this value for any subsequent operation on the newly created object.

	<addResponse status=“success">

<pso>

<psoID objectId=”2244” targetID=“target2”/>

<data>

<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>

<email>joebob@example.com</email>

</Person>

</data>

</pso>

</addResponse>

Next, the requestor asks a provider to add a new account. The requestor specifies a name for the account. The requestor also specifies references to a Group that resides on target1 and to a Person (from the first example in this section) that resides on target2.

	<addRequest targetID=”target1”>

<data>

<Account accountName=”joebob”/>

</data>

<capabilityData>

<reference typeOfReference="memberOf">

<toPsoID ID="group1" targetID=”target1”/>

</reference>

</capabilityData>

<capabilityData>

<reference typeOfReference="owner">

<toPsoID ID="2244" targetID=“target2”/>

</reference>

</capabilityData>

</addRequest>

The provider returns an <addResponse> element. The “status” attribute of the <addResponse> element indicates that the add operation was successfully processed. The <addResponse> contains an <identifier> element that identifies the newly created object. This requestor will need this value for any subsequent operation on the newly created object.

	<addResponse status=“success">

<pso>

<psoID objectId=”1431” targetID=“target1”/>

<data>

<Account accountName=”joebob”/>

</data>

<capabilityData>

<reference typeOfReference="memberOf">

<toPsoID ID="group1" targetID=“target1”/>

</reference>

</capabilityData>

<capabilityData>

<reference typeOfReference="owner">

<toPsoID ID="2244" targetID=“target2”/>

</reference>

</capabilityData>

</pso>

</addResponse>

3.2.1.3 lookup

The lookup operation enables a requestor to obtain the XML that represents an object on a target. The lookup operation also obtains any capability-specific data that is associated with the object.

The subset of the Core Schema that is most relevant to the lookup operation follows.

	
<complexType name=”CapabilityDataType”>

<complexContent>

<extension base="spml:ExtensibleType">

<attribute name="mustUnderstand" type="boolean" use="optional"/>

</extension>

</complexContent>

</complexType>

<simpleType name="ReturnDataType">

<restriction base="string">

<enumeration value="none"/>

<enumeration value="identifier"/>

<enumeration value="data"/>

<enumeration value="everything"/>

</restriction>

</simpleType>

<complexType name="PSOType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType”/>

<element name="data" type="spml:ExtensibleType”/>

<element name="capabilityData" type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="LookupRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType" minOccurs="1" maxOccurs="unbounded"/>

</sequence>

<attribute name="returnData" type="spml:ReturnDataType" use="optional" default="everything"/>

</extension>

</complexContent>

</complexType>

<complexType name="LookupResponseType">

<complexContent>

<extension base="spml:ResponseType">

<sequence>

<element name="pso" type="spml:PSOType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>

</complexType>

<element name="lookupRequest" type="spml:LookupRequestType"/>

<element name="lookupResponse" type="spml:LookupResponseType"/>

3.2.1.3.1 Request (normative)

A requestor MUST send a <lookupRequest> to a provider in order to (ask the provider to) return (the XML that represents) an existing object.

Execution. A requestor MAY specify a type of execution for a lookup operation. See Determining execution type.

In general, a provider SHOULD NOT specify “executionMode=‘asynchronous’”. The reason for this is that the status of a lookup should reflect the current state of a target object. If a lookup operation is executed asynchronously then other operations are more likely to intervene.

PsoId. A <lookupRequest> MUST contain at least one <psoID> that specifies an object to be returned. The content of each <psoID> MUST identify an existing object on a target.

ReturnData. A <lookupRequest> MAY have a “returnData” attribute that tells the provider which subset of (the XML representation of) each <pso> to include in the provider’s response.

· A requestor that wants the provider to return nothing of each requested object
MUST specify “returnData=’nothing’”.
· A requestor that wants the provider to return only the identifier of each requested object
MUST specify “returnData=’identifier’”.
· A requestor that wants the provider to return the identifier of each requested object
plus the XML representation of the object (as defined in the schema of the target)
MUST specify “returnData=’data’”.
· A requestor that wants the provider to return the identifier of each requested object
plus the XML representation of the object (as defined in the schema of the target)
plus any capability-specific data that is associated with the object
MAY specify “returnData=’everything’” or MAY omit the “returnData” attribute
(since “returnData=’everything’” is the default).
3.2.1.3.2 Response (normative)

A provider that receives a <lookupRequest> from a requestor that the provider trusts MUST examine the content of the <lookupRequest>. If the request is valid, the provider MUST return (the XML that represents) each requested object if it is possible to do so.

Execution. If an <lookupRequest> does not specify “execution”, the provider MUST choose a type of execution for the requested operation. See the section entitled “Determining execution type”.

A provider SHOULD execute a lookup operation synchronously if it is possible to do so. The reason for this is that the status of a lookup should reflect the current state of a target object. If a lookup operation is executed asynchronously then other operations are more likely to intervene.

Response. The provider must return to the requestor a <lookupResponse>.

Status. The <lookupResponse> must have a “status” that indicates whether the provider successfully returned each requested object. See ‘Status (normative)’ for values of this attribute.

PSO and ReturnData. If the provider successfully returned each requested object, the <lookupResponse> MUST contain an <pso> element for each requested object. Each <pso> contains the subset of (the XML representation of) a requested object that the “returnData” attribute of the <lookupRequest> specified. By default, each <pso> contains the entire (XML representation of an) object.

· A <pso> element MUST contain a <psoID> element.

· If the <lookupRequest> specified “returnData=’none’”,
then the <psoID> element MUST be empty.

· Otherwise, if the <lookupRequest> specified “returnData=’identifier’”
or (if the <lookupRequest> specified) “returnData=’data’”
or (if the <lookupRequest> specified) “returnData=’everything’”
or (if the <lookupRequest>) omitted the “returnData” attribute
then the <psoID> element MUST contain the identifier of the requested object.
See the section entitled “PSOIdentifier”.

· A <pso> element MUST contain a <data> element.

· If the <lookupRequest> specified “returnData=’none’”
or (if the <lookupRequest> specified) “returnData=’identifier’”,
then the <data> element MUST be empty.

· Otherwise, if the <lookupRequest> specified “returnData=’data’”
or (if the <lookupRequest> specified) “returnData=’everything’”
or (if the <lookupRequest>) omitted the “returnData” attribute
then the <data> element MUST contain the XML representation of the object.
This XML must be valid according to the schema of the target for the schema entity of which the newly created object is an instance.

· A <pso> element MAY contain any number of <capabilityData> elements. Each <capabilityData> element contains an item of capability-specific data that is associated with the newly created object (for example, a reference to another object).

· If the <lookupRequest> specified “returnData=’none’”
or (if the <lookupRequest> specified) “returnData=’identifier’”
or (if the <lookupRequest> specified) “returnData=’data’”
then the <pso> MUST NOT contain a <capabilityData> element.

· Otherwise, if the <lookupRequest> specified “returnData=’everything’”
or (if the <lookupRequest>) omitted the “returnData” attribute,
then the <pso> MUST contain a <capabilityData> element for each item of capability-specific data that is associated with the requested object
(and that is specific to a capability that the target supports for the schema entity of which the requested object is an instance).
Error. If the provider cannot return the requested object, the <lookupResponse> must have an “error” attribute that characterizes the failure. See “Error (normative)” for values of this attribute.

The provider MUST return an error if any of the following is true:

· A <lookupRequest> contains no <psoID>.

· A <lookupRequest> contains a <psoID> that does not identify an object that exists on a target.

The provider MAY return an error if:

· A <psoID> contains data that the provider does not recognize.

3.2.1.3.3 Examples (non-normative)

In the following example, a requestor asks a provider to return the person object from the add examples above. The requestor specifies the identifier for the person object.

	<lookupRequest>

<psoID objectId=”2244” targetID=“target2”/>
</lookupRequest>

The provider returns a <lookupResponse> element. The “status” attribute of the <lookupResponse> element indicates that the lookup request was successfully processed. The <lookupResponse> contains a <pso> element that contains the requested object.

The <pso> element contains a <psoID> element that contains the PSOIdentifier.

	<lookupResponse status=“success">

<pso>

<psoID objectId=”2244” targetID=“target2”/>

<data>

<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>

<email>joebob@example.com</email>

</Person>

</data>

</pso>

</lookupResponse>

Next, the requestor asks a provider to return the account object from the add examples above. The requestor specifies a <psoID> for the account object.

	<lookupRequest>

<psoID objectId="1431" targetID=“target1”/>

</lookupRequest>

The provider returns a <lookupResponse> element. The “status” attribute of the <lookupResponse> element indicates that the add request was successfully processed. The <lookupResponse> contains a <pso> element that contains the requested object.

The <pso> element contains a <psoID> element which content uniquely identifies the object. In this example, the <pso> element also contains two reference elements. The lookup operation automatically includes capability-specific data (such as these two reference elements) if the schema for the target declares that it supports the reference capability (for the schema entity of which the requested object is an instance).

	<lookupResponse status=“success">

<pso>

<psoID objectId=”1431” targetID=“target1”/>

<data>

<Account accountName=”joebob”/>

</data>

<capabilityData>

<reference typeOfReference="memberOf">

<toPsoID ID="group1" targetID=“target1”/>

</reference>

</capabilityData>

<capabilityData>

<reference typeOfReference="owner">

<toPsoID ID="2244" targetID=“target2”/>

</reference>

</capabilityData>

</pso>

</lookupResponse>

To illustrate the effect of the “returnData” attribute, let’s reissue the previous request and specify a value of “returnData” other than the default (which is “returnData=’everything’”). First, assume that the requestor specifies “returnData=’nothing’”.

	<lookupRequest returnData=”nothing”>

<psoID objectId="1431" targetID=“target1”/>

</lookupRequest>

Since the request specifies “return=’nothing’”, the <pso> in the response contains only empty <psoID> and <data> elements. However, the fact that the response specifies “status=’success’” indicates that the requested object exists.

	<lookupResponse status=“success">

<pso>

<psoID/>

<data/>

</pso>

</lookupResponse>

Next, assume that the requestor specifies “return=’identifier’”.

	<lookupRequest returnData=”identifier”>

<psoID objectId="1431" targetID=“target1”/>

</lookupRequest>

Since the request specifies “return=’identifier’”, the <pso> in the response contains the <psoID> but the <data> element is empty. The fact that the response specifies “status=’success’” again indicates that the requested object exists.

In this example, specifying “return=’identifier’” offers no advantage over “return=’none’”. However, one could imagine a scenario in which a lookup request that specifies “return=’identifier’” would offer an advantage. If the identifier of the object had changed (e.g., as the result of a modification) but the provider still recognized the old identifier, then a lookup request that specifies “return=’identifier’” could allow the requestor to obtain the current identifier for the requested object.

	<lookupResponse status=“success">

<pso>

<psoID objectId="1431" targetID=“target1”/>

<data/>

</pso>

</lookupResponse>

Next assume that the requestor specifies “returnData=’data’”.

	<lookupRequest returnData=”data”>

<psoID objectId="1431" targetID=“target1”/>

</lookupRequest>

Since the request specifies “return=’data’”, the <pso> in the response contains the <psoID> and <data> but no <capabilityData> element. Specifying “return=’data’” returns the XML representation of the object as defined in the schema for the target but suppresses capability-specific data.

Specifying “return=’data’” is advantageous if the requestor is not interested in capability-specific data. Omitting capability-specific data may reduce the amount of work that the provider must do in order to build the <lookupResponse>. Reducing the size of the response should also reduce the network traffic that is required in order to transmit the response. Omitting capability-specific data may also reduce the amount of XML parsing work that the requestor must perform in order to process the response.

	<lookupResponse status=“success">

<pso>

<psoID objectId="1431" targetID=“target1”/>

<data>

<Account accountName=”joebob”/>

</data>

</pso>

</lookupResponse>

3.2.1.4 modify

The modify operation enables a requestor to change an object on a target. The modify operation can change the schema-defined component of an object, any capability-specific data that is associated with the object, or both.

Modify can change PSO Identifier. One important subtlety is that a modify operation may change the identifier of the modified object. For example, assume that a provider exposes the Distinguished Name (DN) as the identifier of each object on a target that represents a directory service. In this case, modifying the object’s Common Name (CN) or moving the object beneath a different Organizational Unit (OU) would change the object’s DN and therefore its PSO-ID.

In general, the PSTC recommends that each provider expose an immutable identifier as the PSO-ID of each object. In the case of a target that represents a directory service, an immutable identifier could be a Globally Unique IDentifier (GUID) that is managed by the directory service or it could be any form of unique identifier that is managed by the provider.

The subset of the Core Schema that is most relevant to the modify operation follows.

	
<complexType name="CapabilityDataType">

<complexContent>

<extension base="spml:ExtensibleType">

<attribute name="mustUnderstand" type="boolean" use="optional"/>

</extension>

</complexContent>

</complexType>

<simpleType name="ReturnDataType">

<restriction base="string">

<enumeration value="none"/>

<enumeration value="identifier"/>

<enumeration value="data"/>

<enumeration value="everything"/>

</restriction>

</simpleType>

<complexType name="PSOType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType”/>

<element name="data" type="spml:ExtensibleType”/>

<element name="capabilityData" type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>

</complexType>

<simpleType name="ModificationModeType">

<restriction base="string">

<enumeration value="add"/>

<enumeration value="replace"/>

<enumeration value="delete"/>

</restriction>

</simpleType>

<complexType name="NamespacePrefixMappingType">

<complexContent>

<extension base="spml:ExtensibleType">

<attribute name="prefix" type="string" use="required"/>

<attribute name="namespace" type="string" use="required"/>

</extension>

</complexContent>

</complexType>

<complexType name="QueryClauseType">

<complexContent>

<extension base="spml:ExtensibleType">

</extension>

</complexContent>

</complexType>

<complexType name="SelectionType">

<complexContent>

<extension base="spml:QueryClauseType">

<sequence>

<element name="namespacePrefixMap" type="spml:NamespacePrefixMappingType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="path" type="string" use="required"/>

<attribute name="namespaceURI" type="string" use="required"/>

</extension>

</complexContent>

</complexType>

<complexType name="ModificationType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="component" type="spml:SelectionType" minOccurs="0" maxOccurs="1"/>

<element name="data" type="spml:ExtensibleType" minOccurs="0" maxOccurs="1”/>

<element name="capabilityData" type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="modificationMode" type="spml:ModificationModeType" use="required"/>

<attribute name="returnData" type="spml:ReturnDataType" use="optional" default="everything"/>

</extension>

</complexContent>

</complexType>

<complexType name="ModifyRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType"/>

<element name="modification" type="spml:ModificationType" minOccurs="1" maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="ModifyResponseType">

<complexContent>

<extension base="spml:ResponseType">

<sequence>

<element name="pso" type="spml:PSOType" minOccurs="0" maxOccurs="1"/>

</sequence>

</extension>

</complexContent>

</complexType>

<element name="modifyRequest" type="spml:ModifyRequestType"/>

<element name="modifyResponse" type="spml:ModifyResponseType"/>

3.2.1.4.1 Request (normative)

A requestor MUST send a <modifyRequest> to a provider in order to (ask the provider to) modify an existing object.

Execution. A requestor MAY specify a type of execution for a modify operation. See Determining execution type.

PsoId. A <modifyRequest> MUST contain exactly one <psoID>. A <psoID> MUST contain a valid PSOIdentifier for an object that exists on a target that is exposed by the provider.

ReturnData. A <modifyRequest> MAY have a “returnData” attribute that tells the provider which subset of (the XML representation of) each modified <pso> to include in the provider’s response.

· A requestor that wants the provider to return nothing of the modified object
MUST specify “returnData=’nothing’”.
· A requestor that wants the provider to return only the identifier of the modified object
MUST specify “returnData=’identifier’”.
· A requestor that wants the provider to return the identifier of the modified object
plus the XML representation of the object (as defined in the schema of the target)
MUST specify “returnData=’data’”.
· A requestor that wants the provider to return the identifier of the modified object
plus the XML representation of the object (as defined in the schema of the target)
plus any capability-specific data that is associated with the object
MAY specify “returnData=’everything’” or MAY omit the “returnData” attribute
(since “returnData=’everything’” is the default).
Modification. A <modifyRequest> MUST contain at least one <modification>. A <modification> describes a set of changes to be applied (to the object that the <psoID> specifies). A <modification> MUST have a “modificationMode” that specifies the type of change as one of ‘add’, ‘modify’ or ‘delete’.

A requestor MAY specify a change to a schema-defined element or attribute of the object to be modified. A requestor MAY specify any number of changes to capability-specific data associated with the object to be modified.

A requestor MUST use a <component> element to specify a schema-defined element or attribute of the object to be modified. A requestor MUST use a <capabilityData> element to describe each change to a capability-specific data element that is associated with the object to be modified.

A <modification> element MUST contain a <component> element or (the <modification> MUST contain) at least one <capabilityData> element. A <modification> element MAY contain both a <component> element and one or more <capabilityData> elements.

Modification component. The <component> sub-element of a <modification> specifies a schema-defined element or attribute of the object that is to be modified. This is an instance of {SelectionType}, which occurs in several contexts within SPMLv2. See the section entitled “SelectionType in a Request (normative)”.

Modification data. A requestor MUST specify as the content of the <data> sub-element of a <modification> any value that is to be added to, replaced within, or deleted from the element or attribute that the <component> (sub-element of the <modification>) specifies.

Modification capabilityData. A requestor MAY specify any number of <capabilityData> elements within a <modification> element. Each <capabilityData> element specifies capability-specific data (for example, a reference to another object) for the object to be modified. Because it is an {ExtensibleType}, a <capabilityData> element may validly contain any XML element or attribute. The <capabilityData> element SHOULD contain elements that the provider will recognize as specific to a capability that the target supports for the schema entity of which the object to be modified is an instance.

3.2.1.4.2 Response (normative)

A provider that receives a <modifyRequest> from a requestor that the provider trusts MUST examine the content of the <modifyRequest>. If the request is valid, the provider MUST apply each requested <modification> (to the object that is specified by the <identifier> corresponding to that <modification>) if it is possible to do so.

Execution. If an <modifyRequest> does not have an execution attribute, the provider MUST choose a type of execution for the requested operation. See the section entitled “Determining execution type”.

Response. The provider must return to the requestor a <modifyResponse>.

Status. The <modifyResponse> must have a “status” attribute that indicates whether the provider successfully applied the requested modifications to each identified object. See Status (normative)“”
 for values of this attribute.

Pso and ReturnData. If the provider successfully modified the requested object, the <modifyResponse> MUST contain an <pso> element. The <pso> contains the subset of (the XML representation of) a requested object that the “returnData” attribute of the <lookupRequest> specified. By default, the <pso> contains the entire (XML representation of the) modified object.

· A <pso> element MUST contain a <psoID> element.

· If the <modifyRequest> specified “returnData=’none’”,
then the <psoID> element MUST be empty.

· Otherwise, if the <modifyRequest> specified “returnData=’identifier’”
or (if the <modifyRequest> specified) “returnData=’data’”
or (if the <modifyRequest> specified) “returnData=’everything’”
or (if the <modifyRequest>) omitted the “returnData” attribute
then the <psoID> element MUST contain the identifier of the requested object.
See the section entitled “PSOIdentifier”.

· A <pso> element MUST contain a <data> element.

· If the <modifyRequest> specified “returnData=’none’”
or (if the <modifyRequest> specified) “returnData=’identifier’”,
then the <data> element MUST be empty.

· Otherwise, if the <modifyRequest> specified “returnData=’data’”
or (if the <modifyRequest> specified) “returnData=’everything’”
or (if the <modifyRequest>) omitted the “returnData” attribute
then the <data> element MUST contain the XML representation of the object.
This XML must be valid according to the schema of the target for the schema entity of which the newly created object is an instance.

· A <pso> element MAY contain any number of <capabilityData> elements. Each <capabilityData> element contains an item of capability-specific data that is associated with the newly created object (for example, a reference to another object).

· If the <modifyRequest> specified “returnData=’none’”
or (if the <modifyRequest> specified) “returnData=’identifier’”
or (if the <modifyRequest> specified) “returnData=’data’”
then the <modifyResponse> MUST NOT contain a <capabilityData> element.

· Otherwise, if the <modifyRequest> specified “returnData=’everything’”
or (if the <modifyRequest>) omitted the “returnData” attribute,
then the <modifyResponse> MUST contain a <capabilityData> element for each item of capability-specific data that is associated with the requested object
(and that is specific to a capability that the target supports for the schema entity of which the requested object is an instance).
Error. If the provider cannot modify the requested object, the <modifyResponse> must have an “error” attribute that characterizes the failure. See “Error (normative)” for values of this attribute.

The provider MUST return an error if any of the following is true:

· The <modifyRequest> contains a <modification> for which there is no corresponding <psoID>.

· A <modification> contains neither a <component> nor a <capabilityData>.

· A <component> is empty (that is, a component element has no content).

· A <component> specifies an element or attribute that is not valid (according to the schema of the target) for the type of object to be modified.

The provider MAY return an error if:

· A <component> contains data that the provider does not recognize as specifying an XML element or attribute that is valid according to the target schema for the type of object to be modified.

· A <capabilityData> contains data that the provider does not recognize as capability-specific data (i.e., one or more XML elements that correspond to a capability that the target supports for the type of object to be modified).

In addition, see the section entitled “SelectionType Errors (normative)”.

3.2.1.4.3 Examples (non-normative)

In the following example, a requestor asks a provider to modify the email address for an existing Person object.

	<modifyRequest>

<psoID objectId=”2244” targetID=“target2”/>

<modification modificationMode=”replace”>

<component>/Person/email</component>

<data>joebob@example.com</data>

</modification>

</modifyRequest>

The provider returns a <modifyResponse> element. The “status” attribute of the <modifyResponse> element indicates that the modify request was successfully processed. The <pso> element of the <modifyResponse> contains the XML representation of the modified object.

	<modifyResponse status=“success">

<pso>

<psoID objectId=”2244” targetID=“target2”/>

<data>

<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>

<email>joebob@example.com</email>

</Person>

</data>

</pso>

</modifyResponse>

In the following example, a requestor asks a provider to modify the same Person object, adding a reference to an Account that the Person owns. (Since the request is to add capability-specific data, the <modification> element contains no <component> sub-element.)

	<modifyRequest>

<psoID objectId=”2244” targetID=“target2”/>

<modification modificationMode=”add”>

<capabilityData>

<reference typeOfReference="owns" >

<toPsoID ID="1431" targetID=“target1”/>

</reference>

</capabilityData>

</modification>

</modifyRequest>

The provider returns a <modifyResponse> element. The “status” attribute of the <modifyResponse> element indicates that the modify request was successfully processed. The <pso> element of the <modifyResponse> shows that the provider has added (the <capabilityData> that is specific to) the “owns” reference.

	<modifyResponse status=“success">

<pso>

<psoID objectId=”2244” targetID=“target2”/>

<data>

<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>

<email>joebob@example.com</email>

</Person>

</data>

<capabilityData>

<reference typeOfReference="owns">

<toPsoID ID="1431" targetID=“target1”/>

</reference>

</capabilityData>

</pso>

</modifyResponse>

Modifying a reference. Since SPMLv2 does not specify any mechanism to define the cardinality of a type of reference, a requestor should not assume that a provider enforces any specific cardinality for any type of reference. For a general discussion of the issues surrounding references, see the section entitled “Reference Capability”.

In our next example, the requestor wishes to change the owner of an Account from “2244” (which is the PSO-ID of “Person:joebob”) to “2245” (which is the PSO-ID of “Person:billybob”). Assume that each account should have at most one owner. If the requestor could trust the provider to enforce this, and if the requestor could trust that no other requestor has changed the value of “owner”, the requestor could simply ask the provider to replace the owner value 2244 with 2245. However, since our requestor is both cautious and general, the requestor instead nests two <modification> elements within a single <modifyRequest>:
- one to delete any current values of “owner” and
- one to add the desired value of “owner”.

	<modifyRequest>

<psoID objectId=”1431” targetID=“target1”/>

<modification modificationMode=”delete”>

<capabilityData>

<reference typeOfReference="owner”/>

</capabilityData>

</modification>

<modification modificationMode=”add”>

<capabilityData>

<reference typeOfReference="owner" >

<toPsoID ID="2245" targetID=“target2”/>

</reference>

</capabilityData>

</modification>

</modifyRequest>

The provider returns a <modifyResponse> element. The “status” attribute of the <modifyResponse> element indicates that the modify request was successfully processed. The <pso> element of the <modifyResponse> shows that the (capability data that is specific to the) “owner” reference has been deleted.

	<modifyResponse status=“success">

<pso>

<psoID objectId=”1431” targetID=“target1”/>

<data>

<Account accountName=”joebob”/>

</data>

<capabilityData>

<reference typeOfReference="memberOf">

<toPsoID ID="group1" targetID=“target1”/>

</reference>

<reference typeOfReference="owner">

<toPsoID ID="2245" targetID=“target2”/>

</reference>

</capabilityData>

</pso>

</modifyResponse>

3.2.1.5 delete

The delete operation enables a requestor to remove an object from a target. The delete operation automatically removes any capability-specific data that is associated with the object.

The subset of the Core Schema that is most relevant to the delete operation follows.

	
<complexType name="DeleteRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType"/>

</sequence>

<attribute name="recursive" type="xsd:boolean" use="optional" default="false"/>

</extension>

</complexContent>

</complexType>

<complexType name="DeleteResponseType">

<complexContent>

<extension base="spml:ResponseType"/>

</complexContent>

</complexType>

<element name="deleteRequest" type="spml:DeleteRequestType"/>

<element name="deleteResponse" type="spml:DeleteResponseType"/>

3.2.1.5.1 Request (normative)

A requestor MUST send a <deleteRequest> to a provider in order to (ask the provider to) remove an existing object.

Execution. A requestor MAY specify a type of execution for a delete operation. See Determining execution type.

PsoId. A <deleteRequest> MUST contain a <psoID> element that identifies the object to delete.
Recursive. A <deleteRequest> MAY have a “recursive” attribute that specifies whether the provider should delete (along with the specified object) any object that the specified object (either directly or indirectly) contains.

· A requestor that wants the provider to delete any object that the specified object contains (along with the specified object) MUST specify “recursive=’true’”.

· A requestor that wants the provider to delete the specified object only if the specified object contains no other object MUST NOT specify “recursive=’true’”. Such a requestor MAY specify “recursive=’false’” or (such a requestor MAY) omit the “recursive” attribute (since ‘false’ is the default value).
CapabilityData. A <deleteRequest> MAY contain any number of <capabilityData> elements. Because {DeleteRequestType} extends {RequestType} and because other request types (such as <addRequest> and <modifyRequest>) must be able to contain capability-specific data, it is syntactically valid for a <deleteRequest> to contain capability-specific data.

A <deleteRequest> SHOULD NOT contain a <capabilityData> element. The reason for this is that capability-specific data are meaningless to a delete operation.

3.2.1.5.2 Response (normative)

A provider that receives a <deleteRequest> from a requestor that the provider trusts MUST examine the content of the request. If the request is valid, the provider MUST delete the object (that is specified by the <psoID> sub-element of the <deleteRequest>) if it is possible to do so.

Execution. If an <deleteRequest> does not have an “execution” attribute, the provider MUST choose a type of execution for the requested operation. See the section entitled “Determining execution type”.

CapabilityData. A provider MUST ignore any <capabilityData> sub-element that a <deleteRequest> contains. (Since capability-specific data are irrelevant to a delete operation, there is nothing to be gained by returning an error.)

Recursive. A provider MUST NOT delete an object that contains another object unless the <deleteRequest> specifies “recursive=’true’”. If the <deleteRequest> specifies “recursive=’true’” then the provider must delete the specified object along with any object that the specified object (directly or indirectly) contains.

Response. The provider must return to the requestor a <deleteResponse>.

Status. A <deleteResponse> must contain a “status” attribute that indicates whether the provider successfully deleted the specified object. See Status (normative)“”
 for values of this attribute.

Error. If the provider cannot delete the specified object, the <deleteResponse> must contain an “error” attribute that characterizes the failure. See “Error (normative)” for values of this attribute.

The provider MUST return an error if any of the following is true:

· The <psoID> sub-element of the <deleteRequest> is empty (that is, the identifier element has no content). In this case, the <deleteResponse> SHOULD specify “error=’noSuchIdentifier’”.

· The <psoID> sub-element of the <deleteRequest> contains invalid data. In this case the provider SHOULD return “error=’unsupportedIdentifierType’”.

· The <psoID> sub-element of the <deleteRequest> does not specify an object that exists. In this case the <deleteResponse> MUST specify “error=’noSuchIdentifier’”.

· The <psoID> sub-element of the <deleteRequest> specifies an object that contains another object and the <deleteRequest> does not specify “recursive=’true’”. In such a case the provider should return “error=’containerNotEmpty’”.

3.2.1.5.3 Examples (non-normative)

In the following example, a requestor asks a provider to delete an existing Person object.

	<deleteRequest>

<psoID objectId=”2244” targetID=“target2”/>

</deleteRequest>

The provider returns a <deleteResponse> element. The “status” attribute of the <deleteResponse> element indicates that the delete request was successfully processed. The <deleteResponse> contains no other data.

	<deleteResponse status=“success"/>

3.2.2 Async Capability

The Async Capability is defined in a schema associated with the following XML namespace: urn:oasis:names:tc:SPML:2:0:async. The Async Capability Schema is included as Appendix B to this document.

A provider that supports asynchronous execution of requested operations for a target SHOULD declare that the target supports the Async Capability. A provider that does not support asynchronous execution of requested operations MUST NOT declare that the target supports the Async Capability.

IMPORTANT: The Async Capability does NOT define an operation specific to requesting asynchronous execution. A provider that supports the Async Capability (for a schema entity of which each object that the requestor desires to manipulate is an instance):

1) MUST allow a requestor to specify “executionMode=‘asynchronous’”.
The provider MUST NOT fail such a request with “error=’unsupportedExecutionMode’”.
The provider MUST execute the requested operation asynchronously
(if the provider executes the requested operation at all).
See the section entitled “Requestor specifies asynchronous execution (normative)”.

2) MAY choose to execute a requested operation aynchronously
when the request does not specify the execution attribute.
See the section entitled “Provider chooses asynchronous execution (normative)”.

The Async Capability also defines two operations that a requestor may use to manage another operation that a provider is executing asynchronously:

· A status operation allows a requestor to check the status (and possibly results) of an operation.

· A cancel operation asks the provider to stop executing an operation.

Status. When a provider is executing SPML operations asynchronously, the requestor needs a way to check the status of requests. The status operation allows a requestor to determine whether an asynchronous operation has succeeded, has failed or is still pending. The status operation also allows a requestor to obtain the output of an asynchronous operation.

Cancel. A requestor may also need to cancel an asynchronous operation. The cancel operation allows a requestor to ask a provider to stop executing an ansynchronous operation.

IMPORTANT: Both the status and cancel operations must be executed synchronously. Because both cancel and status operate on other operations that a provider is executing asynchronously, it would be confusing to execute cancel or status asynchronously. For example, what would it mean to get the status of a status operation? Describing the expected behavior (or interpreting the result) of canceling a cancel operation would be difficult, and the chain could become quite long.

3.2.2.1 cancel

The cancel operation enables a requestor to stop the execution of an asynchronous operation. (The cancel operation itself must be synchronous.)

The subset of the Async Capability Schema that is most relevant to the cancel operation follows.

	
<complexType name="CancelRequestType">

<complexContent>

<extension base="spml:RequestType">

<attribute name="asyncRequestID" type="xsd:string" use="required"/>

</extension>

</complexContent>

</complexType>

<complexType name="CancelResponseType">

<complexContent>

<extension base="spml:ResponseType">

<attribute name="asyncRequestID" type="xsd:string" use="required"/>

</extension>

</complexContent>

</complexType>

<element name="cancelRequest" type="spmlasync:CancelRequestType"/>

<element name="cancelResponse" type="spmlasync:CancelResponseType"/>

Cancel must be synchronous. Because ‘cancel’ operates on another operation that a provider is executing asynchronously, the ‘cancel’ operation itself must be synchronous. (To do otherwise permits unnecessary confusion. What should happen when one cancels a ‘cancel’ operation?)
Cancel is not batchable. Because the cancel operation must be synchronous, a requestor must not nest a ‘cancel’ request in a batch request.
Request (normative)

A requestor MUST send a <cancelRequest> to a provider in order to (ask the provider to) cancel a requested operation that the provider is executing asynchronously.

Execution. A <cancelRequest> MUST NOT specify “executionMode=‘asynchronous’”. A requestor MUST specify “executionMode=‘synchronous’” or (a requestor MUST) omit the execution attribute of the <cancelRequest>. See Determining execution type.

AsyncRequestID. A <cancelRequest> MUST have an “asyncRequestID” attribute that specifies the operation to cancel.
3.2.2.1.1 Response (normative)

A provider that receives a <cancelRequest> from a requestor that the provider trusts MUST examine the content of the request. If the request is valid, the provider MUST cancel the operation (that the “asyncRequestID” attribute of the <cancelRequest> specifies) if it is possible for the provider to do so.

Execution. The provider MUST execute the cancel operation synchronously (if the provider executes the cancel operation at all). See the section entitled “Determining execution type”.

Response. The provider must return to the requestor a <cancelResponse>.

Status. A <cancelResponse> must have a “status” attribute that indicates whether the provider successfully processed the request to cancel the specified operation. See “Status (normative)” for values of this attribute.

Since the provider must execute a cancel operation synchronously, the <cancelResponse> MUST NOT specify “status=’pending’”. The <cancelResponse> MUST specify “status=’success’” or (the <cancelResponse> MUST specify) “status=’failure’”.

If the provider successfully canceled the specified operation, the <cancelResponse> MUST specify “status=’success’”. If the provider failed to cancel the specified operation, the <cancelResponse> MUST specify “status=’failure’”.

Error. If the provider cannot cancel the specified operation, the <cancelResponse> MUST contain an “error” attribute that characterizes the failure. See “Error (normative)” for values of this attribute.
The provider MUST return an error if any of the following is true:

· The “asyncRequestID” attribute of the <cancelRequest> has no value. In this case, the <cancelResponse> SHOULD specify “error=’malformedRequest’”.

· The “asyncRequestID” attribute of the <cancelRequest> does not specify an operation that exists. In this case the provider SHOULD return “error=’noSuchRequest’”.

3.2.2.1.2 Examples (non-normative)

In order to illustrate the cancel operation, we must first execute an operation asynchronously. In the following example, a requestor first asks a provider to delete a Person asynchronously.

	<deleteRequest>

<psoID objectId=”2244” targetID=“target2”/>

</deleteRequest>

The provider returns a <deleteResponse> element. The “status” attribute of the <deleteResponse> element indicates that the provider will execute the delete operation asynchronously. The <deleteResponse> also returns an “asyncRequestID”.

	<deleteResponse status=“pending" requestID=”8488”/>

Next, the same requestor asks the provider to cancel the delete operation.

	<cancelRequest asyncRequestID=”8488”/>

The provider returns a <cancelResponse>. The “status” attribute of the <cancelResponse> indicates that the provider successfully canceled the delete operation.

	<cancelResponse asyncRequestID=”8488” status=”success”/>

3.2.2.2 status

The status operation enables a requestor to determine whether an asynchronous operation has completed successfully, has failed, or is still executing. The status operation also (optionally) enables a requestor to obtain results of an asynchronous operation. (The status operation itself must be synchronous.)

The subset of the Async Capability Schema that is most relevant to the status operation is shown below for the convenience of the reader.

	
<complexType name="StatusRequestType">

<complexContent>

<extension base="spml:RequestType">

<attribute name="asyncRequestID" type="xsd:string" use="optional"/>

<attribute name="returnResults" type="xsd:boolean" use="optional" default="false"/>

</extension>

</complexContent>

</complexType>

<complexType name="StatusResponseType">

<complexContent>

<extension base="spml:ResponseType">

<attribute name="asyncRequestID" type="xsd:string" use="optional"/>

</extension>

</complexContent>

</complexType>

<element name="statusRequest" type="spmlasync:StatusRequestType"/>

<element name="statusResponse" type="spmlasync:StatusResponseType"/>

Status must be synchronous. The ‘status’ operation acts on other operations that a provider is executing asynchronously. The ‘status’ operation itself therefore must be synchronous. (To do otherwise permits unnecessary confusion. What should be the status of a ‘status’ operation?)
Status is not batchable. Because the status operation must be synchronous, a requestor must not nest a ‘status’ request in a batch request.
3.2.2.2.1 Request (normative)
A requestor MUST send a <statusRequest> to a provider in order to obtain the status or results of a requested operation that the provider is executing asynchronously.

Execution. A <statusRequest> MUST NOT specify “executionMode=‘asynchronous’”. A requestor MUST specify “executionMode=‘synchronous’” or (a requestor MUST) omit the “executionMode” attribute of the <statusRequest>. See Determining execution type.
AsyncRequestID. A <statusRequest> MAY have an “asyncRequestID” attribute that specifies one operation for which to return status or results. A <statusRequest> that omits “asyncRequestID” implicitly requests the status of all operations that the provider has executed asynchronously on behalf of the requestor (and for which operations the provider still retains status and results).

returnResults. A <statusRequest> MAY have a “returnResults” attribute that specifies whether the requestor wants the provider to return any results (or output) of the operation that is executing asynchronously. If a <statusRequest> does not specify “returnResults”, the requestor has implicitly asked that the provider return only the “status” of the operation that is executing asynchronously.

3.2.2.2.2 Response (normative)

A provider that receives a <statusRequest> from a requestor that the provider trusts MUST examine the content of the request. If the request is valid, the provider MUST cancel the operation (that the “asyncRequestID” attribute of the <statusRequest> specifies) if it is possible for the provider to do so.

Execution. The provider MUST execute the status operation synchronously (if the provider executes the status operation at all). See the section entitled “Determining execution type”.

ReturnResults. A <statusRequest> MAY have a “returnResults” attribute that indicates whether the requestor wants the provider to return in each nested response (in addition to status, which is always returned) any results of (i.e., output or XML content of the response element for) the operation that is executing asynchronously.

· If a <statusRequest> specifies “returnResults=’true’”, then the provider must also return in the <statusResponse> any results (or output) of each operation.

· If a <statusRequest> specifies “returnResults=’false’”, then the provider must return in the <statusResponse> only the “status” of the each operation.

· If the <statusRequest> does not specify a value for “returnResults”, the provider MUST assume that the requestor wants only the “status” (and not any result) of the operation that is executing asynchronously.

Response. The provider must return to the requestor a <statusResponse>.

Status. A <statusResponse> must have a “status” attribute that indicates whether the provider successfully obtained the status of the specified operation (and obtained any results of the specified operation if the <statusRequest> specifies “returnResults=’true’”). See Status (normative)“”
 for values of this attribute.

Since the provider must execute a status operation synchronously, the <statusResponse> MUST NOT specify “status=’pending’”. The <statusResponse> MUST specify “status=’success’” or (the <statusResponse> MUST specify) “status=’failure’”.

· If the provider successfully obtained the status of the specified operation (and successfully obtained any output of the specified operation if the <statusRequest> specifies “returnOutput=’true’”), the <statusResponse> MUST specify “status=’success’”.

· If the provider failed to obtain the status of the specified operation (or failed to obtain any output of the specified operation if the <statusRequest> specifies “returnOutput=’true’”), the <statusResponse> MUST specify “status=’failure’”.

Nested Responses. A <statusResponse> MAY contain any number of responses. Each response is an instance of a type that extends {ResponseType}. Each response represents an operation that the provider is executing asynchronously.

· A <statusResponse> that specifies “status=’failure’” MUST NOT contain an embedded response. Since the status operation failed, the response should not contain data.

· A <statusResponse> that specifies “status=’success’” MAY contain any number of responses.

· If the <statusRequest> specifies “asyncRequestID”,
then a successful <statusResponse> MUST contain exactly one nested response
that represents the operation that “asyncRequestID” specifies.

· If the <statusRequest> omits “asyncRequestID”,
then a successful <statusResponse> MUST contain a nested response for each operation that the provider has executed asynchronously as the result of a request from that requestor (and for which operation the provider still retains status and results).

Nested Response RequestID. Each nested response MUST have a “requestID” attribute that identifies the corresponding operation (within the namespace of the provider).

Nested Response Status. Each nested response MUST have a “status” attribute that specifies the current state of the corresponding operation.

· A nested response that represents an operation that failed
MUST specify “status=’failure’”.

· A nested response that represents an operation that succeeded
MUST specify “status=’success’”.

· A nested response that represents an operation that the provider is still executing
MUST specify “status=’pending’”.

Nested Response and ReturnResults. If a <statusRequest> specifies “returnResults=’true’”, then each response that is nested in the <statusResponse> MUST contain any output thus far produced by the corresponding operation.

· A nested response that specifies “status=’success’” MUST contain all the output that would have been contained in a synchronous response for the operation if the provider had executed the specified operation synchronously.

· A nested response that specifies “status=’pending’” MUST contain a subset of the output that would have been contained in a synchronous response for the operation if the provider had executed the specified operation synchronously.

Error. If the provider cannot obtain the status of the specified operation, the <statusResponse> MUST contain an “error” attribute that characterizes the failure. See “Error (normative)” for values of this attribute.

The provider MUST return an error if any of the following is true:

· The “asyncRequestID” attribute of the <statusRequest> has no value. In this case, the <statusResponse> SHOULD specify “error=’malformedRequest’”.

· The “asyncRequestID” attribute of the <statusRequest> does not specify an operation that exists. In this case the provider SHOULD return “error=’noSuchRequest’”.

3.2.2.2.3 Examples (non-normative)

In order to illustrate the status operation, we must first execute an operation asynchronously. In this example, a requestor first asks a provider to add a Person asynchronously.

	<addRequest targetID=”target2” executionMode=”asynchronous”>

<containerID ID=”ou=Development, org=Example” />

<data>

<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>

<email>joebob@example.com</email>

</Person>

</data>

</addRequest>

The provider returns an <addResponse>. The “status” attribute of the <addResponse> indicates that provider will execute the delete operation asynchronously. The <addResponse> also has a “requestID” attribute (even though the original <addRequest> did not specify “requestID”).

If the original <addRequest> had specified a “requestID”, then the <addResponse> would specify the same “requestID” value.

	<addResponse status=“pending" requestID=”8489”/>

The same requestor then asks the provider to obtain the status of the add operation. The requestor does not ask the provider to include any output of the add operation.

	<statusRequest requestID =”8489”/>

The provider returns a <statusResponse>. The “status” attribute of the <statusResponse> indicates that the provider successfully obtained the status of the add operation.

The <statusResponse> also contains a nested <addResponse> that represents the add operation. The <addResponse> specifies “status=’pending’”, which indicates that the add operation has not completed executing.
	<statusResponse status=”success”>

<addResponse status=”pending” requestID=”8489”/>

</statusResponse>

Next, the same requestor asks the provider to obtain the status of the add operation. This time the requestor asks the provider to include any results of the add operation.

	<statusRequest asyncRequestID=”8489” returnResults=”true”/>

The provider again returns a <statusResponse>. The “status” attribute of the <statusResponse> again indicates that the provider successfully obtained the status of the add operation.

The <statusResponse> again contains a nested <addResponse> that represents the add operation. The <addResponse> specifies “status=’pending’”, which indicates that the add operation still has not completed executing.

Because the statusRequest specified “returnOutput=’true’”, the <addResponse> contains a subset of the output that the add operation will eventually produce if the add operation successfully completes. The <pso> element already contains the <Person> data that was supplied in the <addRequest> but the <pso> element does not yet contain the <psoID> element that will be generated when the add operation is complete.
	<statusResponse status=”success”>

<addResponse status=”pending” requestID=”8489”>

<pso>

<data>

<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>

<email>joebob@example.com</email>

</Person>

</data>

</pso>

</addResponse>

</statusResponse>

Finally, the same requestor asks the provider to obtain the status of the add operation. The requestor again asks the provider to include any output of the add operation.

	<statusRequest asyncRequestID=”8489” returnResults=”true”/>

The provider again returns a <statusResponse>. The “status” attribute of the <statusResponse> again indicates that the provider successfully obtained the status of the add operation.

The <statusResponse> again contains a nested <addResponse> that represents the add operation. The <addResponse> specifies “status=’success’”, which indicates that the add operation completed successfully.

Because the statusRequest specified “returnResults=’true’” and because the <addResponse> specifies “status=’success’”, the <addResponse> now contains all of the output of the add operation. The <pso> element contains the <Person> data that was supplied in the <addRequest> and the <pso> element also contains the <psoID> element that was missing earlier.

	<statusResponse status=”success”>

<addResponse status=”pending” requestID=”8489”>

<pso>

<data>

<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>

<email>joebob@example.com</email>

</Person>

</data>

<psoID objectId=”2244” targetID=“target2”/>

</pso>

</addResponse>

</statusResponse>

3.2.3 Batch Capability

The Batch Capability is defined in a schema associated with the following XML namespace: urn:oasis:names:tc:SPML:2:0:batch. The Batch Capability Schema is included as Appendix C to this document.

A provider that supports batch execution of requested operations for a target SHOULD declare that the target supports the Batch Capability. A provider that does not support batch execution of requested operations MUST NOT declare that the target supports the Batch Capability.

The Batch Capability defines one operation: batch.

3.2.3.1 batch

The subset of the Batch Capability Schema that is most relevant to the batch operation follows.

	
<simpleType name="ProcessingType">

<restriction base="string">

<enumeration value="sequential"/>

<enumeration value="parallel"/>

</restriction>

</simpleType>

<simpleType name="OnErrorType">

<restriction base="string">

<enumeration value="resume"/>

<enumeration value="exit"/>

</restriction>

</simpleType>

<complexType name="BatchRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<annotation>

<documentation>Elements that extend spml:RequestType </documentation>

</annotation>

</sequence>

<attribute name="processing" type="spmlbatch:ProcessingType" use="optional" default="sequential"/>

<attribute name="onError" type="spmlbatch:OnErrorType" use="optional" default="exit"/>

</extension>

</complexContent>

</complexType>

<complexType name="BatchResponseType">

<complexContent>

<extension base="spml:ResponseType">

<sequence>

<annotation>

<documentation>Elements that extend spml:ResponseType </documentation>

</annotation>

</sequence>

</extension>

</complexContent>

</complexType>

<element name="batchRequest" type="spmlbatch:BatchRequestType"/>

<element name="batchResponse" type="spmlbatch:BatchResponseType"/>

The batch operation combines any number of individual requests into a single request.

A batch is not a logical unit of work. Using a batch operation to combine individual requests does not imply atomicity (i.e., “all-or-nothing” semantics) for the group of batched requests. The failure of a nested request will not undo a nested request that has already completed.
See Transactional Semantics.

This does not preclude a batch operation having transactional semantics—this is unspecified. A provider (or some higher-level service) with the ability to undo specific operations could support rolling back an entire batch if an operation nested within the batch fails.

BatchableRequestType. The core schema defines {RequestType} as the base type for any SPML request. A requestor may group into a <batchRequest> any number of requests that derive from {RequestType}.

Positional correspondence. The provider’s <batchResponse> contains an individual response for each individual request that the requestor’s <batchRequest> contained. Each individual response occupies the same position within the <batchResponse> that the corresponding individual request occupied within the <batchRequest>.

Processing Types. A requestor can specify whether the provider executes the individual requests one-by-one in the order that they occur within a <batchRequest>. The “processing” attribute of a <batchRequest> controls this behavior.

· When a <batchRequest> specifies “processing=’sequential’”, the provider must execute each requested operation one at a time and in the exact order that it occurs within the <batchRequest>.

· When a <batchRequest> specifies “processing=’parallel’”, the provider may execute the requested operations within the <batchRequest> in any order.

Individual errors. A requestor can specify whether the provider quits at the first error it encounters (in processing individual requests within a <batchRequest>) or continues despite any number of errors. The “onError” attribute of a <batchRequest> controls this behavior.

· When a <batchRequest> specifies “onError=’exit’”, the first error that a provider encounters (in processing individual operations within that batch) will result in the termination of processing for the entire batch and all of the requests that did not get processes are marked as failed. When used with the processing attribute, onError provides the RA with the ability to guarantee execution order and pre-requisite processing in batch operations.

· When a <batchRequest> specifies “onError=’resume’”, the provider errors encountered processing individual operations within that batch are handles by the PSP and do not effect the attempted execution of the remaining operations in the batch. It is the responsibility of the PSP to maintain the positional correspondence of the individual operations and provide appropriate error reporting as described in section 7.3.6.

Overall error. When a requestor issues a <batchRequest> with “onError=’resume’” and one or more of the requests in that batch fails, then the provider will return a <batchResponse> with “status=’failure’” (even if some of the requests in that batch succeed). The requestor must examine every individual response within the overall <batchResponse> to determine which requests succeeded and which requests failed.

Batch is not batchable. A requestor must not nest a ‘batch’ request within another batch request. (To support nested batches would impose on each provider a burden of complexity that the benefits of nested batches do not justify.)

Some operations are not batchable. For various reasons, a requestor must not nest certain types of requests within a batch request. For example, a request to listTargets must not be batched (because a requestor cannot know until the requestor examines the response from ‘listTargets’ whether the provider supports the batch capability). Requests to search for objects (and requests to iterate the results of a search) must not be batched for reasons of scale. Batching requests to cancel and obtain the status of asynchronous operations would introduce circularity.
3.2.3.1.1 Request (normative)

A requestor MUST send a <batchRequest> to a provider in order to (ask the provider to) execute multiple requests as a set.

batchableRequest. A <batchRequest> MAY contain any number of elements that extend {spml:RequestType}.

A <batchRequest> SHOULD contain at least one element that extends {spml:RequestType}.

A <batchRequest> MUST NOT contain as a nested request an element that is of any the following types:

· {spml:ListTargetsRequestType}

· {spmlbatch:BatchRequestType}

· {spmlsearch:SearchRequestType}

· {spmlsearch:IterateRequestType}

· {spmlasync:CancelRequestType}

· {spmlasync:StatusRequestType}

processing. A requestor MAY specify a “processing” attribute in a batchRequest. If a requestor specifies a “processing” attribute, the value of the “processing” attribute must be one of the following: ‘sequential’ or ‘parallel’.

· A requestor who wants the provider to process the nested requests concurrently with each other MUST specify “processing=’parallel’”.

· A requestor who wants the provider to process the nested requests one-by-one and in the order that they appear MAY specify “processing=’sequential’”.

· A requestor who does not specify “processing” is implicitly asking the provider to process the nested requests sequentially.

onError. A requestor MAY specify an “onError” attribute in a batchRequest. If a requestor specifies an “onError” attribute, the value of the “onError” attribute must be one of the following: ‘exit’ or ‘resume’.

· A requestor who wants the provider to continue processing nested requests whenever processing one of the nested requests will result in an error MUST specify “onError=’resume’”.

· A requestor who wants the provider to cease processing nested requests as soon as processing any of the nested requests encounters an error MAY specify “onError=’exit’”.

· A requestor who does not specify an “onError” attribute implicitly asks the provider to cease processing nested requests as soon as processing any of the nested requests encounters an error.

3.2.3.1.2 Response (normative)

The provider must examine the content of the <batchRequest>. If the request is valid, the provider MUST process each nested request (according to the effective “processing” and “onError” settings) if the provider possibly can.

processing. If a <batchRequest> specifies “processing=’parallel’”, the provider SHOULD begin executing each of the nested requests as soon as possible. (Ideally, the provider would begin executing all of the nested requests immediately and concurrently.) If the provider cannot begin executing all of the nested requests at the same time, then the provider SHOULD begin executing as many as possible of the nested requests as soon as possible.

If a <batchRequest> specifies “processing=’sequential’”, the provider MUST execute each of the nested requests one-by-one and in the order that each appears within the <batchRequest>. The provider MUST complete execution of each nested request before the provider begins to execute the next nested request.

onError. The effect (on the provider’s behavior) of the “onError” attribute of a <batchRequest> depends on the “processing” attribute of the <batchRequest>.

· If a <batchRequest> specifies “onError=’exit’” and (the <batchRequest> specifies) “processing=’sequential’” then the provider MUST NOT execute any (operation that is described by a) nested request that is subsequent to the first nested request that produces an error.

If the provider encounters an error in executing (the operation that is described by) a nested request, the provider MUST report the error in the nested response that corresponds to the nested request and then (the provider MUST) specify “status=’failure’” in every <batchableResponse> that corresponds to a subsequent nested request within the same <batchRequest>. The provider MUST also specify “status=’failure’” in the overall <batchResponse>.

· If a <batchRequest> specifies “onError=’exit’” and (the <batchRequest> specifies) “processing=’parallel’” then the provider’s behavior once an error occurs (in processing an operation that is described by a nested request) is not fully specified.

If the provider encounters an error in executing (the operation that is described by) a nested request, the provider MUST report the error in the nested response that corresponds to the nested request. The provider MUST also specify “status=’failure’” in the overall <batchResponse>. However, the provider’s behavior with respect to any operation that is not yet complete is not fully specified.

The provider MAY stop executing any (operation that is described by a) nested request that has not yet completed or (the provider MAY) choose to complete the execution of any (operation that corresponds to a) nested request (within the same batchRequest and) for which the provider has already begun execution. The provider SHOULD NOT begin to execute any operation (that corresponds to a nested request within the same batchRequest and) for which the provider has not yet begun execution.

· If a <batchRequest> specifies “onError=’resume’” and (the <batchRequest> specifies) “processing=’parallel’”, then the provider MUST execute every (operation that is described by a) nested request within the <batchRequest>. If the provider encounters an error in executing any (operation that is described by a) nested request, the provider MUST report the error in the nested response that corresponds to the nested request and then (the provider MUST) specify “status=’failure’” in the overall <batchResponse>.

· If a <batchRequest> specifies “onError=’resume’” and (the <batchRequest> specifies) “processing=’sequential’”, then the provider MUST execute every (operation that is described by a) nested request within the <batchRequest>. If the provider encounters an error in executing any (operation that is described by a) nested request, the provider MUST report the error in the nested response that corresponds to the nested request and then (the provider MUST) specify “status=’failure’” in the overall <batchResponse>.

Response. The provider MUST return to the requestor a <batchResponse>.

Status. The <batchResponse> must contain a “status” attribute that indicates whether the provider successfully processed every nested request. See “Status (normative)” for values of this attribute.

· If the provider successfully executed every operation described by a) nested request, the <batchResponse> MUST specify “status=’success’”.

· If the provider encountered an error in processing (the operation described by) any nested request, the <batchResponse> MUST specify “status=’failure’”.

nested Responses. The <batchResponse> MUST contain a nested response for each nested request that the <batchRequest> contains. Each nested response within the <batchResponse> corresponds positionally to a nested request within the <batchRequest>. That is, each nested response MUST appear in the same position within the <batchResponse> that the nested request (to which the nested response corresponds) originally appeared within the corresponding <batchRequest>.

The content of each nested response depends on whether the provider actually executed the nested operation that corresponds to the nested response.

· Each nested response that corresponds to a nested request that the provider did not process MUST specify “status=’failed’”. (A provider might not process a nested request, for example, if the provider encountered an error processing an earlier nested request and the requestor specified both “processing=’sequential’” and “onError=’exit’”.)

· Each nested response that corresponds to a nested request for an operation that the provider actually executed MUST contain the same data that the provider would have returned (in the response for the corresponding operation) if the corresponding operation had been requested individually (rather than as part of a batch operation).

Error. If something (other than the behavior specified by the “onError“ setting with respect to errors that occur in processing nested requests) prevents the provider from processing one or more of the (operations described by the) nested requests within a <batchRequest>, then the <batchResponse> MUST have an “error” attribute that characterizes the failure. See “Error (normative)” for values of this attribute.

3.2.3.1.3 Examples (non-normative)

In the following example, a requestor asks a provider to perform a series of operations. The requestor asks the provider first to add a Person object to one target and then to add an Account object to another target. (These are the first two examples of the add operation.)

	<batchRequest processing=”sequential” onError=”exit”>

<addRequest targetID=“target2”>

<containerID ID=”ou=Development, org=Example”/>

<data>

<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>

<email>joebob@example.com</email>

</Person>

</data>

</addRequest>

<addRequest targetID=”target1”>

<data>

<Account accountName=”joebob”/>

</data>

<capabilityData>

<reference typeOfReference="memberOf">

<toPsoID ID="group1" targetID=“target1”/>

</reference>

</capabilityData>

<capabilityData>

<reference typeOfReference="owner">

<toPsoID ID="2244" targetID=“target2”/>

</reference>

</capabilityData>

</addRequest>

</batchRequest>

The provider returns an <batchResponse> element. The “status” of the <batchResponse> indicates that all of the nested requests were processed successfully. The <batchResponse> contains an <addResponse> for each <addRequest> that the <batchRequest> contained. Each <addResponse> contains the same data that it would have contained if the corresponding <addRequest> had been requested individually.

	<batchResponse status=“success">

<addResponse status=“success">

<pso>

<data>

<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>

<email>joebob@example.com</email>

</Person>

</data>

<psoID objectId=”2244” targetID=“target2”/>

</pso>

</addResponse>

<addResponse status=“success">

<pso>

<data>

<Account accountName=”joebob”/>

</data>

<psoID objectId=”1431” targetID=“target1”/>

<capabilityData>

<reference typeOfReference="memberOf">

<toPsoID ID="group1" targetID=“target1”/>

</reference>

</capabilityData>

<capabilityData>

<reference typeOfReference="owner">

<toPsoID ID="2244" targetID=“target2”/>

</reference>

</capabilityData>

</pso>

</addResponse>

</batchResponse>

3.2.4 Bulk Capability

The Batch Capability is defined in a schema associated with the following XML namespace: urn:oasis:names:tc:SPML:2:0:bulk. This document includes the Bulk Capability Schema as Appendix D.
The Bulk Capability defines two operations: bulkModify and bulkDelete.

A provider that supports the bulkModify and bulkDelete operations for a target SHOULD declare that the target supports the Bulk Capability. A provider that does not support both bulkModify and bulkDelete MUST NOT declare that the target supports the Bulk Capability.

3.2.4.1 bulkModify

The subset of the Bulk Capability Schema that is most relevant to the bulkModify operation is shown below for the convenience of the reader.

	
<complexType name="BulkModifyRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element ref="spmlsearch:query”/>

<element name="modification" type="spml:ModificationType" minOccurs="1" maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>

</complexType>

<element name="bulkModifyRequest" type="spmlbulk:BulkModifyRequestType”/>

<element name="bulkModifyResponse" type="spml:ResponseType”/>

The bulkModify operation applies a specified modification to every object that matches the specified query.

· The <modification> is the same type of element that is specified as part of a <modifyRequest>.

· The <query> is the same type of element that is specified as part of a <searchRequest>.

Does not return modified PSO-IDs. A bulkModify operation does not return a PSO-ID for each object that it changes, even though a bulkModify operation can change the PSO-ID for every object it modifies. By contrast, a modify operation returns the PSO-ID of any object that it changes.

The difference is that the requestor of a bulkModify operation specifies a query that selects objects to be modified. The requestor of a modify operation specifies the PSO-ID of the object to be modified. The modify operation therefore must return the PSO-ID to make sure that the requestor still has the correct PSO-ID.

A bulkModify operation does not return a PSO-ID for each object that it changes because:

· The requestor does not specify a PSO-ID as input. (Therefore, a changed PSO-ID does not necessarily interest the requestor).

· Returning PSO-IDs for modified objects would cause the bulkModify operation to scale poorly (which would defeat the purpose of the bulkModify operation).

3.2.4.1.1 Request (normative)

A requestor MUST send a <bulkModifyRequest> to a provider in order to (ask the provider to) make the same modification to every object that matches specified selection criteria.

Execution. A <bulkModifyRequest> MAY specify a type of execution. See Determining execution type.

query. A <bulkModifyRequest> MUST contain exactly one <query> element. A <query> describes criteria that (the provider must use to) select objects on a target.
See the section entitled "SearchQueryType in a Request (normative)".

Modification. A <bulkModifyRequest> MUST contain at least one <modification>. Each <modification> describes a set of changes to be applied (to every object that matches the <query>). A requestor MUST specify each <modification> for a <bulkModifyRequest> in the same way as for a <modifyRequest>. See the Modification topic within section 3.1.4.1.1.

3.2.4.1.2 Response (normative)

A provider that receives a <bulkModifyRequest> from a requestor that the provider trusts must examine the content of the <bulkModifyRequest>. If the request is valid, the provider MUST apply the (set of changes described by each of the) specified <modification> elements to every object that matches the specified <query> (if the provider can possibly do so).

Response. The provider MUST return to the requestor a <bulkModifyResponse>.

Status. The <bulkModifyResponse> must contain a “status” attribute that indicates whether the provider successfully applied every specified modification to every object that matched the specified query. See “Status (normative)” for values of this attribute.

· If the provider successfully applied every specified modification to every object that matched the specified query, then the <bulkModifyResponse> MUST specify “status=’success’”.

· If the provider encountered an error in selecting any object that matched the specified query or (if the provider encountered an error) in applying any specified modification to any of the selected objects, then the <bulkModifyResponse> MUST specify “status=’failure’”.

Error. If the provider was unable to apply the specified modification to every object that matched the specified query, then the <bulkModifyResponse> MUST have an “error” attribute that characterizes the failure. See Error (normative)“”
for values of this attribute.

The section entitled "SearchQueryType Errors (normative)" describes errors specific to a request that contains a <query>.

3.2.4.1.3 Examples (non-normative)

In the following example, a requestor asks a provider to change every Person with an email address matching jbbriggs@example.com to have instead an email address of joebob@example.com.
	<bulkModifyRequest>

<query scope=”subtree” baseTargetID=”target2”>

<select namespaceURI=”http://www.w3.org/TR/xpath20” path=”/Person/email=’jbbriggs@example.com’”/>

</query>

<modification modificationMode=”replace”>

<component>email</component>

joebob@example.com

</modification>
</bulkModifyRequest>

The provider returns a <bulkModifyResponse. The “status” attribute of the <bulkModifyResponse> indicates that the provider successfully executed the bulkModify operation.

	<bulkModifyResponse status=“success"/>

In the following example, a requestor asks a provider to remove the “owner” of any account that is currently owned by “joebob”. The requestor uses as a selection criterion the <hasReference> query clause that the Reference Capability defines.

NOTE: The logic required to modify a reference may depend on the cardinality that is defined for that type of reference. See Reference Capability below.

	<bulkModifyRequest>

<query scope=”subtree” baseTargetID=”target2” >

<hasReference typeOfReference=”owner”>

<toPSOID>2244</toPSOID>

</hasReference>

</query>

<modification modificationMode=”delete”>

<capabilityData>

<reference typeOfReference="owner”/>

</capabilityData>

</modification>
</bulkModifyRequest>

The provider returns a <bulkModifyResponse>. The “status” attribute of the <bulkModifyResponse> indicates that the provider successfully executed the bulkModify operation.

	<bulkModifyResponse status=“success"/>

3.2.4.2 bulkDelete

The subset of the Bulk Capability Schema that is most relevant to the bulkDelete operation follows.

	
<complexType name="BulkDeleteRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element ref="spmlsearch:query”/>

</sequence>

<attribute name="recursive" type="boolean" use="optional"/>

</extension>

</complexContent>

</complexType>

<element name="bulkDeleteRequest" type="spmlbulk:BulkDeleteRequestType”/>

<element name="bulkDeleteResponse" type="spml:ResponseType”/>

The bulkDelete operation deletes every object that matches the specified query.

· The <query> is the same type of element that is specified as part of a <searchRequest>.

3.2.4.2.1 Request (normative)

A requestor MUST send a <bulkDeleteRequest> to a provider in order to (ask the provider to) delete every object that matches specified selection criteria.

Execution. A <bulkDeleteRequest> MAY specify a type of execution. See the section entitled “Determining execution mode”.

query. A <bulkDeleteRequest> MUST contain exactly one <query> element. A <query> describes criteria that (the provider must use to) select objects on a target.
See the section entitled "SearchQueryType in a Request (normative)".

recursive. A <bulkDeleteRequest> MAY have a “recursive” attribute that indicates whether the provider should delete the specified object along with any other object it contains. (Unless the <bulkDeleteRequest> specifies “recursive=’true’”, a provider will not delete an object that contains other objects.)

3.2.4.2.2 Response (normative)

A provider that receives a <bulkDeleteRequest> from a requestor that the provider trusts must examine the content of the <bulkDeleteRequest>. If the request is valid, the provider MUST delete every object that matches the specified <query> (if the provider can possibly do so).

recursive. A provider MUST NOT delete any object that contains other objects unless the <bulkDeleteRequest> specifies “recursive=’true’”.

· If the <bulkDeleteRequest> specifies “recursive=’true’”,
then the provider MUST delete every object that matches the specified query
along with any object that a matching object (directly or indirectly) contains.

· If the <bulkDeleteRequest> specifies “recursive=’false’”
(or if the <bulkDeleteRequest> omits the “recursive” attribute”)
and at least one object that matches the specified query contains another object,
then the provider MUST NOT delete any of the objects that match the specified query.
In this case, the provider’s response must return an error (see below).

Response. The provider MUST return to the requestor an <bulkDeleteResponse>.

Status. The <bulkDeleteResponse> must contain a “status” attribute that indicates whether the provider successfully deleted every object that matched the specified query. See Status (normative)“”
 for values of this attribute.

· If the provider successfully deleted every object that matched the specified query, the <bulkDeleteResponse> MUST specify “status=’success’”.

· If the provider encountered an error in selecting any object that matched the specified query or (if the provider encountered an error) in deleting any of the selected objects, the <bulkDeleteResponse> MUST specify “status=’failure’”.

Error. If the provider was unable to delete every object that matched the specified query, then the <bulkDeleteResponse> MUST have an “error” attribute that characterizes the failure. See Error (normative)“”
for values of this attribute.

The section entitled "SearchQueryType Errors (normative)" describes errors specific to a request that contains a <query>. Also see the section entitled “SelectionType Errors (normative)”.

If at least one object that matches the specified query contains another object
and the <bulkDeleteRequest> does NOT specify “recursive=’true’”,
then the provider’s response should specify “error=’invalidContainment’”.

3.2.4.2.3 Examples (non-normative)

In the following example, a requestor asks a provider to delete every Person with an email address matching joebob@example.com.
	<bulkDeleteRequest>

<query scope=”subtree” baseTargetID=”target2” >

<select namespaceURI=”http://www.w3.org/TR/xpath20” path=”/Person/email=’joebob@example.com’”/>

</query>

</bulkDeleteRequest>

The provider returns a <bulkDeleteResponse>. The “status” attribute of the <bulkDeleteResponse> indicates that the provider successfully executed the bulkDelete operation.

	<bulkDeleteResponse status=“success"/>

In the following example, a requestor asks a provider to delete any account that is currently owned by “joebob”. The requestor uses as a selection criterion the <hasReference> query clause that the Reference Capability defines.

	<bulkDeleteRequest>

<query scope=”subtree” baseTargetID=”target2” >

<hasReference typeOfReference=”owner”>

<toPSOID>2244</toPSOID>

</hasReference>

</query>

</bulkDeleteRequest>

The provider returns a <bulkDeleteResponse>. The “status” attribute of the <bulkDeleteResponse> indicates that the provider successfully executed the bulkDelete operation.

	<bulkDeleteResponse status=“success"/>

Password Capability

The Password Capability is defined in a schema that is associated with the following XML namespace: urn:oasis:names:tc:SPML:2:0:password. This document includes the Password Capability Schema as Appendix E.

The Password Capability defines four operations: ‘setPassword, ‘expirePassword’, ‘resetPassword’ and ‘validatePassword’.

· The ‘setPassword’ operation changes to a specified value the password that is associated with a specified object. The ‘setPassword’ allows a requestor to supply the current password (in case the target system or application requires it).

· The ‘expirePassword’ operation marks as no longer valid the password that is associated with a specified object. (Most systems or applications will require a user to change an expired password on the next login.)

· The ‘resetPassword’ operation changes to an unspecified value the password that is associated with a specified object. The ‘resetPassword’ operation returns the new password.

· The ‘validatePassword’ operation tests whether a specified value would be valid as the password for a specified object. (The ‘validatePassword’ operation allows a requestor to test a password value against the password policy for a system or application.)

A provider that supports the setPassword, expirePassword, resetPassword and validatePassword operations for a target SHOULD declare that the target supports the Password Capability. A provider that does not support all of the setPassword, expirePassword, resetPassword and validatePassword operations MUST NOT declare that the target supports the Password Capability.

3.2.4.3 setPassword

The setPassword operation enables a requestor to specify a new password for an object.

The subset of the Password Capability Schema that is most relevant to the setPassword operation follows.

	
<complexType name="SetPasswordRequestType">

<complexContent>

<extension base="spml:BatchableRequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType”/>

<element name="password" type="string"/>

<element name="currentPassword" type="string" minOccurs="0”/>

</sequence>

</extension>

</complexContent>

</complexType>

<element name="setPasswordRequest" type="pass:SetPasswordRequestType"/>

<element name="setPasswordResponse" type="spml:ResponseType"/>

3.2.4.3.1 Request (normative)

A requestor MUST send a <setPasswordRequest> to a provider in order to (ask the provider to) change to a specified value the password that is associated an existing object.

Execution. A <setPasswordRequest> MAY specify a type of execution. See Determining execution type.

psoID. A <setPasswordRequest> MUST contain exactly one <psoID> element. A <psoID> element MUST contain a valid PSOIdentifier for an object that exists on a target (that is supported by the provider).

password. A <setPasswordRequest> MUST contain exactly one <password> element. A <password> element MUST contain a string value.

currentPassword. A <setPasswordRequest> MAY contain at most one <currentPassword> element. A <currentPassword> element MUST contain a string value.

3.2.4.3.2 Response (normative)

A provider that receives a <setPasswordRequest> from a requestor that the provider trusts MUST examine the content of the <setPasswordRequest>. If the request is valid and if the specified object exists, then the provider MUST enable the object that is specified by the <psoID>.

Execution. If an <setPasswordRequest> does not have an execution attribute, the provider MUST choose a type of execution for the requested operation. See the section entitled “Determining execution type”.

Response. The provider must return to the requestor a <setPasswordResponse>. The <setPasswordResponse> must have a “status” attribute that indicates whether the provider successfully enabled the specified object. See Status (normative)“”
 for values of this attribute.

Error. If the provider cannot change (to the value that the “password” attribute specifies) the password that is associated with the requested object, the <setPasswordResponse> must contain an “error” attribute that characterizes the failure. See Error (normative)“”
for values of this attribute.

The provider MUST return an error if any of the following is true:

· The <setPasswordRequest> contains a <psoID> for an object that does not exist.
· The target system or application will not accept (as the new password) the value that a <setPasswordRequest> specifies for the “password” attribute.
· The target system or application requires the current password in order to change the password and a <setPasswordRequest> specifies no value for the “currentPassword” attribute.
· The target system or application requires the current password in order to change the password and the target system or application will not accept (as the current password) the value that a <setPasswordRequest> specifies for the “currentPassword” attribute.
· The target system or application returns an error (or throws an exception) when the provider tries to set the password.
3.2.4.3.3 Examples (non-normative)

In the following example, a requestor asks a provider to set the password for a Person object.

	<setPasswordRequest>

<psoID objectId=”2244” targetID=“target2”/>

<password>y0baby</password>

<currentPassword>corvette</currentPassword>

</setPasswordRequest>

The provider returns an <setPasswordResponse> element. The “status” attribute of the <setPasswordResponse> element indicates that the provider successfully changed the password.

	<setPasswordResponse status=“success"/>

3.2.4.4 expirePassword

The expirePassword operation enables a requestor to mark as invalid the current password for an object.

The subset of the Password Capability Schema that is most relevant to the expirePassword operation follows.

	
<complexType name="ExpirePasswordRequestType">

<complexContent>

<extension base="spml:BatchableRequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType”/>

</sequence>

<attribute name="remainingLogins" type="int" use="optional" default="1”/>

</extension>

</complexContent>

</complexType>

<element name="expirePasswordRequest" type="pass:ExpirePasswordRequestType"/>

<element name="expirePasswordResponse" type="spml:ResponseType"/>

3.2.4.4.1 Request (normative)

A requestor MUST send a <expirePasswordRequest> to a provider in order to (ask the provider to) mark as no longer valid the password that is associated an existing object.

Execution. A <expirePasswordRequest> MAY specify a type of execution. See Determining execution type.

psoID. A <expirePasswordRequest> MUST contain exactly one <psoID> element. A <psoID> element MUST contain a valid PSOIdentifier for an object that exists on a target (that is supported by the provider).

remainingLogins. A <expirePasswordRequest> MAY have a “remainingLogins” attribute that specifies a number of grace logins that the target system or application should permit.

3.2.4.4.2 Response (normative)

A provider that receives a <expirePasswordRequest> from a requestor that the provider trusts MUST examine the content of the <expirePasswordRequest>. If the request is valid and if the specified object exists, then the provider MUST mark as no longer valid the password that is associated with the object that is specified by the <psoID>.

Execution. If an <expirePasswordRequest> does not have an execution attribute, the provider MUST choose a type of execution for the requested operation. See the section entitled “Determining execution type”.

Response. The provider must return to the requestor an <expirePasswordResponse>. The <expirePasswordResponse> must have a “status” attribute that indicates whether the provider successfully enabled the specified object. See Status (normative)“”
 for values of this attribute.

Error. If the provider cannot mark as no longer valid the password that is associated with the requested object, the <expirePasswordResponse> must contain an “error” attribute that characterizes the failure. See Error (normative)“”
for values of this attribute.

The provider MUST return an error if any of the following is true:

· The <expirePasswordRequest> contains a <psoID> for an object that does not exist.
· The target system or application will not accept (as the number of grace logins to permit) the value that a <expirePasswordRequest> specifies for the “remainingLogins” attribute.
· The target system or application returns an error (or throws an exception) when the provider tries to mark as no longer valid the password that is associated with the specified object.
3.2.4.4.3 Examples (non-normative)

In the following example, a requestor asks a provider to expire the password for a Person object.

	<expirePasswordRequest>

<psoID objectId=”2244” targetID=“target2”/>

</expirePasswordRequest>

The provider returns an <expirePasswordResponse> element. The “status” attribute of the <expirePasswordResponse> element indicates that the provider successfully expired the password.

	<expirePasswordResponse status=“success”/>

3.2.4.5 resetPassword

The resetPassword operation enables a requestor to change (to an unspecified value) the password for an object and to obtain that newly generated password value.

The subset of the Password Capability Schema that is most relevant to the resetPassword operation is shown below for the convenience of the reader.

	
<complexType name="ResetPasswordRequestType">

<complexContent>

<extension base="spml:BatchableRequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="ResetPasswordResponseType">

<complexContent>

<extension base="spml:ResponseType">

<element name="password" type="string" minOccurs="0”/>

</sequence>

</extension>

</complexContent>

</complexType>

<element name="resetPasswordRequest" type="pass:ResetPasswordRequestType"/>

<element name="resetPasswordResponse" type="pass:ResetPasswordResponseType"/>

3.2.4.5.1 Request (normative)

A requestor MUST send a <resetPasswordRequest> to a provider in order to (ask the provider to) change the password that is associated an existing object and to (ask the provider to) return to the requestor the new password value.

Execution. A <resetPasswordRequest> MAY specify a type of execution. See Determining execution type.

psoID. A <resetPasswordRequest> MUST contain exactly one <psoID> element. A <psoID> element MUST contain a valid PSOIdentifier for an object that exists on a target (that is supported by the provider).

3.2.4.5.2 Response (normative)

A provider that receives a <resetPasswordRequest> from a requestor that the provider trusts MUST examine the content of the <resetPasswordRequest>. If the request is valid and if the specified object exists, then the provider MUST change the password that is associated with the object that is specified by the <psoID> and must return to the requestor the new password value.

Execution. If an <resetPasswordRequest> does not have an execution attribute, the provider MUST choose a type of execution for the requested operation. See the section entitled “Determining execution type”.

Response. The provider must return to the requestor a <resetPasswordResponse>. The <resetPasswordResponse> must have a “status” attribute that indicates whether the provider successfully changed the password that is associated with the specified object and successfully returned to the requestor the new password value. See Status (normative)“”
 for values of this attribute.

If the provider knows that the provider will not be able to return to the requestor the new password value, then the provider MUST NOT change the password that is associated with the specified object. (To do so would create a state that requires manual administrator intervention, and this defeats the purpose of the ‘resetPassword’ operation.)

password. The <resetPasswordResponse> MAY contain a <password> element. If the <resetPasswordResponse> contains a <password> element, the <password> element must contain the newly changed password value that is associated with the specified object.

Error. If the provider cannot change the password that is associated with the specified object, or if the provider cannot return the new password attribute value to the requestor, then the <resetPasswordResponse> must contain an “error” attribute that characterizes the failure. See Error (normative)“”
for values of this attribute.

The provider MUST return an error if any of the following is true:

· The <resetPasswordRequest> contains a <psoID> for an object that does not exist.
· The target system or application will not allow the provider to return to the requestor the new password value. (If the provider knows this to be the case, then the provider MUST NOT change the password that is associated with the specified object. See above.)
· The target system or application returns an error (or throws an exception) when the provider tries to change the password that is associated with the specified object or (when the provider) tries to obtain the new password value.
3.2.4.5.3 Examples (non-normative)

In the following example, a requestor asks a provider to reset the password for a Person object.

	<resetPasswordRequest>

<psoID objectId=”2244” targetID=“target2”/>

</resetPasswordRequest>

The provider returns an <resetPasswordResponse> element. The “status” attribute of the <resetPasswordResponse> indicates that the provider successfully reset the password.

	<resetPasswordResponse status=“success”>

<password>gener8ed</password>

</resetPasswordResponse>

3.2.4.6 validatePassword

The validatePassword operation enables a requestor to determine whether a specified value would be valid as the password for a specified object.

The subset of the Password Capability Schema that is most relevant to the validatePassword operation follows.

	
<complexType name="ValidatePasswordRequestType">

<complexContent>

<extension base="spml:BatchableRequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType"/>

<element name="password" type="xsd:string"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="ValidatePasswordResponseType">

<complexContent>

<extension base="spml:ResponseType">

<sequence>

<attribute name="valid" type="boolean" use="optional"/>

</sequence>

</extension>

</complexContent>

</complexType>

<element name="validatePasswordRequest" type="pass:ValidatePasswordRequestType"/>

<element name="validatePasswordResponse" type="pass:ValidatePasswordResponseType"/>

3.2.4.6.1 Request (normative)

A requestor MUST send a <validatePasswordRequest> to a provider in order to (ask the provider to) test whether a specified value would be valid as the password that is associated with an existing object.

Execution. A <validatePasswordRequest> MAY specify a type of execution. See the section entitled “Determining execution mode”.

psoID. A <validatePasswordRequest> MUST contain exactly one <psoID> element. A <psoID> element MUST contain a valid PSOIdentifier for an object that exists on a target (that is supported by the provider).

password. A <validatePasswordRequest> MUST contain exactly one <password> element. A <password> element MUST contain a string value.

3.2.4.6.2 Response (normative)

A provider that receives a <validatePasswordRequest> from a requestor that the provider trusts MUST examine the content of the <validatePasswordRequest>. If the request is valid and if the specified object exists, then the provider MUST test whether the specified value would be valid as the password that is associated with the object that is specified by the <psoID>.

Execution. If an <validatePasswordRequest> does not have an execution attribute, the provider MUST choose a type of execution for the requested operation. See the section entitled Determining execution mode”.

Response. The provider must return to the requestor a <validatePasswordResponse>. The <validatePasswordResponse> must have a “status” attribute that indicates whether the provider successfully changed the password that is associated with the specified object and successfully returned to the requestor the new password value. See Status (normative)“”
 for values of this attribute.

If the provider knows that the provider will not be able to return to the requestor the new password value, then the provider MUST NOT change the password that is associated with the specified object. (To do so would create a state that requires manual administrator intervention, and this defeats the purpose of the ‘validatePassword’ operation.)

valid. The <validatePasswordResponse> MUST have a “valid” attribute that indicates whether the <password> (content that was specified in the <validatePasswordRequest>) would be valid as the password that is associated with the specified object.

Error. If the provider cannot determine whether the specified value would be valid as the password that is associated with the specified object, then the <validatePasswordResponse> must contain an “error” attribute that characterizes the failure. See Error (normative)“”
for values of this attribute.

The provider MUST return an error if any of the following is true:

· The <validatePasswordRequest> contains a <psoID> for an object that does not exist.
· The target system or application returns an error (or throws an exception) when the provider tries to determine whether the specified value would be valid as the password that is associated with the specified object.
3.2.4.6.3 Examples (non-normative)

In the following example, a requestor asks a provider to validate a value as a password for a Person object.

	<validatePasswordRequest>

<psoID objectId=”2244” targetID=“target2”/>

<password>y0baby</password>

</validatePasswordRequest>

The provider returns an <validatePasswordResponse> element. The “status” attribute of the <validatePasswordResponse> indicates that the provider successfully tested whether the <password> value specified in the request would be valid as the password that is associated with the specified object. The <validatePasswordResponse> specifies “valid=’true’”, which indicates that the specified value would be valid as the password that is associated with the specified object.

	<validatePasswordResponse status=“success” valid=”true”/>

3.2.5 Reference Capability

The Reference Capability is defined in a schema that is associated with the following XML namespace: urn:oasis:names:tc:SPML:2:0:reference. This document includes the Reference Capability Schema as Appendix F.

	
<complexType name="ReferenceType">

<complexContent>

<extension base="spml:CapabilityDataType">

<sequence>

<element name="toPsoID" type="spml:PSOIdentifierType"/>

<element name="referenceData" type="spml:ExtensibleType"/>

</sequence>

<attribute name="typeOfReference" type="string" use="required"/>

</extension>

</complexContent>

</complexType>

<complexType name="ReferenceDefinitionType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="schemaEntity" type="spml:SchemaEntityRefType"/>

<element name="canReferTo" type="spml:SchemaEntityRefType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="typeOfReference" type="string" use="required"/>

</extension>

</complexContent>

</complexType>

<complexType name="HasReferenceType">

<complexContent>

<extension base="spml:QueryClauseType">

<sequence>

<element name="toPSOID" type="spml:PSOIdentifierType" minOccurs="0" />

<element name="referenceData" type="spml:ExtensibleType" minOccurs="0" />

</sequence>

<attribute name="typeOfReference" type="string" use="optional"/>

</extension>

</complexContent>

</complexType>

<element name="hasReference" type="spmlref:HasReferenceType"/>

<element name="reference" type="spmlref:ReferenceType"/>

<element name="referenceDefinition" type="spmlref:ReferenceDefinitionType"/>

The Reference Capability defines no operation. Instead, the Reference Capability allows a provider to declare, as part of each target, which types of objects support references to which other types of objects. The XML representations of references flow through the core operations as capability-specific data.

· In order to create an object with references, a requestor specifies capability-specific data to the core ‘add’ operation.

· In order to add, remove or replace references to an object, a requestor specifies capability-specific data to the core ‘modify’ operation.

· In order to obtain references for an object, a requestor examines capability-specific data returned as output by the core ‘add’, ‘lookup’ and ‘search’ operations.

Motivation. Defining a standard capability for references is important for several reasons.

· Managing references to other objects can be a very important part of managing objects.

· Object references to other objects present a scalability problem.

· Object references to other objects present an integrity problem.

Provisioning systems must often list, create, and delete connections between objects
in order to manage the objects themselves. In some cases, a provisioning system
must manage data that is part a specific connection (e.g., in order to specify
the expiration of a user’s membership in a group) – see the discussion of “Reference Data” below. Because connections to other objects can be very important, it is important to be able to represent such connections generically (rather than as something specific to each target schema).
The reference capability enables a requestor to manage an object’s references independent of the object’s schema. This is particularly important in the cases where a provider allows references to span targets. For example, a provisioning system must often maintain knowledge about which Persons own which accounts. In such cases, an Account object (that is contained by one target) may refer to a Person object (that is contained by another target) as its owner.

Scale is another significant aspect of references. The number of connections between objects may be an order of magnitude more than the number of objects themselves. Unconditionally including reference information in the XML representation of each object could greatly increase the size of that object’s XML representation. Imagine, for example, that each Account may refer to multiple Groups (or that a Group may refer to each of its members).

Defining reference as an optional capability (and allowing references to be omitted from each object’s schema) does two things. First, this allows a requestor to exclude an object’s references from the XML representation of each object (since a requestor can control which capability-specific data are included). Second, this allows providers to manage references separately from schema-defined attributes (which may help a provider cope with the scale of connections).

The ability to manage references separately from schema-defined data may also help providers to maintain the integrity of references. In the systems and applications that underly many provisioning target, deleting an object A may not delete another object B’s reference to object A. Allowing a provider to manage references separately allows the provider to control such behavior (and perhaps even to prevent the deletion of object A when another object B still refers to object A).

3.2.5.1 Reference Definitions

Reference Definitions. A provider declares each type of reference that a particular target supports (or declares each type of reference that a particular supported schema entity on a target supports) as an instance of reference definition.

A provider’s <listTargetsResponse> contains a list of targets that the provider exposes for provisioning. Part of each target declaration is the set of capabilities that the target supports. Each capability refers (by means of its “namespaceURI” attribute) to a specific capability. Any <capability> element that refers to the Reference Capability MAY contain (as open content) any number of reference definitions.

Each reference definition names a specific type of reference and also specifies the following:

· which schema entity (on the target that contains the capability element that contains the reference definition) can refer

· to which schema entity (on which target).

For normative specifics, see the “Reference Capability declarations” topic within the listTargets section.

Overlap. Any number of reference definitions may declare different “from- and to-” entity pairs for the same type of reference. For example, a reference definition may declare that an Account may refer to a Person as its “owner”. Another reference definition may declare that an OrganizationalUnit may refer to a Person as its “owner”. SPMLv2 specifies the mechanism--but does not define the semantics--of reference.

Direction. Each reference definition names a specific type of reference and specifies which schema entity (on which target?) can refer to which schema entity (on which target?). Any number of reference definitions may define “from- and to-” entity pairs for the same type of reference.

No Inverse. A standard SPMLv2 reference definition specifies nothing about an inverse relationship. For example, a reference definition that says an Account may refer to a Person as its “owner” does NOT imply that a Person may refer to Account.

Nothing prevents a provider from declaring (by means of a reference definition) that Person may refer to Account in a type of reference called “owns”, but nothing (at the level of this specification) associates these two types of references to say that “owns” is the inverse of “owner”.

No Cardinality. A reference definition specifies no restrictions on the number of objects to which an object may refer (by means of that defined type of reference). Thus, for example, an Account may refer to multiple Persons as its “owner”. This may be logically incorrect, or this may not be the desired behavior, but SPMLv2 does not require a provider to support restrictions on the cardinality of a particular type of reference.

In general, a requestor must assume that each defined type of reference is optional and many-to-many. This is particularly relevant when a requestor wishes to modify references. A requestor SHOULD NOT assume that a reference that the requestor wishes to modify is the object’s only reference of that type. A requestor also SHOULD NOT assume that a reference from one object to another object that the requestor wishes to modify is the only reference between the two objects. Although this may seem perverse, SPMLv2 allows one object “A” to have more than one reference of the same type to the same object “B”.

3.2.5.2 References

Reference Data. SPMLv2 allows each reference (i.e., each instance of ReferenceType) to contain additional reference data. Most references between objects require no additional data, but this supports cases in which a reference from one object to another may carry additional information “on the arrow” of the relationship. For example, a RACF user’s membership in a particular RACF group carries with it the additional information of whether that user has the ADMINISTRATOR or SPECIAL privilege within that group. Several other forms of group membership carry with them additional information about the member’s expiration. See the section entitled “Complex References” below.

Search. A requestor can search for objects based on reference values using the <hasReference> query clause. The {HasReferenceType} extends {QueryClauseType}, which indicates that an instance of {HasReferenceType} can be used to select objects. A <hasReference> clause matches an object if and only if the object has a reference that matches every specified component (i.e., element or attribute) of the <hasReference> element.
See the examples within section entitled “Search”.

3.2.5.3 Complex References

The vast majority of reference types are simple: that is, one object’s reference to another object carries no additional information. However certain types of references may support additional information that is specific to a particular reference. For example, when a user is assigned to one or more Entrust GetAccess Roles, each role assignment has a start date and an end date. We describe a reference that contains additional data (that is specific to the reference) as “complex”.

RACF Group Membership is another example of a complex type of reference. Each RACF group membership carries with it additional data about whether the user has the SPECIAL, AUDITOR, or OPERATIONS privileges in that group.

· Group-SPECIAL
gives a group administrator control over all profiles within the group

· Group-AUDITOR
allows a user to monitor the use of the group's resources

· Group-OPERATIONS
allows a user to perform maintenance operations
on the group's resources
For purposes of this example, let us represent these three group-specific privileges as attributes of an XML type called “RacfGroupMembershipType”. Suppose that the XML Schema for such a type looks like the following:

	
<complexType name="RacfGroupMembershipType">

<complexContent>

<extension base="spml:ExtensibleType">

<attribute name="special" type="xsd:boolean" use="optional" default="false"/>

<attribute name="auditor" type="xsd:boolean" use="optional" default="false"/>

<attribute name="operations" type="xsd:boolean" use="optional" default="false"/>

</extension>

</complexContent>

</complexType>

<element name="racfGroupMembership" type="RacfGroupMembershipType"/>

The following subsections describe several different ways to model RACF Group Membership. The fictional <xsd:schema> is the same in all of the examples. In each subsection, however, the provider’s <target> definition varies with the approach.

3.2.5.3.1 Using Reference Data

The simplest way to model a complex reference such as RACF Group membership is to represent the additional information as arbitrary reference data. The <referenceData> element within a <reference> may contain any data.

The following example shows how a provider’s listTargetsResponse might reflect this approach. The sample schema for the “RACF” target is very simple (for the sake of brevity). The provider defines a type of reference called “memberOfGroup”. Within a <reference> of this type, the <referenceData> element must contain exactly one <racfGroupMembership> element (and should contain nothing else).

	<listTargetsResponse status=“success">

<target targetID=”RacfGroupMembership-ReferenceData”>

<schema>

<xsd:schema targetNamespace="urn:example:schema:RACF" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:spml="urn:oasis:names:tc:SPML:2:0" elementFormDefault="qualified">

<complexType name="RacfUserProfileType">

<attribute name="userid" type="string" use="required"/>

</complexType>

<complexType name="RacfGroupProfileType">

<attribute name="groupName" type="string" use="required"/>

</complexType>

<complexType name="RacfGroupMembership">

<attribute name="special" type="boolean" use="optional" default=”false”/>

<attribute name="auditor" type="boolean" use="optional" default=”false”/>

<attribute name="operations" type="boolean" use="optional" default=”false”/>

</complexType>

<element name=”racfUserProfile” type=”RacfUserProfileType”>

<element name=”racfGroupProfile” type=”RacfGroupProfileType”>

<element name=”racfGroupMembership” type=”RacfGroupMembershipType”>

</xsd:schema>

<supportedSchemaEntity entityName=”racfUserProfile”/>

<supportedSchemaEntity entityName=”racfGroupProfile”/>

</schema>

<capabilities>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:bulk”/>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:search”/>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:password”>

<appliesTo entityName=”racfUserProfile”/>

</capability>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:suspend”>

<appliesTo entityName=”racfUserProfile”/>

<appliesTo entityName=”racfGroupProfile”/>

</capability>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:reference”>

<appliesTo entityName=”racfUserProfile”/>

<referenceDefinition typeOfReference=”memberOfGroup”/>

<schemaEntity entityName=”racfUserProfile”/>

<canReferTo entityName=”racfGroupProfile”/>

<annotation>

<documentation> ReferenceData for a “memberOfGroup” reference must contain exactly one racfGroupMembership element.</documentation>

</annotation>

</referenceDefinition>

</capability>

</capabilities>

</target>

</listTargetsResponse>

[Ed. How does the provider declare the structure of complex reference data?
Is this only by prearrangement, or can the reference definition somehow declare this?
For example, could the reference definition refer to a schema entity?
Could the reference definition contain the XML schema declaration
(for the reference data structure appropriate to that type of reference?) #14]

Manipulating Reference Data. The only way to manipulate the reference data associated with a complex reference is by using the modify operation that is part of the Core schema. A requestor may add, replace or delete any capability-specific data that is associated with an object.

Capabilities Do Not Apply. SPML specifies no way to apply a capability-specific operation to a reference. Thus, for example, one can neither suspend nor resume a reference. This is because even a reference is not a provisioning service object. A reference is instead capability-specific data that is associated with an object.

You can think of a reference (or any item of capability-specific data) that is associated with an object as an “extra” attribute or as a sub-element of the object. The provider supports each “extra” (attribute or sub-element) data independent of the schema of the target that contains the object. The provider keeps all <capabilityData> separate from the regular schema-defined <data> within each <pso>.

3.2.5.3.2 Relationship Objects

The fact that capabilities cannot apply to references does not prevent a provider from offering this kind of rich function. There is an elegant way to represent a complex relationship that allows a requestor to operate directly on the relationship itself. A provider may model a complex relationship between two objects as a third object that refers to each of the first two objects.

This approach is analogous to a “linking record” in relational database design. In the “linking record” approach, the designer “normalizes” reference relationships into a separate table. Each row in a third table connects a row from one table to a row in another table. This approach allows each relationship to carry additional information that is specific to that relationship. Data specific to each reference are stored in the columns of the third table. Even when relationships do not need to carry additional information, this approach is often used when two objects may be connected by more than one instance of the same type of relationship, or when relationships are frequently added or deleted and referential integrity must be maintained.

Rather than have an object A refer to an object B directly, a third object C refers to object A and to object B. Since object C represents the relationship itself, object C refers to object A as its “fromObject” and object C refers to object B as its “toObject”.

A provider that wants to treat each instance of a (specific type of) relationship as an object does so by defining a schema entity to contain the additional information (specific to that type of relationship) in the schema for a target. The provider then declares two types of references that apply to that schema entity: a “fromObject” type of reference and a “toObject” type of reference. The provider may also declare that certain capabilities apply to that schema entity. This model allows a requestor to operate conveniently on each instance of a complex relationship.

For example, suppose that a provider models as a schema entity a type of relationship that has an effective date and has an expiration date. As a convenience to requestors, the provider might declare that this schema entity (that is, the “linking” entity) supports the Suspend Capability. The ‘suspend’ and ‘resume’ operations could manipulate the expiration date and the effective date without the requestor having to understand the structure of that schema entity. This convenience could be very valuable where the attribute values or element content that are manipulated have complex syntax, special semantics or implicit relationships with other elements or attributes.

The following example shows how a provider’s listTargetsResponse might reflect this approach. The sample schema for the “RACF” target is very simple (for the sake of brevity).

	<listTargetsResponse status=“success">

<target targetID=”RacfGroupMembership-IndependentRelationshipObject”>

<schema>

<xsd:schema targetNamespace="urn:example:schema:RACF" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:spml="urn:oasis:names:tc:SPML:2:0" elementFormDefault="qualified">

<complexType name="RacfUserProfileType">

<attribute name="userid" type="string" use="required"/>

</complexType>

<complexType name="RacfGroupProfileType">

<attribute name="groupName" type="string" use="required"/>

</complexType>

<complexType name="RacfGroupMembership">

<attribute name="special" type="boolean" use="optional" default=”false”/>

<attribute name="auditor" type="boolean" use="optional" default=”false”/>

<attribute name="operations" type="boolean" use="optional" default=”false”/>

</complexType>

<element name=”racfUserProfile” type=”RacfUserProfileType”>

<element name=”racfGroupProfile” type=”RacfGroupProfileType”>

<element name=”racfGroupMembership” type=”RacfGroupMembershipType”>

</xsd:schema>

<supportedSchemaEntity entityName=”racfUserProfile”/>

<supportedSchemaEntity entityName=”racfGroupProfile”/>

<supportedSchemaEntity entityName=”racfGroupMembership”>

<annotation>

<documentation> Each instance of racfGroupMembership refers to one racfUserProfile and refers to one racfGroupProfile.</documentation>

</annotation>

</supportedSchemaEntity>

</schema>

<capabilities>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:bulk”/>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:search”/>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:password”>

<appliesTo entityName=”RacfUserProfile”/>

</capability>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:suspend”>

<appliesTo entityName=”racfUserProfile”/>

<appliesTo entityName=”racfGroupProfile”/>

</capability>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:reference”>

<appliesTo entityName=”racfGroupMembership”/>

<referenceDefinition typeOfReference=”fromUser”/>

<schemaEntity entityName=”racfGroupMembership”/>

<canReferTo entityName=”racfUserProfile”/>

</referenceDefinition>

<referenceDefinition typeOfReference=”toGroup”/>

<schemaEntity entityName=”racfGroupMembership”/>

<canReferTo entityName=”racfGroupProfile”/>

</referenceDefinition>

</capability>

</capabilities>

</target>

</listTargetsResponse>

Variations. Naturally, many variations of this approach are possible. For example, an instance of RacfUserProfile could refer to an instance of RacfGroupMembership (rather than having an instance of RacfGroupMembership refer to both RacfUserProfile and an instance of RacfGroupProfile). However, such a variation would not permit an instance of RacfUserProfile to refer to more than one group (and could result in an orphaned relationship objects unless the provider carefully guards against this).

3.2.5.3.3 Bound Relationship Objects

One robust variation of independent relationship objects is to bind each relationship object beneath one of the objects it connects. For example, one could bind each instance of RacfGroupMembership beneath the instance of RacfUserProfile that would otherwise be the “fromUser”. That way, deleting an instance of RacfUserProfile also deletes all of its RacfGroupMemberships. This modeling approach makes clear that the relationship belongs with the “fromObject” and helps to prevent orphaned relationship objects.

The next example illustrates bound relationship objects.

	<listTargetsResponse status=“success">

<target targetID=”RacfGroupMembership-BoundRelationshipObject”>

<schema>

<xsd:schema targetNamespace="urn:example:schema:RACF" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:spml="urn:oasis:names:tc:SPML:2:0" elementFormDefault="qualified">

<complexType name="RacfUserProfileType">

<attribute name="userid" type="string" use="required"/>

</complexType>

<complexType name="RacfGroupProfileType">

<attribute name="groupName" type="string" use="required"/>

</complexType>

<complexType name="RacfGroupMembership">

<attribute name="special" type="boolean" use="optional" default=”false”/>

<attribute name="auditor" type="boolean" use="optional" default=”false”/>

<attribute name="operations" type="boolean" use="optional" default=”false”/>

</complexType>

<element name=”racfUserProfile” type=”RacfUserProfileType”>

<element name=”racfGroupProfile” type=”RacfGroupProfileType”>

<element name=”racfGroupMembership” type=”RacfGroupMembershipType”>

</xsd:schema>

<supportedSchemaEntity entityName=”racfUserProfile” isContainer=”true”/>

<annotation>

<documentation> Any number of racfGroupMembership objects may be bound beneath a racfUserProfile object.</documentation>

</annotation>

</supportedSchemaEntity>

</supportedSchemaEntity>

<supportedSchemaEntity entityName=”racfGroupProfile”/>

<supportedSchemaEntity entityName=”racfGroupMembership”>

<annotation>

<documentation> Each racfGroupMembership refers to one racfGroupProfile.</documentation>

</annotation>

</supportedSchemaEntity>

</schema>

<capabilities>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:bulk”/>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:search”/>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:password”>

<appliesTo entityName=”racfUserProfile”/>

</capability>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:suspend”>

<appliesTo entityName=”racfUserProfile”/>

<appliesTo entityName=”racfGroupProfile”/>

</capability>

<capability namespaceURI=”urn:oasis:names:tc:SPML:2.0:reference”>

<appliesTo entityName=”racfGroupMembership”/>

<referenceDefinition typeOfReference=”toGroup”/>

<schemaEntity entityName=”racfGroupMembership”/>

<canReferTo entityName=”racfGroupProfile”/>

</referenceDefinition>

</capability>

</capabilities>

</target>

</listTargetsResponse>

Search Capability

The Search Capability is defined in a schema associated with the following XML namespace: urn:oasis:names:tc:SPML:2:0:search. This document includes the Search Capability Schema as Appendix G.

The Search Capability defines two operations: search and iterate. Together the search and iterate operations allow a requestor to obtain the XML representation of every object that matches specified selection criteria. The iterate operation allows a requestor to examine (in a scalable manner) each set of objects that is returned by a search operation.

A provider that supports the search and iterate operations for a target SHOULD declare that the target supports the Search Capability. A provider that does not support both search and iterate MUST NOT declare that the target supports the Search Capability.

NOTE: The iterate operation must be executed synchronously. The provider is already queuing the search set (every object after the first), so it is unfair for the requestor to ask the provider to queue the results of a request for the next item in the search set.

Furthermore, asynchronous iteration would complicate the provider’s maintenance of the search set. Since a provider could never know that the requestor had processed the results of an asynchronous iteration, the provider would not know when to increment its position in the search set. In order to support asynchronous iteration both correctly and generally, a provider would have to maintain a version of every search set for each iteration of that search set.

3.2.5.4 search

The search operation obtains every object that matches a specified query.

The subset of the Search Capability Schema that is most relevant to the search operation follows.

	
<simpleType name="ScopeType">

<restriction base="string">

<enumeration value="pso"/>

<enumeration value="oneLevel"/>

<enumeration value="subTree"/>

</restriction>

</simpleType>

<complexType name="SearchQueryType">

<complexContent>

<extension base="spml:QueryClauseType">

<sequence>

<choice>

<element name="basePsoID" type="spml:PSOIdentifierType"/>

</choice>

</sequence>

<attribute name="targetID" type="string" use="optional"/>

<attribute name="scope" type="spmlsearch:ScopeType" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="ResultsIteratorType">

<complexContent>

<extension base="spml:ExtensibleType">

<attribute name="ID" type="xsd:ID"/>

<attribute name="count" type="xsd:int" use="optional"/>

<attribute name="totalCount" type="xsd:int" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="SearchRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="query" type="spmlsearch:SearchQueryType" minOccurs="0"/>

<element name="includeDataForCapability" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="returnData" type="spml:ReturnDataType" use="optional" default="everything"/>

<attribute name="maxReturn" type="xsd:int" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="SearchResponseType">

<complexContent>

<extension base="spml:ResponseType">

<sequence>

<element name="pso" type="spml:PSOType" minOccurs="0" maxOccurs="unbounded"/>

<element name="iterator" type="spmlsearch:ResultsIteratorType" minOccurs="0" maxOccurs="1"/>

</sequence>

</extension>

</complexContent>

</complexType>

<element name="query" type="spmlsearch:SearchQueryType"/>

<element name="searchRequest" type="spmlsearch:SearchRequestType"/>

<element name="searchResponse" type="spmlsearch:SearchResponseType"/>

The <query> is the same type of element that is specified as part of a <bulkModifyRequest> or a <bulkDeleteRequest>. See the section entitled "SearchQueryType".

If the search operation is successful but selects no matching object, the <searchResponse> will not contain a <pso>. The <searchResponse> will contain an <iterator> that specifies “count=’0’” and “totalCount=’0’.

If the search operation is successful and selects at least one matching object, the <searchResponse> will contain any number of <pso> elements, each of which represents a matching object. If there are more matching objects than the <searchResponse> contains, the <searchResponse> will also contain an iterator that the requestor can use to retrieve more matching objects. (See the ‘iterate’ operation below.)

The <iterator> specifies as “totalCount” the number of objects that matched the “base” and “select” attributes of the <query>. The “count” attribute specifies the number of objects that the provider will return. If the number of objects that matched exceeds the value of “maxReturn”, then the value of “totalCount” will be greater than the value of “count”.

Search is not batchable. For reasons of scale, neither ‘search’ nor ‘iterate’ should be nested in a batch request. When a search query matches matches more objects than the provider can place directly in the response, the provider must temporarily store the remaining objects. Storing the remaining objects allows allows the requestor to iterate the remaining objects, but also requires the provider to commit resources (for an unspecified period of time).

Batch responses also tend to be large. Batch operations are typically asynchronous, so storing the results of asynchronous batch operations imposes on providers a resource burden similar to that of search results. Allowing a requestor to nest a search request within a batch request would aggravate the resource problem, requiring a provider to store more information in larger chunks for a longer amount of time.
3.2.5.4.1 Request (normative)

A requestor MUST send a <searchRequest> to a provider in order to (ask the provider to) obtain every object that matches specified selection criteria.

Execution. A <searchRequest> MAY specify a type of execution. See the section entitled “Determining execution mode”.

query. A <searchRequest> MUST contain exactly one <query> element. A <query> describes criteria that (the provider must use to) select objects on a target.
See the section entitled "SearchQueryType in a Request (normative)".

ReturnData. A <searchRequest> MAY have a “returnData” attribute that tells the provider which types of data to include in each selected object.

· A requestor that wants the provider to return nothing of the added object
MUST specify “returnData=’nothing’”.
· A requestor that wants the provider to return only the identifier of the added object
MUST specify “returnData=’identifier’”.
· A requestor that wants the provider to return the identifier of the added object
plus the XML representation of the object (as defined in the schema of the target)
MUST specify “returnData=’data’”.
· A requestor that wants the provider to return the identifier of the added object
plus the XML representation of the object (as defined in the schema of the target)
plus any capability-specific data that is associated with the object
MAY specify “returnData=’everything’” or MAY omit the “returnData” attribute
(since “returnData=’everything’” is the default).
maxReturn. A <searchRequest> MAY have a “maxReturn” attribute. The value of the “maxReturn” attribute specifies the maximum number of objects to select.

IncludeDataForCapability. A <searchRequest> MAY contain any number of <includeDataForCapability> elements. Each <includeDataForCapability> element specifies a capability for which the provider should return capability-specific data (unless the “returnData” attribute specifies that the provider should return no capability-specific data at all).

· A requestor that wants the provider to return (as part of each object) capability-specific data for only a certain set of capabilities MUST enumerate that set of capabilities (by including an <includeDataForCapability> element that specifies each such capability) in the <searchRequest>.
· A requestor that wants the provider to return (as part of each object) capability-specific data for all capabilities MUST NOT include an <includeDataForCapability> element in the <searchRequest>.
· A requestor that wants the provider to return no capability-specific data MUST specify an appropriate value for the “returnData” attribute. See the section entitled “ReturnData” immediately previous.

3.2.5.4.2 Response (normative)

A provider that receives a <searchRequest> from a requestor that the provider trusts must examine the content of the <searchRequest>. If the request is valid, the provider MUST return (the XML that represents) every object that matches the specified <query> (if the provider can possibly do so). However, the number of objects selected (for immediate return or for eventual iteration) MUST NOT exceed any limit specified as “maxReturn” in the <searchRequest>.

Execution. If an <searchRequest> does not have an “execution” attribute, the provider MUST choose a type of execution for the requested operation. See the section entitled “Determining execution mode”.

A provider SHOULD execute a search operation synchronously if it is possible to do so. (The reason for this is that the result of a search should reflect the current state of each matching object. Other operations are more likely to intervene if a search operation is executed asynchronously.)

Response. The provider MUST return to the requestor a <searchResponse>.

Status. The <searchResponse> must contain a “status” attribute that indicates whether the provider successfully selected every object that matched the specified query. See Status (normative)“”
 for values of this attribute.

· If the provider successfully returned (the XML that represents) every object that matched the specified <query> up to any limit specified by the value of the “maxReturn” attribute, then the <searchResponse> MUST specify “status=’success’”.

· If the provider encountered an error in selecting any object that matched the specified <query> or (if the provider encountered an error) in returning (the XML that represents) any of the selected objects, then the <searchResponse> MUST specify “status=’failure’”.

Pso. The <searchResponse> MAY contain any number of <pso> elements.

· If the <searchResponse> specifies “status=’success’” and at least one object matched the specified <query>, then the <searchResponse> MUST contain at least one <pso> element that contains the (XML representation of the) a matching object.

· If the <searchResponse> specifies “status=’success’” and no object matched the specified <query>, then the <searchResponse> MUST NOT contain a <pso> element.

· If the <searchResponse> specifies “status=’failure’”, then the <searchResponse> MUST NOT contain a <pso> element.

Pso and ReturnData. Each <pso> contains the subset of (the XML representation of) a requested object that the “returnData” attribute of the <searchRequest> specified. By default, each <pso> contains the entire (XML representation of an) object.

· A <pso> element MUST contain a <psoID> element.

· If the <searchRequest> specified “returnData=’none’”,
then the <psoID> element MUST be empty.

· Otherwise, if the <searchRequest> specified “returnData=’identifier’”
or (if the <searchRequest> specified) “returnData=’data’”
or (if the <searchRequest> specified) “returnData=’everything’”
or (if the <searchRequest>) omitted the “returnData” attribute
then the <psoID> element MUST contain the identifier of the requested object.
See the section entitled “PSOIdentifier”.

· A <pso> element MUST contain a <data> element.

· If the <searchRequest> specified “returnData=’none’”
or (if the <searchRequest> specified) “returnData=’identifier’”,
then the <data> element MUST be empty.

· Otherwise, if the <searchRequest> specified “returnData=’data’”
or (if the <searchRequest> specified) “returnData=’everything’”
or (if the <searchRequest>) omitted the “returnData” attribute
then the <data> element MUST contain the XML representation of the object.
This XML must be valid according to the schema of the target for the schema entity of which the newly created object is an instance.

· A <pso> element MAY contain any number of <capabilityData> elements. Each <capabilityData> element contains an item of capability-specific data that is associated with the newly created object (for example, a reference to another object).

· If the <searchRequest> specified “returnData=’none’”
or (if the <searchRequest> specified) “returnData=’identifier’”
or (if the <searchRequest> specified) “returnData=’data’”
then the <pso> MUST NOT contain a <capabilityData> element.

· Otherwise, if the <searchRequest> specified “returnData=’everything’”
or (if the <searchRequest>) omitted the “returnData” attribute,
then the <pso> MUST contain a <capabilityData> element for each item of capability-specific data that is associated with the requested object
(and that is specific to a capability that the target supports for the schema entity of which the requested object is an instance).
PSO capability-specific data and IncludeDataForCapability. A <searchResponse> MUST include (as <capabilityData> sub-elements of each <pso>) any capability-specific data that is associated with the matching object and for which all of the following are true:

· The <searchResponse> contains a <pso>.

· The <searchRequest> specifies “returnData=’everything’” or (the <searchRequest>) omits the “returnData” attribute.

· The schema for the target declares that the target supports the capability (for the schema entity of which each matching object is an instance).

· The <searchRequest> contains an <includeDataForCapability> element that specifies the capability to which the data are specific or the <searchRequest> contains no <includeDataForCapability> element.

A <searchResponse> SHOULD NOT include (as <capabilityData> sub-elements of each <pso>) any capability-specific data for which any of the above is not true.

iterator. A <searchResponse> MAY contain at most one <iterator> element.

· If the <searchResponse> specifies “status=’success’” and the search response contains all of the objects that matched the specified <query>, then the <searchResponse> MUST NOT contain an <iterator>.

· If the <searchResponse> specifies “status=’success’” and the search response contains some but not all of the objects that matched the specified <query>, then the <searchResponse> MUST contain exactly one <iterator>.

· If the <searchResponse> specifies “status=’success’” and no object matched the specified <query>, then the <searchResponse> MUST NOT contain an <iterator>.

· If the <searchResponse> specifies “status=’failure’”, then the <searchResponse> MUST NOT contain an <iterator>.
iterator ID. An <iterator> MUST have an “ID” attribute.

The value of the “ID” attribute uniquely identifies the <iterator> within the namespace of the provider. The “ID” attribute allows the provider to map each <iterator> token to the status set of the requestor’s <query> and to any state that records the requestor’s iteration within that status set.

The “ID” attribute is (intended to be) opaque to the requestor. A requestor cannot ‘lookup’ an <iterator>. A requestor cannot specify the “ID” of an <iterator> in an <iterateRequest>.

iterator count. An <iterator> MAY have a “count” attribute.

If a <searchResponse> specifies “status=’success’” then the “count” attribute MUST specify the number of objects that the provider will eventually return (either in this response or in response to a subsequent iterate request).

The value of the “count” attribute MUST NOT exceed any value that the requestor specified for the “maxReturn” attribute of the <query> in the <searchRequest>.

iterator totalCount. An <iterator> MAY have a “totalCount” attribute.

If a <searchResponse> specifies “status=’success’”, then the “totalCount” attribute MUST specify the number of objects that matched the (“base” and and “select” attributes of the) <query> that was specified in the <searchRequest>.

Error. If the <searchResponse> specifies “status=’failure’”, then the <searchResponse> MUST have an “error” attribute that characterizes the failure. See Error (normative)“”
for values of this attribute.

The section entitled "SearchQueryType Errors (normative)" describes errors specific to a request that contains a <query>. Also see the section entitled “SelectionType Errors (normative)”.
In addition, the provider must return an error if any of the following is true:

· If the number of objects that matched the <query> that was specified in a <searchRequest> exceeds exceeds any limit on the part of the provider (but does not exceed any value of “maxReturn” that the requestor specified as part of the <query>).

3.2.5.4.3 Examples (non-normative)

In the following example, a requestor asks a provider to search for every Person with an email address matching joebob@example.com.
	<searchRequest>

<query scope=”subTree” baseTargetID=”target2” >

<select namespaceURI=”http://www.w3.org/TR/xpath20” path=’/Person/email=”joebob@example.com”’ />

</query>

</searchRequest>

The provider returns a <searchResponse>. The “status” attribute of the <searchResponse> indicates that the provider successfully executed the search operation.

	<searchResponse status=“success">

<pso>

<data>

<Person cn=”joebob” firstName=”joebob” lastName=”Briggs” fullName=”JoeBob Briggs”>

<email>joebob@example.com</email>

</Person>

</data>

<psoID objectId=”2244” targetID=“target2”/>

</pso>

<iterator ID=”1826” count=”1” totalCount=”1”/>

</searchResponse>

In the following example, a requestor asks a provider to search for every account that is currently owned by “joebob”. The requestor uses the “returnData” attribute to specify that the provider should return only schema-defined data for each matching object.

	<searchRequest returnData=”identifier”>

<query scope=”subtree” baseTargetID=”target2” >

<hasReference typeOfReference=”owner”>

<toPSOID>2244</toPSOID>

</hasReference>

</query>

</searchRequest>

The provider returns a <searchResponse>. The “status” attribute of the <searchResponse> indicates that the provider successfully executed the search operation.

	<searchResponse status=“success">

<pso>

<psoID objectId=”1431” targetID=“target1”/>

<data/>

</pso>

</searchResponse>

3.2.5.5 iterate

The iterate operation obtains the next object from the status set that the provider selected for a search operation. (See the description of the search operation above.)

The subset of the Search Capability Schema that is most relevant to the iterate operation follows.

	
<complexType name="ResultsIteratorType">

<complexContent>

<extension base="spml:ExtensibleType">

<attribute name="ID" type="xsd:ID"/>

<attribute name="count" type="xsd:int" use="optional"/>

<attribute name="totalCount" type="xsd:int" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="SearchResponseType">

<complexContent>

<extension base="spml:ResponseType">

<sequence>

<element name="pso" type="spml:PSOType" minOccurs="0" maxOccurs="unbounded"/>

<element name="iterator" type="spmlsearch:ResultsIteratorType" minOccurs="0" maxOccurs="1"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="IterateRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="iterator" type="spmlsearch:ResultsIteratorType" minOccurs="1" maxOccurs="1"/>

</sequence>

</extension>

</complexContent>

</complexType>

<element name="iterateRequest" type="spmlsearch:IterateRequestType"/>

<element name="iterateResponse" type="spmlsearch:SearchResponseType"/>

An iterateRequest receives an iterateResponse. A requestor supplies the <iterator> that is output from a <searchResponse> as input to an <iterateRequest>. A provider returns an <iterateResponse> in response to each <iterateRequest>. An <iterateResponse> has the same structure as a <searchResponse>.

The <iterateResponse> will contain at least one <pso> element that represents a matching object. If more matching objects are available to return, then the <iterateResponse> will also contain an <iterator>. The requestor can use this <iterator> in another <iterateRequest> to retrieve more of the matching objects.

Iterate is not batchable. For reasons of scale, neither ‘search’ nor ‘iterate’ should be nested in a batch request. When a search query matches matches more objects than the provider can place directly in the response, the provider must temporarily store the remaining objects. Storing the remaining objects allows allows the requestor to iterate the remaining objects, but also requires the provider to commit resources (for an unspecified period of time).

Batch responses also tend to be large. Batch operations are typically asynchronous, so storing the results of asynchronous batch operations imposes on providers a resource burden similar to that of search results. Allowing a requestor to nest a search request or an iterate request within a batch request would aggravate the resource problem, requiring a provider to store more information in larger chunks for a longer amount of time.
3.2.5.5.1 Request (normative)

A requestor MUST send an <iterateRequest> to a provider in order to obtain any additional objects that matched a previous <searchRequest> but that the provider has not yet returned to the requestor. (That is, matching objects that were not contained in the response to that <searchRequest> and that have not yet been contained in any response to an <iterateRequest> associated with that <searchRequest>.)

Execution. An <iterateRequest> MUST NOT specify “executionMode=‘asynchronous’”. A requestor MUST specify “executionMode=‘synchronous’” or (a requestor MUST) omit the “executionMode” attribute of the <statusRequest>. See Determining execution type.

iterator. An <iterateRequest> MUST contain exactly one <iterator> element. A requestor MUST specify the <iterator> from a <searchResponse> as input to an <iterateRequest>.

3.2.5.5.2 Response (normative)

A provider that receives a <iterateRequest> from a requestor that the provider trusts must examine the content of the <iterateRequest>. If the request is valid, the provider MUST return (the XML that represents) the next object in the status set that the <iterator> represents.

Execution. The provider MUST execute the iterate operation synchronously (if the provider executes the iterate operation at all). See the section entitled “Determining execution type”.

Response. The provider MUST return to the requestor an <iterateResponse>.

Status. The <iterateResponse> must contain a “status” attribute that indicates whether the provider successfully returned the next object from the status set that the <iterator> represents. See Status (normative)“”
 for values of this attribute.

· If the provider successfully returned (the XML that represents) the next object from the status set that the <iterator> represents, then the <iterateResponse> MUST specify “status=’success’”.

· If the provider encountered an error in returning (the XML that represents) the next object from the status set that the <iterator> represents, then the <iterateResponse> MUST specify “status=’failure’”.

Pso. The <iterateResponse> MAY contain any number of <pso> elements.

· If the <iterateResponse> specifies “status=’success’” and at least one object remains (in the status set that the <iterator> represents), then the <iterateResponse> MUST contain at least one <pso> element that contains the (XML representation of the) next matching object.

· If the <iterateResponse> specifies “status=’success’” and no object remains (in the status set that the <iterator> represents), then the <iterateResponse> MUST NOT contain a <pso> element.

· If the <iterateResponse> specifies “status=’failure’”, then the <iterateResponse> MUST NOT contain a <pso> element.

Pso and ReturnData. Each <pso> contains the subset of (the XML representation of) a requested object that the “returnData” attribute of the original <searchRequest> specified. By default, each <pso> contains the entire (XML representation of an) object.

· A <pso> element MUST contain a <psoID> element.

· If the <searchRequest> specified “returnData=’none’”,
then the <psoID> element MUST be empty.

· Otherwise, if the <searchRequest> specified “returnData=’identifier’”
or (if the <searchRequest> specified) “returnData=’data’”
or (if the <searchRequest> specified) “returnData=’everything’”
or (if the <searchRequest>) omitted the “returnData” attribute
then the <psoID> element MUST contain the identifier of the requested object.
See the section entitled “PSOIdentifier”.

· A <pso> element MUST contain a <data> element.

· If the <searchRequest> specified “returnData=’none’”
or (if the <searchRequest> specified) “returnData=’identifier’”,
then the <data> element MUST be empty.

· Otherwise, if the <searchRequest> specified “returnData=’data’”
or (if the <searchRequest> specified) “returnData=’everything’”
or (if the <searchRequest>) omitted the “returnData” attribute
then the <data> element MUST contain the XML representation of the object.
This XML must be valid according to the schema of the target for the schema entity of which the newly created object is an instance.

· A <pso> element MAY contain any number of <capabilityData> elements. Each <capabilityData> element contains an item of capability-specific data that is associated with the newly created object (for example, a reference to another object).

· If the <searchRequest> specified “returnData=’none’”
or (if the <searchRequest> specified) “returnData=’identifier’”
or (if the <searchRequest> specified) “returnData=’data’”
then the <pso> MUST NOT contain a <capabilityData> element.

· Otherwise, if the <searchRequest> specified “returnData=’everything’”
or (if the <searchRequest>) omitted the “returnData” attribute,
then the <pso> MUST contain a <capabilityData> element for each item of capability-specific data that is associated with the requested object
(and that is specific to a capability that the target supports for the schema entity of which the requested object is an instance).
PSO capability-specific data and IncludeDataForCapability. A <searchResponse> MUST include (as <capabilityData> sub-elements of each <pso>) any capability-specific data that is associated with the matching object and for which all of the following are true:

· The <searchResponse> contains a <pso>.

· The original <searchRequest> specified “returnData=’everything’” or (the <searchRequest>) omitted the “returnData” attribute.

· The schema for the target declares that the target supports the capability (for the schema entity of which each matching object is an instance).

· The original <searchRequest> contained an <includeDataForCapability> element that specified the capability to which the data are specific or the original <searchRequest> contained no <includeDataForCapability> element.

A <searchResponse> SHOULD NOT include (as <capabilityData> sub-elements of each <pso>) any capability-specific data for which any of the above is not true.

iterator. A <searchResponse> to an <iterateRequest> MAY contain at most one <iterator> element.

· If the <searchResponse> specifies “status=’success’” and the search response contains the last of the objects that matched the <query> that was specified in the original <searchRequest>, then the <searchResponse> MUST NOT contain an <iterator>.

· If the <searchResponse> specifies “status=’success’” and the provider still has more matching objects that have not yet been returned to the requestor, then the <searchResponse> MUST contain exactly one <iterator>.

· If the <searchResponse> specifies “status=’failure’”, then the <searchResponse> MUST NOT contain an <iterator>.
iterator ID. An <iterator> MUST have an “ID” attribute.

The value of the “ID” attribute uniquely identifies the <iterator> within the namespace of the provider. The “ID” attribute allows the provider to map each <iterator> token to the status set of the requestor’s <query> and to any state that records the requestor’s iteration within that status set.

The “ID” attribute is (intended to be) opaque to the requestor. A requestor cannot ‘lookup’ an <iterator>. A requestor cannot specify the “ID” of an <iterator> in an <iterateRequest>.

iterator count. An <iterator> MAY have a “count” attribute.

If a <searchResponse> specifies “status=’success’” then the “count” attribute MUST specify the number of objects that the provider will eventually return (either in the original response or in response to a subsequent iterate request).

iterator totalCount. An <iterator> MAY have a “totalCount” attribute.

If a <searchResponse> specifies “status=’success’”, then the “totalCount” attribute MUST specify the number of objects that matched the (“base” and and “select” attributes of the) <query> that was specified in the <searchRequest>.

Error. If the <searchResponse> specifies “status=’failure’”, then the <searchResponse> MUST have an “error” attribute that characterizes the failure. See Error (normative)“”
for values of this attribute.

The <searchResponse> MUST specify an appropriate value of “error” if any of the following is true:

· If the provider does not recognize the <iterator> in an <iterateRequest> as representing a status set.

· If the provider does not recognize the <iterator> in an <iterateRequest> as representing any status set that the provider currently maintains.

The <searchResponse> MAY specify an appropriate value of “error” if any of the following is true:

· If an <iterateRequest> contains an <iterator> that is not the most recent version of the <iterator>. If the provider has returned to the requestor a more recent <iterator> that represents the same search result set, then the provider MAY reject the older <iterator>.
(A provider that changes the ID—for example, to encode the state of iteration within a search result set—may be sensitive to this.)

3.2.5.5.3 Examples (non-normative)

In order to illustrate the ‘iterate’ operation, we first need a search operation that returns more than one object. In the following example, a requestor asks a provider to search for every Person with an email address that starts with the letter “j”.
	<searchRequest>

<query scope=”subTree” baseTargetID=”target2” >

<select namespaceURI=”http://www.w3.org/TR/xpath20” path=’/Person/email=”j*”’ />

</query>
</searchRequest>

The provider returns a <searchResponse>. The “status” attribute of the <searchResponse> indicates that the provider successfully executed the search operation. The <searchResponse> contains a <pso> element that represents the first matching object.

	<searchResponse status=“success">

<pso>

<data>

<Person cn=”jeff” firstName=”Jeff” lastName=”Beck” fullName=”Jeff Beck”>

<email>jeffbeck@example.com</email>

</Person>

</data>

<psoID objectId=”0001” targetID=“target2”/>

</pso>

<iterator ID=”1900” count=”7” totalCount=”7”/>
</searchResponse>

The requestor asks the provider to return the next object in the status set for the search. The requestor supplies the <iterator> from the <searchResponse> as input to the <iterateRequest>.

	<iterateRequest>

<iterator ID=”1900” count=”7” totalCount=”7”/>
</iterateRequest>

The provider returns a <searchResponse> in response to the <iterateRequest>. The “status” attribute of the <searchResponse> indicates that the provider successfully executed the iterate operation. The <searchResponse> contains a <pso> element that represents the next matching object.

	<searchResponse status=“success">

<pso>

<data>

<Person cn=”jimi” firstName=”Jimi” lastName=”Hendrix” fullName=”Jimi Hendrix”>

<email>jimi@example.com</email>

</Person>

</data>

<psoID objectId=”0002” targetID=“target2”/>

</pso>

<iterator ID=”1901” count=”7” totalCount=”7”/>

</searchResponse>

The <searchResponse> also contains another <iterator> element. The “ID” of this <iterator> differs from the “ID” of the iterator in the original <searchResponse>. The “ID” could remain constant (for each iteration of the status set that the <iterator> represents), but the “ID” value could change (e.g., if the provider uses ID to encode the state of the status set).

To get the third matching object, the requestor again supplies the <iterator> from the <searchResponse> as input to the <iterateRequest>.

	<iterateRequest>

<iterator ID=”1901” count=”7” totalCount=”7”/>
</iterateRequest>

The provider again returns a <searchResponse> in response to the <iterateRequest>. The “status” attribute of the <searchResponse> indicates that the provider successfully executed the iterate operation. The <searchResponse> contains a <pso> element that represents the next matching object.

	<searchResponse status=“success">

<pso>

<data>

<Person cn=”joebob” firstName=”JoeBob” lastName=”Briggs” fullName=”JoeBob Briggs”>

<email>joebob@example.com</email>

</Person>

</data>

<psoID objectId=”2244” targetID=“target2”/>

</pso>

<iterator ID=”1902” count=”7” totalCount=”7”/>

</searchResponse>

3.2.6 Suspend Capability

The Suspend Capability is defined in a schema associated with the following XML namespace: urn:oasis:names:tc:SPML:2:0:suspend. This document includes the Suspend Capability Schema as Appendix H.

The Suspend Capability defines three operations: ‘suspend’, ‘resume’ and ‘active’.

· The ‘suspend’ operation disables an object (immediately or on a specified date).

· The ‘resume’ operation re-enables an object (immediately or on a specified date).

· The ‘active’ operation tests whether an object is currently suspended.

The ‘suspend’ operation disables an object persistently (rather than transiently). The suspend operation is intended to revoke the privileges of an account, for example, while the authorized user of the account is on vacation.

The ‘resume’ operation re-enables an object persistently. One might use the resume operation to restore privileges for an account, for example, when the authorized user of the account returns from vacation.

A provider that supports the ‘suspend’, ‘resume’ and ‘active’ operations for a target SHOULD declare that the target supports the Suspend Capability. A provider that does not support all of ‘suspend’, ‘resume’ and ‘active’ MUST NOT declare that the target supports the Suspend Capability.

NOTE: Both the suspend and resume operations are idempotent. Are requestor should be able to suspend (or to resume) the same object multiple times without error.

Search. A requestor can search for objects based on enabled state using the <isActive> query clause. The {IsActiveType} extends {QueryClauseType}, which indicates that an instance of {IsActiveType} can be used to select objects. An <isActive> clause matches an object if and only if the object is currently enabled. In order to select disabled objects, a requestor would combine this clause with the logical operator <not>. See the section entitled “Selection”.

3.2.6.1 suspend

The suspend operation enables a requestor to disable an object.

The subset of the Suspend Capability Schema that is most relevant to the suspend operation follows.

	
<complexType name="SuspendRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType"/>

</sequence>

<attribute name="effectiveDate" type="datetime" use="optional"/>

</extension>

</complexContent>

</complexType>

<element name="SuspendRequest" type="spmlsuspend:SuspendRequestType"/>

<element name="SuspendResponse" type="spml:ResponseType"/>

3.2.6.1.1 Request (normative)

A requestor MUST send a <suspendRequest> to a provider in order to (ask the provider to) disable an existing object.

Execution. A requestor MAY specify a type of execution for a ‘suspend’ operation. See Determining execution type.

Identifier. A <suspendRequest> MUST contain exactly one <psoID> element. A <psoID> element MUST contain a valid PSOIdentifier for an object that exists on a target that is exposed by the provider.

EffectiveDate. A <suspendRequest> MAY specify an “effectiveDate”. Any “effectiveDate” value MUST be a UTC format date/time string (with no offset) in GMT.
3.2.6.1.2 Response (normative)

A provider that receives a <suspendRequest> from a requestor that the provider trusts MUST examine the content of the <suspendRequest>. If the request is valid and if the specified object exists, then the provider MUST disable the object that is specified by the <psoID>.

If the <suspendRequest> specifies an “effectiveDate”, the provider MUST enable the specified object as of that date.

· If the “effectiveDate” of the <suspendRequest> is in the past, then
the provider MUST do one of the following:

· The provider MAY disable the specified object immediately.

· The provider MAY return an error. (The provider’s response SHOULD indicate that the request failed because the effective date is past.)

· If the “effectiveDate” of the <suspendRequest> is in the future, then

· The provider MUST NOT disable the specified object until that future date and time.

· The provider MUST disable the specified object at that future date and time
(unless a subsequent request countermands this request).

Execution. If an <suspendRequest> does not have an execution attribute, the provider MUST choose a type of execution for the requested operation. See the section entitled “Determining execution type”.

Response. The provider must return to the requestor a <suspendResponse>. The <suspendResponse> must have a “status” attribute that indicates whether the provider successfully disabled the specified object. See Status (normative)“”
 for values of this attribute.

Error. If the provider cannot create the requested object, the <suspendResponse> must contain an error attribute that characterizes the failure. See Error (normative)“”
for values of this attribute.

The provider MUST return an error if any of the following is true:

· The <suspendRequest> contains a <psoID> for an object that does not exist.
· The <suspendRequest> specifies an “effectiveDate” that is not valid.
The provider MAY return an error if any of the following is true:

· The <suspendRequest> specifies an “effectiveDate” that is in the past.
The provider MUST NOT return an error when (the operation would otherwise succeed and) the object is already disabled. In this case, the response should specify “status=’success’”.

3.2.6.1.3 Examples (non-normative)

In the following example, a requestor asks a provider to suspend an existing Person object.

	<suspendRequest>

<psoID objectId=”2244” targetID=“target2”/>

</suspendRequest>

The provider returns an <suspendResponse> element. The “status” attribute of the <suspendResponse> element indicates that the provider successfully disabled the specified object.

	<suspendResponse status=“success"/>

In the following example, a requestor asks a provider to suspend an existing account.

	<suspendRequest>

<psoID objectId=”1431” targetID=“target1”/>

</suspendRequest>

The provider returns a <suspendResponse>. The “status” attribute of the <suspendResponse> indicates that the provider successfully disabled the specified account.

	<suspendResponse status=“success"/>

3.2.6.2 resume

The resume operation enables a requestor to re-enable an object that has been suspended. (See the description of the suspend operation above.)

The subset of the Suspend Capability Schema that is most relevant to the resume operation follows.

	
<complexType name="ResumeRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType"/>

</sequence>

<attribute name="effectiveDate" type="datetime" use="optional"/>

</extension>

</complexContent>

</complexType>

<element name="ResumeRequest" type="spmlsuspend:ResumeRequestType"/>

<element name="ResumeResponse" type="spml:ResponseType"/>

3.2.6.2.1 Request (normative)

A requestor MUST send a <resumeRequest> to a provider in order to (ask the provider to) re-enable an existing object.

Execution. A requestor MAY specify a type of execution for a ‘resume’ operation. See Determining execution type.

Identifier. A <resumeRequest> MUST contain exactly one <psoID> element. A <psoID> element MUST contain a valid PSOIdentifier for an object that exists on a target (that is supported by the provider).

EffectiveDate. A <resumeRequest> MAY specify an “effectiveDate”. Any “effectiveDate” value MUST be a UTC format date/time string (with no offset) in GMT.
3.2.6.2.2 Response (normative)

A provider that receives a <resumeRequest> from a requestor that the provider trusts MUST examine the content of the <resumeRequest>. If the request is valid and if the specified object exists, then the provider MUST enable the object that is specified by the <psoID>.

If the <resumeRequest> specifies an “effectiveDate”, the provider MUST enable the specified object as of that date.

· If the “effectiveDate” of the <resumeRequest> is in the past, then
the provider MUST do one of the following:

· The provider MAY enable the specified object immediately.

· The provider MAY return an error. (The provider’s response SHOULD indicate that the request failed because the effective date is past.)

· If the “effectiveDate” of the <resumeRequest> is in the future, then

· The provider MUST NOT enable the specified object until that future date and time.

· The provider MUST enable the specified object at that future date and time
(unless a subsequent request countermands this request).

Execution. If an <resumeRequest> does not have an execution attribute, the provider MUST choose a type of execution for the requested operation. See the section entitled “Determining execution type”.

Response. The provider must return to the requestor a <resumeResponse>. The <resumeResponse> must have a “status” attribute that indicates whether the provider successfully enabled the specified object. See Status (normative)“”
 for values of this attribute.

Error. If the provider cannot enable the requested object, the <resumeResponse> must contain an error attribute that characterizes the failure. See Error (normative)“”
for values of this attribute.

The provider MUST return an error if any of the following is true:

· The <resumeRequest> contains a <psoID> for an object that does not exist.
· The <resumeRequest> specifies an “effectiveDate” that is not valid.
The provider MAY return an error if any of the following is true:

· The <resumeRequest> specifies an “effectiveDate” that is in the past.
The provider MUST NOT return an error when (the operation would otherwise succeed and) the object is already enabled. In this case, the response should specify “status=’success’”.

3.2.6.2.3 Examples (non-normative)

In the following example, a requestor asks a provider to resume an existing Person object.

	<resumeRequest>

<psoID objectId=”2244” targetID=“target2”/>
</resumeRequest>

The provider returns a <resumeResponse> element. The “status” attribute of the <resumeResponse> element indicates that the provider successfully disabled the specified object.

	<resumeResponse status=“success"/>

In the following example, a requestor asks a provider to resume an existing account.

	<resumeRequest>

<psoID objectId=”1431” targetID=“target1”/>
</resumeRequest>

The provider returns a <resumeResponse>. The “status” attribute of the <resumeResponse> indicates that the provider successfully enabled the specified account.

	<resumeResponse status=“success"/>

3.2.6.3 active

The active operation enables a requestor to determine whether a specified object has been suspended. (See the description of the suspend operation above.)

The subset of the Suspend Capability Schema that is most relevant to the active operation follows.

	
<complexType name="ActiveRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="ActiveResponseType">

<complexContent>

<extension base="spml:ResponseType">

<sequence>

</sequence>

<attribute name="active" type="boolean" use="optional"/>

</extension>

</complexContent>

</complexType>

<element name="ActiveRequest" type="spmlsuspend:ActiveRequestType"/>

<element name="ActiveResponse" type="spmlsuspend:ActiveResponseType"/>

3.2.6.3.1 Request (normative)

A requestor MUST send an <activeRequest> to a provider in order to (ask the provider to) determine whether the specified object is enabled (active) or disabled.

Execution. A requestor MAY specify a type of execution for an active operation. See Determining execution type.

Identifier. A <activeRequest> MUST contain exactly one <psoID> element. A <psoID> element MUST contain a valid PSOIdentifier for an object that exists on a target that is exposed by the provider.

3.2.6.3.2 Response (normative)

A provider that receives a <activeRequest> from a requestor that the provider trusts MUST examine the content of the <activeRequest>. If the request is valid and if the specified object exists, then the provider MUST disable the object that is specified by the <psoID>.

Execution. If an <activeRequest> does not have an execution attribute, the provider MUST choose a type of execution for the requested operation. See the section entitled “Determining execution type”.

Response. The provider must return to the requestor an <activeResponse>. The <activeResponse> must have a “status” attribute that indicates whether the provider successfully determined whether the specified object is enabled (i.e. active). See Status (normative)“”
 for values of this attribute.

active. An <activeResponse> MAY have an “active” attribute that indicates whether the specified object is suspended. An <activeResponse> that specifies “status=’success’” MUST have an “active” attribute.

· If the specified object is suspended, the <activeResponse> MUST specify “active=’false’”.

· If the specified object is not suspended, the <activeResponse> MUST specify “active=’false’”.

Error. If the provider cannot determine whether the requested object is suspended, the <activeResponse> must contain an “error” attribute that characterizes the failure. See Error (normative)“”
for values of this attribute.

The provider MUST return an error if any of the following is true:

· The <activeRequest> contains a <psoID> that specifies an object that does not exist.
3.2.6.3.3 Examples (non-normative)

In the following example, a requestor asks a provider whether a Person object is active.

	<activeRequest>

<psoID objectId=”2244” targetID=“target2”/>
</actoveRequest>

The provider returns an <activeResponse> element. The “status” attribute of the <activeResponse> element indicates that the provider successfully completed the requested operation. The “active” attribute of the <activeResponse> indicates that the specified object is active.

	<activeResponse status=“success" active=”true”/>

In the following example, a requestor asks a provider whether an account is active.

	<activeRequest>

<psoID objectId=”1431” targetID=“target1”/>
</activeRequest>

The provider returns an <activeResponse>. The “status” attribute of the <activeResponse> indicates that the provider successfully completed the requested operation. The “active” attribute of the <activeResponse> indicates that the specified object is active.
	<activeResponse status=“success" active=”true”/>

Custom Capabilities

The features of SPMLv2 that allow the PSTC to define optional operations as part of standard capabilities are open mechanisms that will work for anyone. An individual provider (or any third party) can define a custom capability that integrates with SPMLv2. Whoever controls the namespace of the capability controls the extent to which it can be shared. Each provider determines which capabilities are supported for which types of objects on which types of targets.

The SPMLv2 capability mechanism is extensible. Any party may define additional capabilities. A provider declares its support for a custom capability in exactly the same way that it declares support for a standard capability: as a target <capability> element.

The standard capabilities that SPMLv2 defines will not address all needs. Other contributors will develop additional custom capabilities. A “registry” (or some other mechanism that promotes sharing and re-use) of custom capabilities would increase the value and interoperability of these custom capabilities.

Since the schema for each capability is defined in a separate namespace, a custom capability will not ordinarily conflict with a standard capability that is defined as part of SPMLv2, nor will a custom capability ordinarily conflict with another custom capability. In order for a custom capability B to conflict with another capability A, capability B would have to import the namespace of capability A and redeclare a schema element from capability A. Such a conflict is clearly intentional and a provider can easily avoid such a conflict by not declaring support for capability B.

Also see the section below entitled “Conformance”.
4 Conformance (normative)
4.1 Core operations and schema are mandatory

A conformant provider MUST support the elements, attributes, and types defined in the SPMLv2 core schema. This includes all the core operations and protocol behavior.
Schema syntax for the SPMLv2 core operations is defined in a schema that is associated with the following XML namespace: urn:oasis:names:tc:SPML:2:0. This document includes the Core Schema as Appendix A.

4.2 Standard capabilities are optional

A conformant provider SHOULD support the schema and operations defined by each standard capability of SPMLv2.

A conformant provider MUST NOT expose an operation that competes with (i.e., whose functions overlap those of) an operation defined by a standard capability of SPMLv2
UNLESS all of the following are true:

· The provider MUST define the competing operation in a custom capability.

· Every target (and every schema entity on a target) that supports the provider’s custom capability MUST also support the standard capability.

4.3 Custom capabilities

A conformant provider MUST use the custom capability mechanism of SPMLv2 to expose any operation beyond those specified by the core and standard capabilities of SPMLv2.

A conformant provider MAY support any custom capability that conforms to SPMLv2.

Custom capabilities must conform. Any operation that a custom capability defines MUST be defined as a request-response pair such that all of the following are true:

· The request type (directly or indirectly) extends {RequestType}

· The response type is {ResponseType} or (the response type directly or indirectly) extends {ResponseType}.

Custom capabilities should not conflict. Since each custom capability is defined in its own namespace, an element or attribute in the XML schema that is associated with a custom capability SHOULD NOT not conflict with (i.e., SHOULD NOT redefine and SHOULD NOT otherwise change the definition of) any element or attribute in any other namespace:

· A custom capability MUST NOT conflict with the core schema of SPMLv2.

· A custom capability MUST NOT conflict with any standard capability of SPMLv2.

· A custom capability SHOULD NOT conflict with another custom capability.

5 Security and privacy considerations

[Ed. Hal Lockhart will update this section. #6]

This section identifies scenarios that compromise security and privacy. Scenarios such as these should be considered when implementing an SPML-based system. This section is purely informative. Each implementer must evaluate the risks and select appropriate safeguards.

5.1 Threat model

We assume here that an adversary has access to the communication channel between the SPML requestor and provider and is able to interpret, insert, delete and modify messages or parts of messages.

5.1.1 Unauthorized disclosure

SPML does not specify any inherent mechanisms for confidentiality of the messages exchanged between actors. Therefore, an adversary could observe the messages in transit. Disclosure of the information contained in SPML messages may constitute a violation of certain security policies. Disclosure of provisioning data may have significant repercussions. In the commercial sector, the consequences of unauthorized disclosure of personal data may range from public embarrassment of the corporation to imprisonment of and large fines for its officers. Statutory penalties are especially high in the case of medical or financial data.

Confidentiality mechanisms (see below) address unauthorized disclosure.

5.1.2 Message Replay

A message replay attack is one in which an adversary records and replays legitimate messages between SPML actors. This attack may lead to denial of service, impersonation, or simply out-of-date information.

An implementer must use message “freshness” mechanisms in order to prevent replay attacks.

Note that message encryption does not mitigate a replay attack since an attacker merely replays (and does not need to understand) the message.

5.1.2.1 Message insertion

A message insertion attack is one in which an adversary inserts messages in the sequence of messages between SPML actors.

The solution to a message insertion attack is to use mutual authentication and a message sequence integrity mechanism between the actors. It should be noted that just using SSL mutual authentication is not sufficient. SSL mutual authentication proves only that the other party is the one identified by the subject of the X.509 certificate. In order to be effective, it is necessary to confirm that the certificate subject is authorized to send the message.

5.1.2.2 Message deletion

A message deletion attack is one in which the adversary deletes messages in the sequence of messages between SPML actors. Message deletion may lead to denial of service. However, a properly designed SPML system should not trigger false provisioning on as the status of a message deletion attack.

The solution to a message deletion attack is to use a message integrity mechanism between the actors.

5.1.2.3 Message modification

If an adversary can intercept a message and change its contents, then the adversary may be able to alter a provisioning request. Message integrity mechanisms can prevent a message modification attack from succeeding.

5.2 Safeguards

5.2.1 Authentication

Authentication provides the means for one party in a transaction to determine the identity of the other party in the transaction. Authentication may be unilateral (in one direction) or it may be bilateral (on both sides).

Given the sensitive nature of many provisioning requests and systems it is important for a requestor (client) to authenticate the provider (server). Otherwise, there is a risk that an adversary could act as a provider, leading to a possible security violation.

It is equally important for a provider to authenticate the requestor, to assess the level of trust between them and to determine whether the requestor is authorized to request each operation.

Many different techniques may be used to provide authentication, such as co-located code, a private network, a VPN or digital signatures. Authentication may also be performed as part of the communication protocol that is used to exchange the requests. When authentication is performed as part of the protocol, authentication may be performed for each session or for each message.

5.2.2 Confidentiality
Confidentiality mechanisms ensure that only the desired recipients can read the contents of a message. The primary concern is confidentiality during transmission.

5.2.2.1 Communication confidentiality

In some environments it is deemed good practice to treat all data within a provisioning domain as confidential. In other environments certain parts of the service schema and required attributes may be published. Regardless of the approach, the security of the provisioning system as a whole should not depend in any way on the secrecy of the service, on the secrecy of the service’s provider, nor on the secrecy of the service’s request data schema.

Any security concern or requirement related to transmitting or exchanging SPML documents lies outside the scope of the SPML standard. Ensuring the integrity and confidentiality of provisioning requests is generally important, but the implementer must determine which mechanisms are appropriate for each implementation environment.

A confidentiality mechanism, such as SSL, can provide communications confidentiality. However, a point-to-point scheme like SSL may lead to other vulnerabilities if one of the end-points is compromised.

5.2.2.2 Trust model

Discussions of authentication, integrity and confidentiality mechanisms necessarily assume an underlying trust model: how can one actor come to believe that a given key is uniquely associated with a specific, identified actor so that the key can be used to encrypt data for that actor or verify signatures (or other integrity structures) from that actor? Many different types of trust model exist, including strict hierarchies, distributed authorities, the Web, the bridge and so on.

5.2.2.3 Privacy

It is important to be aware that any transactions that occur in an SPML model system may contain private and secure information about the actors. Selection and use of privacy mechanisms appropriate to a given environment are outside the scope of this specification. The decisions regarding whether, how and when to deploy such mechanisms is left to the implementers associated with the environment.

Appendix A. Core Schema

	<?xml version="1.0" encoding="UTF-8"?>

<!--**-->

<!-- draft_pstc_SPMLv2_core_18.xsd -->

<!-- -->

<!-- Draft schema for SPML v2.0 core capabilities. -->

<!-- -->

<!-- Editors: -->

<!-- Jeff Bohren (Jeff_Bohren@bmc.com) -->

<!-- -->

<!-- -->

<!-- Copyright (C) The Organization for the Advancement of -->

<!-- Structured Information Standards [OASIS] 2005. All Rights -->

<!-- Reserved. -->

<!--**-->

<schema targetNamespace="urn:oasis:names:tc:SPML:2:0" xmlns="http://www.w3.org/2001/XMLSchema" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:spml="urn:oasis:names:tc:SPML:2:0" elementFormDefault="qualified">

<complexType name="ExtensibleType">

<sequence>

<any namespace="##other" minOccurs="0" maxOccurs="unbounded" processContents="lax"/>

</sequence>

<anyAttribute namespace="##other" processContents="lax"/>

</complexType>

<simpleType name="ExecutionModeType">

<restriction base="string">

<enumeration value="synchronous"/>

<enumeration value="asynchronous"/>

</restriction>

</simpleType>

<complexType name="CapabilityDataType">

<complexContent>

<extension base="spml:ExtensibleType">

<attribute name="mustUnderstand" type="boolean" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="RequestType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="capabilityData" type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="requestID" type="xsd:ID" use="optional"/>

<attribute name="executionMode" type="spml:ExecutionModeType" use="optional"/>

</extension>

</complexContent>

</complexType>

<simpleType name="StatusCodeType">

<restriction base="string">

<enumeration value="success"/>

<enumeration value="failure"/>

<enumeration value="pending"/>

</restriction>

</simpleType>

<simpleType name="ErrorCode">

<restriction base="string">

<enumeration value="malformedRequest"/>

<enumeration value="unsupportedOperation"/>

<enumeration value="unsupportedIdentifierType"/>

<enumeration value="noSuchIdentifier"/>

<enumeration value="customError"/>

<enumeration value="unsupportedExecutionMode"/>

<enumeration value="invalidContainment"/>

<enumeration value="noSuchRequest"/>

<enumeration value="unsupportedSelectionType"/>

</restriction>

</simpleType>

<simpleType name="ReturnDataType">

<restriction base="string">

<enumeration value="none"/>

<enumeration value="identifier"/>

<enumeration value="data"/>

<enumeration value="everything"/>

</restriction>

</simpleType>

<complexType name="ResponseType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="capabilityData" type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded"/>

<element name="errorMessage" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="status" type="spml:StatusCodeType" use="required"/>

<attribute name="requestID" type="xsd:ID" use="optional"/>

<attribute name="error" type="spml:ErrorCode" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="IdentifierType">

<complexContent>

<extension base="spml:ExtensibleType">

<attribute name="ID" type="string" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="PSOIdentifierType">

<complexContent>

<extension base="spml:IdentifierType">

<sequence>

<element name="containerID" type="spml:PSOIdentifierType" minOccurs="0"/>

</sequence>

<attribute name="targetID" type="string" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="PSOType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType”/>

<element name="data" type="spml:ExtensibleType”/>

<element name="capabilityData" type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="AddRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType" minOccurs="0" />

<element name="containerID" type="spml:PSOIdentifierType" minOccurs="0" />

<element name="data" type="spml:ExtensibleType"/>

</sequence>

<attribute name="targetID" type="string" use="optional"/>

<attribute name="returnData" type="spml:ReturnDataType" use="optional" default="everything"/>

</extension>

</complexContent>

</complexType>

<complexType name="AddResponseType">

<complexContent>

<extension base="spml:ResponseType">

<sequence>

<element name="pso" type="spml:PSOType" minOccurs="0"/>

</sequence>

</extension>

</complexContent>

</complexType>

<simpleType name="ModificationModeType">

<restriction base="string">

<enumeration value="add"/>

<enumeration value="replace"/>

<enumeration value="delete"/>

</restriction>

</simpleType>

<complexType name="NamespacePrefixMappingType">

<complexContent>

<extension base="spml:ExtensibleType">

<attribute name="prefix" type="string" use="required"/>

<attribute name="namespace" type="string" use="required"/>

</extension>

</complexContent>

</complexType>

<complexType name="QueryClauseType">

<complexContent>

<extension base="spml:ExtensibleType">

</extension>

</complexContent>

</complexType>

<complexType name="SelectionType">

<complexContent>

<extension base="spml:QueryClauseType">

<sequence>

<element name="namespacePrefixMap" type="spml:NamespacePrefixMappingType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="path" type="string" use="required"/>

<attribute name="namespaceURI" type="string" use="required"/>

</extension>

</complexContent>

</complexType>

<complexType name="ModificationType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="component" type="spml:SelectionType" minOccurs="0" maxOccurs="1"/>

<element name="data" type="spml:ExtensibleType" minOccurs="0" maxOccurs="1"/>

<element name="capabilityData" type="spml:CapabilityDataType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="modificationMode" type="spml:ModificationModeType" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="ModifyRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType"/>

<element name="modification" type="spml:ModificationType" minOccurs="1" maxOccurs="unbounded"/>

</sequence>

<attribute name="returnData" type="spml:ReturnDataType" use="optional" default="everything"/>

</extension>

</complexContent>

</complexType>

<complexType name="ModifyResponseType">

<complexContent>

<extension base="spml:ResponseType">

<sequence>

<element name="pso" type="spml:PSOType" minOccurs="0" maxOccurs="1"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="DeleteRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType"/>

</sequence>

<attribute name="recursive" type="xsd:boolean" use="optional" default="false"/>

</extension>

</complexContent>

</complexType>

<complexType name="LookupRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType" minOccurs="1" maxOccurs="unbounded"/>

</sequence>

<attribute name="returnData" type="spml:ReturnDataType" use="optional" default="everything"/>

</extension>

</complexContent>

</complexType>

<complexType name="LookupResponseType">

<complexContent>

<extension base="spml:ResponseType">

<sequence>

<element name="pso" type="spml:PSOType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="SchemaType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="supportedSchemaEntity" type="spml:SchemaEntityRefType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="ref" type="anyURI" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="SchemaEntityRefType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

</sequence>

<attribute name="targetID" type="string" use="optional"/>

<attribute name="entityName" type="string" use="optional"/>

<attribute name="isContainer" type="xsd:boolean" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="CapabilityType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="appliesTo" type="spml:SchemaEntityRefType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="namespaceURI" type="anyURI"/>

<attribute name="location" type="anyURI" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="CapabilitiesListType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="capability" type="spml:CapabilityType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="TargetType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="schema" type="spml:SchemaType" maxOccurs="unbounded"/>

<element name="capabilities" type="spml:CapabilitiesListType" minOccurs="0" maxOccurs="1"/>

</sequence>

<attribute name="targetID" type="string" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="ListTargetsRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence/>

</extension>

</complexContent>

</complexType>

<complexType name="ListTargetsResponseType">

<complexContent>

<extension base="spml:ResponseType">

<sequence>

<element name="target" type="spml:TargetType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>

</complexType>

<element name="select" type="spml:SelectionType"/>

<element name="addRequest" type="spml:AddRequestType"/>

<element name="addResponse" type="spml:AddResponseType"/>

<element name="modifyRequest" type="spml:ModifyRequestType"/>

<element name="modifyResponse" type="spml:ModifyResponseType"/>

<element name="deleteRequest" type="spml:DeleteRequestType"/>

<element name="deleteResponse" type="spml:ResponseType"/>

<element name="lookupRequest" type="spml:LookupRequestType"/>

<element name="lookupResponse" type="spml:LookupResponseType"/>

<element name="listTargetsRequest" type="spml:ListTargetsRequestType"/>

<element name="listTargetsResponse" type="spml:ListTargetsResponseType"/>

</schema>

Appendix B. Async Capability Schema

	<?xml version="1.0" encoding="UTF-8"?>

<!--**-->

<!-- draft_pstc_SPMLv2_aync_19.xsd -->

<!-- Draft schema for SPML v2.0 asynchronous capabilities. -->

<!-- -->

<!-- Editors: -->

<!-- Jeff Bohren (Jeff_Bohren@bmc.com) -->

<!-- -->

<!-- -->

<!-- Copyright (C) The Organization for the Advancement of -->

<!-- Structured Information Standards [OASIS] 2005. All Rights -->

<!-- Reserved. -->

<!--**-->

<schema targetNamespace="urn:oasis:names:tc:SPML:2:0:async"

xmlns:spml="urn:oasis:names:tc:SPML:2:0"

xmlns:spmlasync ="urn:oasis:names:tc:SPML:2:0:async"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<import namespace="urn:oasis:names:tc:SPML:2:0"

schemaLocation="draft_pstc_SPMLv2_core_19.xsd"/>

<complexType name="CancelRequestType">

<complexContent>

<extension base="spml:RequestType">

<attribute name="asyncRequestID" type="xsd:string" use="required"/>

</extension>

</complexContent>

</complexType>

<complexType name="CancelResponseType">

<complexContent>

<extension base="spml:ResponseType">

<attribute name="asyncRequestID" type="xsd:string" use="required"/>

</extension>

</complexContent>

</complexType>

<complexType name="StatusRequestType">

<complexContent>

<extension base="spml:RequestType">

<attribute name="returnResults" type="xsd:boolean" use="optional" default="false"/>

<attribute name="asyncRequestID" type="xsd:string" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="StatusResponseType">

<complexContent>

<extension base="spml:ResponseType">

<attribute name="asyncRequestID" type="xsd:string" use="optional"/>

</extension>

</complexContent>

</complexType>

<element name="cancelRequest" type="spmlasync:CancelRequestType"/>

<element name="cancelResponse" type="spmlasync:CancelResponseType"/>

<element name="statusRequest" type="spmlasync:StatusRequestType"/>

<element name="statusResponse" type="spmlasync:StatusResponseType"/>

</schema>

Appendix C. Batch Capability Schema

	<?xml version="1.0" encoding="UTF-8"?>

<!--**-->

<!-- draft_pstc_SPMLv2_batch_19.xsd -->

<!-- -->

<!-- Draft schema for SPML v2.0 batch request capability. -->

<!-- -->

<!-- Editors: -->

<!-- Jeff Bohren (Jeff_Bohren@bmc.com) -->

<!-- -->

<!-- -->

<!-- Copyright (C) The Organization for the Advancement of -->

<!-- Structured Information Standards [OASIS] 2005. All Rights -->

<!-- Reserved. -->

<!--**-->

<schema targetNamespace="urn:oasis:names:tc:SPML:2:0:batch"

xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:spml="urn:oasis:names:tc:SPML:2:0"

xmlns:spmlbatch="urn:oasis:names:tc:SPML:2:0:batch"

elementFormDefault="qualified">

<import namespace='urn:oasis:names:tc:SPML:2:0'

schemaLocation='draft_pstc_SPMLv2_core_19.xsd' />

<simpleType name="ProcessingType">

<restriction base="string">

<enumeration value="sequential"/>

<enumeration value="parallel"/>

</restriction>

</simpleType>

<simpleType name="OnErrorType">

<restriction base="string">

<enumeration value="resume"/>

<enumeration value="exit"/>

</restriction>

</simpleType>

<complexType name="BatchRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<annotation>

<documentation>Elements that extend spml:RequestType </documentation>

</annotation>

</sequence>

<attribute name="processing" type="spmlbatch:ProcessingType" use="optional" default="sequential"/>

<attribute name="onError" type="spmlbatch:OnErrorType" use="optional" default="exit"/>

</extension>

</complexContent>

</complexType>

<complexType name="BatchResponseType">

<complexContent>

<extension base="spml:ResponseType">

<sequence>

<annotation>

<documentation>Elements that extend spml:ResponseType </documentation>

</annotation>

</sequence>

</extension>

</complexContent>

</complexType>

<element name="batchRequest" type="spmlbatch:BatchRequestType"/>

<element name="batchResponse" type="spmlbatch:BatchResponseType"/>

</schema>

Appendix D. Bulk Capability Schema

	<?xml version="1.0" encoding="UTF-8"?>

<!--**-->

<!-- draft_pstc_SPMLv2_bulk_19.xsd -->

<!-- -->

<!-- Draft schema for SPML v2.0 bulk operation capabilities. -->

<!-- -->

<!-- Editors: -->

<!-- Jeff Bohren (Jeff_Bohren@bmc.com) -->

<!-- -->

<!-- -->

<!-- Copyright (C) The Organization for the Advancement of -->

<!-- Structured Information Standards [OASIS] 2005. All Rights -->

<!-- Reserved. -->

<!--**-->

<schema targetNamespace="urn:oasis:names:tc:SPML:2:0:bulk"

xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:spml="urn:oasis:names:tc:SPML:2:0"

xmlns:spmlsearch="urn:oasis:names:tc:SPML:2:0:search"

xmlns:spmlbulk="urn:oasis:names:tc:SPML:2:0:bulk"

elementFormDefault="qualified">

<import namespace='urn:oasis:names:tc:SPML:2:0'

schemaLocation='draft_pstc_SPMLv2_core_19.xsd' />

<import namespace='urn:oasis:names:tc:SPML:2:0:search'

schemaLocation='draft_pstc_SPMLv2_search_19.xsd' />

<complexType name="BulkModifyRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element ref="spmlsearch:query"/>

<element name="modification" type="spml:ModificationType" minOccurs="1" maxOccurs="unbounded"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="BulkDeleteRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element ref="spmlsearch:query"/>

</sequence>

<attribute name="recursive" type="boolean" use="optional"/>

</extension>

</complexContent>

</complexType>

<element name="bulkModifyRequest" type="spmlbulk:BulkModifyRequestType"/>

<element name="bulkModifyResponse" type="spml:ResponseType"/>

<element name="bulkDeleteRequest" type="spmlbulk:BulkDeleteRequestType"/>

<element name="bulkDeleteResponse" type="spml:ResponseType"/>

</schema>

Appendix E. Password Capability Schema

	<?xml version="1.0" encoding="UTF-8"?>

<!--**-->

<!-- draft_pstc_SPMLv2_password_19.xsd -->

<!-- -->

<!-- Draft schema for SPML v2.0 password capabilities. -->

<!-- -->

<!-- Editors: -->

<!-- Jeff Bohren (Jeff_Bohren@bmc.com) -->

<!-- -->

<!-- -->

<!-- Copyright (C) The Organization for the Advancement of -->

<!-- Structured Information Standards [OASIS] 2005. All Rights -->

<!-- Reserved. -->

<!--**-->

<schema targetNamespace="urn:oasis:names:tc:SPML:2:0:password"

xmlns:pass="urn:oasis:names:tc:SPML:2:0:password"

xmlns:spml="urn:oasis:names:tc:SPML:2:0"

xmlns="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<import namespace="urn:oasis:names:tc:SPML:2:0"

schemaLocation="draft_pstc_SPMLv2_core_19.xsd"/>

<complexType name="SetPasswordRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType"/>

<element name="password" type="string"/>

<element name="currentPassword" type="string" minOccurs="0"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="ExpirePasswordRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType"/>

</sequence>

<attribute name="remainingLogins" type="int" use="optional" default="1"/>

</extension>

</complexContent>

</complexType>

<complexType name="ResetPasswordRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="ResetPasswordResponseType">

<complexContent>

<extension base="spml:ResponseType">

<sequence>

<element name="password" type="string" minOccurs="0"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="ValidatePasswordRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType"/>

<element name="password" type="string"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="ValidatePasswordResponseType">

<complexContent>

<extension base="spml:ResponseType">

<sequence>

</sequence>

<attribute name="valid" type="boolean" use="optional"/>

</extension>

</complexContent>

</complexType>

<element name="setPasswordRequest" type="pass:SetPasswordRequestType"/>

<element name="setPasswordResponse" type="spml:ResponseType"/>

<element name="expirePasswordRequest" type="pass:ExpirePasswordRequestType"/>

<element name="expirePasswordResponse" type="spml:ResponseType"/>

<element name="resetPasswordRequest" type="pass:ResetPasswordRequestType"/>

<element name="resetPasswordResponse" type="pass:ResetPasswordResponseType"/>

<element name="validatePasswordRequest" type="pass:ValidatePasswordRequestType"/>

<element name="validatePasswordResponse" type="pass:ValidatePasswordResponseType"/>

</schema>

	

Appendix F. Reference Capability Schema

	<?xml version="1.0" encoding="UTF-8"?>

<!--**-->

<!-- draft_pstc_SPMLv2_reference_18.xsd -->

<!-- -->

<!-- Draft schema for SPML v2.0 reference capabilities. -->

<!-- -->

<!-- Editors: -->

<!-- Jeff Bohren (Jeff_Bohren@bmc.com) -->

<!-- -->

<!-- -->

<!-- Copyright (C) The Organization for the Advancement of -->

<!-- Structured Information Standards [OASIS] 2005. All Rights -->

<!-- Reserved. -->

<!--**-->

<schema targetNamespace="urn:oasis:names:tc:SPML:2:0:reference"

xmlns:ref="urn:oasis:names:tc:SPML:2:0:reference"

xmlns:spml="urn:oasis:names:tc:SPML:2:0"

xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<import namespace="urn:oasis:names:tc:SPML:2:0"

schemaLocation="draft_pstc_SPMLv2_core_18.xsd"/>

<complexType name="ReferenceType">

<complexContent>

<extension base="spml:CapabilityDataType">

<sequence>

<element name="toPSOID" type="spml:PSOIdentifierType"/>

<element name="referenceData" type="spml:ExtensibleType"/>

</sequence>

<attribute name="typeOfReference" type="string" use="required"/>

</extension>

</complexContent>

</complexType>

<complexType name="ReferenceDefinitionType">

<complexContent>

<extension base="spml:ExtensibleType">

<sequence>

<element name="schemaEntity" type="spml:SchemaEntityRefType"/>

<element name="canReferTo" type="spml:SchemaEntityRefType" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="typeOfReference" type="string" use="required"/>

</extension>

</complexContent>

</complexType>

<complexType name="HasReferenceType">

<complexContent>

<extension base="spml:QueryClauseType">

<sequence>

<element name="toPSOID" type="spml:PSOIdentifierType" minOccurs="0" />

<element name="referenceData" type="spml:ExtensibleType" minOccurs="0" />

</sequence>

<attribute name="typeOfReference" type="string" use="optional"/>

</extension>

</complexContent>

</complexType>

<element name="hasReference" type="spmlref:HasReferenceType"/>

<element name="reference" type="spmlref:ReferenceType"/>

<element name="referenceDefinition" type="spmlref:ReferenceDefinitionType"/>

</schema>

Appendix G. Search Capability Schema

	<?xml version="1.0" encoding="UTF-8"?>

<!--**-->

<!-- draft_pstc_SPMLv2_search_19.xsd -->

<!-- -->

<!-- Draft schema for SPML v2.0 search capabilities. -->

<!-- -->

<!-- Editors: -->

<!-- Jeff Bohren (Jeff_Bohren@bmc.com) -->

<!-- -->

<!-- -->

<!-- Copyright (C) The Organization for the Advancement of -->

<!-- Structured Information Standards [OASIS] 2005. All Rights -->

<!-- Reserved. -->

<!--**-->

<schema targetNamespace="urn:oasis:names:tc:SPML:2:0:search"

xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:spml="urn:oasis:names:tc:SPML:2:0"

xmlns:spmlsearch="urn:oasis:names:tc:SPML:2:0:search"

elementFormDefault="qualified">

<import namespace='urn:oasis:names:tc:SPML:2:0'

schemaLocation='draft_pstc_SPMLv2_core_19.xsd' />

<simpleType name="ScopeType">

<restriction base="string">

<enumeration value="pso"/>

<enumeration value="oneLevel"/>

<enumeration value="subTree"/>

</restriction>

</simpleType>

<complexType name="SearchQueryType">

<complexContent>

<extension base="spml:QueryClauseType">

<sequence>

<choice>

<element name="basePSOID" type="spml:PSOIdentifierType"/>

</choice>

</sequence>

<attribute name="targetID" type="string" use="optional"/>

<attribute name="maxReturn" type="xsd:int" use="optional"/>

<attribute name="scope" type="spmlsearch:ScopeType" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="ResultsIteratorType">

<complexContent>

<extension base="spml:ExtensibleType">

<attribute name="ID" type="xsd:ID"/>

<attribute name="count" type="xsd:int" use="optional"/>

<attribute name="totalCount" type="xsd:int" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="SearchRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="query" type="spmlsearch:SearchQueryType" minOccurs="0”/>

<element name="includeDataForCapability" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="returnData" type="spml:ReturnDataType" use="optional" default="everything"/>

<attribute name="maxReturn" type="xsd:int" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="SearchResponseType">

<complexContent>

<extension base="spml:ResponseType">

<sequence>

<element name="pso" type="spml:PSOType" minOccurs="0" maxOccurs="unbounded"/>

<element name="iterator" type="spmlsearch:ResultsIteratorType" minOccurs="0" maxOccurs="1"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="IterateRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="iterator" type="spmlsearch:ResultsIteratorType" minOccurs="1" maxOccurs="1"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="LogicalOperatorType">

<complexContent>

<extension base="spml:QueryClauseType">

</extension>

</complexContent>

</complexType>

<element name="query" type="spmlsearch:SearchQueryType"/>

<element name="and" type="spmlsearch:LogicalOperatorType"/>

<element name="or" type="spmlsearch:LogicalOperatorType"/>

<element name="not" type="spmlsearch:LogicalOperatorType"/>

<element name="searchRequest" type="spmlsearch:SearchRequestType"/>

<element name="searchResponse" type="spmlsearch:SearchResponseType"/>

<element name="iterateRequest" type="spmlsearch:IterateRequestType"/>

<element name="iterateResponse" type="spmlsearch:SearchResponseType"/>

</schema>

Appendix H. Suspend Capability Schema

	<?xml version="1.0" encoding="UTF-8"?>

<!--**-->

<!-- draft_pstc_SPMLv2_suspend_19.xsd -->

<!-- -->

<!-- Draft schema for SPML v2.0 suspend capabilities. -->

<!-- -->

<!-- Editors: -->

<!-- Jeff Bohren (Jeff_Bohren@bmc.com) -->

<!-- -->

<!-- -->

<!-- Copyright (C) The Organization for the Advancement of -->

<!-- Structured Information Standards [OASIS] 2005. All Rights -->

<!-- Reserved. -->

<!--**-->

<schema targetNamespace="urn:oasis:names:tc:SPML:2:0:suspend"

xmlns:spmlsuspend="urn:oasis:names:tc:SPML:2:0:suspend"

xmlns:spml="urn:oasis:names:tc:SPML:2:0"

xmlns="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

<import namespace="urn:oasis:names:tc:SPML:2:0" schemaLocation="draft_pstc_SPMLv2_core_19.xsd"/>

<complexType name="SuspendRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType"/>

</sequence>

<attribute name="effectiveDate" type="datetime" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="ResumeRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType"/>

</sequence>

<attribute name="effectiveDate" type="datetime" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="ActiveRequestType">

<complexContent>

<extension base="spml:RequestType">

<sequence>

<element name="psoID" type="spml:PSOIdentifierType"/>

</sequence>

</extension>

</complexContent>

</complexType>

<complexType name="ActiveResponseType">

<complexContent>

<extension base="spml:ResponseType">

<sequence>

</sequence>

<attribute name="active" type="boolean" use="optional"/>

</extension>

</complexContent>

</complexType>

<complexType name="IsActiveType">

<complexContent>

<extension base="spml:QueryClauseType">

</extension>

</complexContent>

</complexType>

<element name="isActive" type="spmlsuspend:IsActiveType"/>

<element name="suspendRequest" type="spmlsuspend:SuspendRequestType"/>

<element name="suspendResponse" type="spml:ResponseType"/>

<element name="resumeRequest" type="spmlsuspend:ResumeRequestType"/>

<element name="resumeResponse" type="spml:ResponseType"/>

<element name="activeRequest" type="spmlsuspend:ActiveRequestType"/>

<element name="activeResponse" type="spmlsuspend:ActiveResponseType"/>

</schema>

Appendix I. Document References

[Ed. Gavenraj Sodhi will update this section. #7]

[ARCHIVE-1]
OASIS Provisioning Services Technical Committee, email archive, http://www.oasis-open.org/apps/org/workgroup/provision/email/archives/index.html, OASIS PS-TC

[DS]
IETF/W3C, W3C XML Signatures, http://www.w3.org/Signature/, W3C/IETF [Ed. No ref to this.]

[DSML]
OASIS Directory Services Markup TC, DSML V2.0 Specification, http://www.oasis-open.org/apps/org/workgroup/dsml/documents.php, OASIS DS-TC

[GLOSSARY]
OASIS Provisioning Services TC, Glossary of Terms, http://www.oasis-open.org/apps/org/workgroup/provision/download.php/???, OASIS PS-TC

 [RFC2119]
S. Bradner., Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF

[SAML]
OASIS Security Services TC, XMLTitle, http://www.oasis-open.org/apps/org/workgroup/sstc/documents.php, OASIS SS-TC [Ed. No ref to this.]

[SPML-Bind]]
OASIS Provisioning Services TC, SPML V1.0 Protocol Bindings, http://www.oasis-open.org/apps/org/workgroup/provision/download.php/1816/draft-pstc-bindings-03.doc, OASIS PS-TC [Ed. No ref to this.]

[SPML-REQ]
OASIS Provisioning Services Technical Committee, Requirements, http://www.oasis-open.org/apps/org/workgroup/provision/download.php/2277/draft-pstc-requirements-01.doc, OASIS PS-TC

[SPML-UC]
OASIS Provisioning Services Technical Committee, SPML V1.0 Use Cases, http://www.oasis-open.org/apps/org/workgroup/provision/download.php/988/drfat-spml-use-cases-05.doc, OASIS PS-TC [Ed. No ref to this.]

[SPMLv2-Profile-DSML]
OASIS Provisioning Services Technical Committee, SPMLv2 DSMLv2 Profile, [Ed. No such document.], OASIS PS-TC

[SPMLv2-Profile-XSD]
OASIS Provisioning Services Technical Committee, SPML V2 XSD Profile, [Ed. No such document.], OASIS PS-TC

[SPMLv2-REQ]
OASIS Provisioning Services Technical Committee, Requirements, [Ed. No such document.], OASIS PS-TC

[SPMLv2-ASYNC]
OASIS Provisioning Services Technical Committee, XML Schema Definitions for Async Capability of SPMLv2, [Ed. No such document.], OASIS PS-TC

[SPMLv2-BATCH]
OASIS Provisioning Services Technical Committee, XML Schema Definitions for Batch Capability of SPMLv2, [Ed. No such document.], OASIS PS-TC

[SPMLv2-BULK]
OASIS Provisioning Services Technical Committee, XML Schema Definitions for Bulk Capability of SPMLv2, [Ed. No such document.], OASIS PS-TC

[SPMLv2-CORE]
OASIS Provisioning Services Technical Committee, XML Schema Definitions for Core Operations of SPMLv2, [Ed. No such document.], OASIS PS-TC

[SPMLv2-PASS]
OASIS Provisioning Services Technical Committee, XML Schema Definitions for Password Capability of SPMLv2, [Ed. No such document.], OASIS PS-TC

[SPMLv2-REF]
OASIS Provisioning Services Technical Committee, XML Schema Definitions for Reference Capability of SPMLv2, [Ed. No such document.], OASIS PS-TC

[SPMLv2-SEARCH]
OASIS Provisioning Services Technical Committee, XML Schema Definitions for Search Capability of SPMLv2, [Ed. No such document.], OASIS PS-TC

[SPMLv2-UC]
OASIS Provisioning Services Technical Committee., SPML V2.0 Use Cases, [Ed. No such document.], OASIS PS-TC

[XSD]
W3C Schema WG ., W3C XML Schema, http://www.w3.org/TR/xmlschema-1/ W3C

Appendix J. Acknowledgments

The following individuals were voting members of the Provisioning Services committee at the time that this version of the specification was issued:

List Members Here:

Appendix K. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © OASIS Open 2004. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE

Appendix L. Revision history

	Rev
	Date
	By Whom
	What

	D-01
	20041001
	Editor
	0.1 Rough Draft.

	D-01
	20041019
	Editor
	Review Schema section.

Minor corrections to draft XSD.

	D-01
	20041026
	Editor
	Define a Batch capability.

(Batch operation is no longer part of the core)

	D-01
	20041026
	Editor
	Rework asynchronous execution.

1) By default, execution type is unspecified.

2) Requestor can specify asynchronous execution
for ANY operation except cancel and status.
Provider must execute as specified
(or fail the request if unable to do so).

3) Provider can convert a request
(for any operation except cancel and status)
that does not specify synchronous execution
to asynchronous execution
(e.g., if workflow makes this necessary)

4) Provider returns requestID for any operation
that the provider executes asynchronously.

5) Define Async Capability (so provider can indicate
whether it supports asynchronous execution).
May also contain cancel and status operations.

	D-01
	20041029
	Editor
	Retention limit for results of async operations
does not rise to the level of specification.

	D-01
	20041102
	Editor
	Review Introduction and Concepts sections.

1) Do not use Java to explain Capability

2) Target schema cannot contain DSML
 (because DSML deprecates schema);
 we mean “DSML binding for SPMLv2”.

3) Make clear that a target is not a provider
 (but is instead a container of objects
 that a provider manages)

	D-01
	20041115
	Gerry Woods
	Review Protocol section.

1) Remove language stating that the requestID value SHOULD be globally unique so that the value will not conflict with any other requestID value that the requestor may receive from any provider.”

2) Describe single-operation requests as ‘individual’ requests rather than ‘singleton’ requests.

3) PSO-IDs are required only to be unique within provider (rather than globally unique).

4) ListTargets MUST be synchronous (previously said SHOULD).

5) Removed repetition of “open content” in listTargets/schema section.

6) Cleaned up listTargets example:
- Remove XML Processing Instructions
- Capability identifiers are namespaces
- Status code values are no longer fully qualified

	D-01
	20041116
	Editor
	Distributed draft Protocol/Async Capability section.

	D-01
	20041118
	Editor
	Distributed draft Protocol/Batch Capability section.

	D-01
	20041129
	Editor
	Distributed draft Protocol/Bulk, Password, Reference, Search and Suspend Capability sections.

	D-01
	20041201
	Editor
	Removed Schema section. Since each protocol section includes relevant schema snippets (and normatively describes both request and response for every operation), schema section was redundant (and not worth 40-60 pages).

	D-02
	20041205
	Editor
	Pasted in Draft 9 Schema snippets. Moved each complete schema section into an appendix. Indicated pending and proposed XSD changes with red font and sometimes strikethrough.

Renamed capabilityParameter to capabilityData.

Renamed ObjectClassRefType to SchemaEntityRefType.

Added <data> sub-element to psoType.

Modify operation may now return entire <pso>.

	D-03
	20041207
	Editor
	Pasted in Draft 10 Schema snippets. Updated text to reflect issues resolved in Draft 10.

Abstract: Specification no longer defines schema.

Audience: Pointed each audience to one section. Restored mention of appendix.

Concepts: Merge Target subsection into Target subsection of DomainModel.

Domain Model: Note that Gerry will send UML to replace ERD. Rename RA to requestor, PSP to provider, PST to target. Remove Terms subsection since it is no longer needed.

Protocol: removed subsection regarding Profiles. Profiles now described only in Concepts.

Renamed “DSML Schema” to “SPML1.0 Schema” and “DSML Profile” to “SPML1.0 Profile”.

	D-03
	20041209
	Editor
	Protocol: added Conversational Flow section within Request/Response Model. Recommended requestID.

Determining execution type: renamed to “Determining execution mode”. Added bullet-pointed list of the four possibilities.

SelectionType: Added subsection to describe “SelectionType processing in a Response (normative).”

Delete: Say that Provider MUST ignore capability-specific data.

	D-03
	20041210
	Editor
	Pasted in Draft 11 XSD files into Appendices.

Updated snippets for Protocol Request/Response model and Synchronous and Asynchronous Operations.

	D-03
	20041214
	Editor
	ListTargets: pasted in Draft 11 XSD snippets.
Added discussion of SchemaEntityRefType#isContainer.
Added discussion of SchemaType#ref element
Added discussion of capabilities element wrapping capability.

Add: pasted in Draft 11 XSD snippets.
Added discussion of AddRequestType#returns.
Renamed “parentId” to “containerID” (per Draft 11)
AddResponseType#pso content depends on “returns”

	D-03
	20041216
	Editor
	Lookup: pasted in Draft 11 XSD snippets.
Added discussion of LookupRequestType#returns.
LookupResponseType#pso content depends on “returns”
Lookup examples illustrate “returns” attribute.

Moved Conformance before Security and Privacy Considerations.

	D-03
	20050112
	Editor
	Pasted in remaining Draft 11 XSD snippets.
Discussed “returns” attribute and its effect on <pso> content for: Modify, Search, Iterate.

Discussed <includeDataForCapability> for Search.

Discussed “recursive” attribute for Delete.

	D-03
	20050215
	Editor
	Updated to Draft 13 XSD.

Updated OASIS Notices for 2005.

Explained (in the non-normative section that introduces the Async Capability) why the cancel and status operations must be synchronous.

Explained (in the non-normative section that introduces the Search Capability) why the iterate operation must be synchronous.

Specified that neither suspend nor resume should return an error when the object is already in the desired state. Explained (in the non-normative section that introduces the Suspend Capability) that the suspend and resume operations are idempotent.

	D-03
	20050225
	Editor
	Removed Glossary appendix. Add Reference to [GLOSSARY] as a separate document.

Removed Requirements appendix. Add Reference to [SPMLv2-REQ] as a separate document.

	D-04
	20050308
	Editor
	Removed Editor’s note in 3.4.1.2.2. Per agreement on #40 in draft_13_xsd_issues.txt, schema declares valid containers. Invalid content is an exception.

Documented “Status and Error Codes” as a general feature of the protocol. (This replaces references to normative Schema sections.)

	D-04
	20050325
	Editor
	Explained (in the non-normative section that introduces each) why the listTargets, batch, search, iterate, cancel and status operations are not batchable. Stated (in the normative section that describes the batch request) that these operations must not be nested within a batch request.

	D-04
	20050326
	Editor
	Updated schema appendices, schema snippets and examples to XSD version 15.

	D-05
	20050404
	Editor
	Updated names of XSD Profile and DSMLv2 Profile documents. Renamed “SPML1.0 Profile” (back) to “DSMLv2 Profile”.

Clarified that content of schema element takes precedence over any reference to a schema URN or URL.

Removed from the Concepts section most of the language that referred to SPML 1.0.

Removed statement that SPMLv2 continues to supports SPML1.0 as a profile. Now say only that DSMLv2 profile supports a similar schema model.

Added normative sub-section specific to Status (and normative subsection specific to Error) within “Status and Error codes”.

Reworded “Conversational flow” section to avoid the word “blocking”. Removed some language (including the introductory paragraph) that suggested order that does not exist over a connectionless protocol.

Mentioned that modify can change PSO-ID in non-normative section that introduces the modify operation.

Discussed adding and modifying a reference in modify Examples.

	D-06
	20050404
	Editor
	Use ‘http://www.w3.org/TR/xpath20’ as namespaceURI for Xpath.

Illustrate targetID as an attribute (with additions and strikethroughs).

Removed namespace qualifier from status values (e.g., “success”).

Correct miscellaneous errors in examples (noted by Rami Elron).

Assume top-level elements bulkModifyResponse and bulkDeleteResponse of type spml:ResponseType.

Assume top-level element iterateResponse of type SearchResponseType.

	D-07
	20050516
	Editor
	Remove Editor’s note: “Darran will send UML to replace ERD”.

Updated Jeff Bohren’s email address (throughout).

Update text to discuss targetID and containerID as attributes (rather than elements). Applies also to baseTargetID and baseContainerID within SearchQueryType. Applies also to targetID and objectId in PSOIdentifierType.

#13. Discuss Complex References within Reference Capability section. Explain that capabilities cannot apply to references, and explain that a provider may model each complex relationship as a PSO. Use RacfGroupMembership to illustrate two approaches: 1) independent relationship objects and 2) bound relationship objects.

Move <supportedSchemaEntity> elements outside the <xsd:schema> element that is open content of the <spml:schema> element.

Updated Appendices and XML snippets to XSD version 16.

#15: Correct Jeff Bohren’s company affiliation (was OpenNetworks, now BMC).

#15: Correct Gerry Woods’ company affiliation (was IBM, now SOA Software).

Miscellanous changes (spec issues #17, 18, 19, 20, 23, 24).
#17: Removed example of monotonically increasing integer with rollover as reasonably unique requestID.
#18, #20 Removed third person references to “The PSTC…”.
#19 Described listTargets as “discovery” operation (rather than as a “bootstrap” operation).

#9: Rewrite “Conversational Flow” section. Initially revised, then subsequently removed diagrams of orderly alternation and multiple outstanding requests. Updated text of “RequestID (normative)” to explain that a requestor using a synchronous transport protocol may omit requestID.

Update to XSD 17. Request/response element pairs.

#70: Discuss effectiveDate for suspend/resume requests.

#5: Remove note regarding a “registry” of custom capabilities.

#21: Globally change psoId to psoID, targetId to targetID, and containerId to containerID.

#71: Discuss QueryClauseType and Logical Operators. Factor discussion of SearchQueryType into an upfront section. Enhance Reference Capability to discuss <hasReference> query clause. Enhance Suspend Capability to discuss <isActive> query clause.

	D-08
	20050517
	Editor
	Update to XSD 18:
(65). SchemaEntityRefType: add targetID attribute.
(67): AddRequestType#targetID: was element now attribute.
(67): PSOIdentifierType: containerID now element.
(67): TargetType: targetID is now attribute.
(71): Define LogicalOperatorType.
(67): SearchQueryType: targetID is now attribute.
- Move maxReturn from SearchQueryType to SearchRequestType
- HasReferenceType now has individual components of reference.

Update to XSD 19:
- AddRequestType: remove xsd choice.

#10: ListTargetsResponse#Capability topic now specifies that any declaration of the reference capability must contain at least one reference definition.

#11: ListTargetsResponse#ResourceDefinition canReferTo topic now specifies that any <canReferTo> element must specify “targetID” if the <listTargetsResponse> contains more than one <target>.

In general, targetID may be omitted if a provider exposes only one target. In general, targetID must be specified if a provider exposes multiple targets (except where document structure clearly implies targetID--e.g., where a target contains a supportedSchemaEntity).

Reorganized “Complex References” section. Devoted a subsection to each of the three approaches. Added sample ListTargetsResponse for ReferenceData approach. Corrected sample schema in ListTargetsResponse for all three approaches.

The content of an instance of PSOIdentifierType depends on the profile that the requestor and provider have agreed to use.

Provider

Requestor

RESPONSE requestID=9�status=”pending”

REQUEST

Provider

Requestor

RESPONSE requestID=1�status=”pending”

REQUEST requestID=1

draft_pstc_spmlv2.doc

Page 146 of 151
Page 151 of 151
draft_pstc_spmlv2.doc

_1158412490.unknown

