Core Components Review
Discussion Topics v0.2 - AS OF 4/9/02

	Topic
	Description
	Discussions
	Status

	Storage
	How to represent entities in the registry (Core Components, BIE's, etc.) - i.e. intrinsic object, extrinsic object
	Representation:

· Leaning toward default representation as intrinsic objects (for conformance), with the option of representation as extrinsic objects (non-conformant)

· Intrinsic objects would help reduce ambiguity in “core component-enabled” registry implementations, because all metadata attributes would have standardized names and the entities would be inherently “known” to the registry

· Representation as intrinsic objects would require new classes added to RIM - would need to bring up to TC level

· Some implementations may want to represent as extrinsic objects so that certain details are hidden from registry (security reasons); can store key-like information in registry so that object can be accessed (owner, description, etc.)

· For extrinsic objects: to identify the “type” of object (Core Component, BIE, etc.), can possibly use the registry’s “Data Type” attribute - i.e. can set to “BIE”. Or, can use classification to identify the “type” of object - i.e. have an “object type” classification

· Given that V3 is targeted for December 2002, we may need to provide an interim solution to the UN/CEFACT CC team - such as extrinsic objects with slots

Storage:

· All entities that are identified as “stored” in the CC spec need to be stored

· Regarding assembly: An implementation may want to ensure that when a stored assembled construct is used (ex: an ABIE), the latest versions of the entities that comprise that construct (i.e. the BIEs) are used. This is an implementation issue, and will not be addressed in our analysis. An implementation may choose to check if a newer version of an entity exists before using a construct and take some action (such as notifying the user).
	In discussion

	Associations Between Entities
	How to associate items in the registry (BIE's and their Core Components, ABIE’s and their comprising BIE’s, etc.)
	· Leaning toward using associations rather than packages

· If associations are used, we will need to consider the concepts of intramural vs. extramural associations - i.e. what if a user attempts to assemble an ABIE from BIE’s that they do not own? We may simply document this in our analysis results as an issue to be aware of.
	In discussion

	Classification
	CC spec lists various context categories for items (Business Process Context, Product Classification Context, etc.)
	· We have determined that this functionality is covered by the base functionality of the registry
	Closed

	Discovery
	Discovery of items in registry (Core Components, BIE’s, etc.)
	· CC spec mentions return of partial matches with an indication of how “closely matched” the results are

· Registry query mechanism can return results - this is part of base functionality

· Currently, registry query mechanism cannot return partial matches - would be a potential v3 update
· Query mechanism can be updated to return matches in most significant order, if directed to - also a potential v3 update
· Indication of how “closely matched” should be left to vendor implementations
	Closed

	Registration of Re-Use
	CC spec mentions registration of re-use of items (i.e. registration of re-use of Business Process in the set of contexts in which it is used - also mentioned for Core Components, ABIE’s, ACC’s, etc.)
	· Leaning toward creating a “Uses” association between the various entities (Business Process, ABIE, etc.) and the Organization

· We may want to create a new, more distinct association for this in the future (i.e. other than “Uses”)

· This functionality may also be covered by a “Publish/Subscribe” feature in the future - however, we have decided to not wait for such a feature, and accommodate the requirement as shown above
	In discussion

	Assembly/Context Rules
	· CC spec references assembly of BIE’s using a Constraints Language to apply constraints to Core Components in specific business contexts

· An Assembly is the overall expression of a single set of Assembly rules, which groups a set of unrefined BIE’s into a larger structure (a Document)
	· Registry does not need to store the Constraints Language constructs or context rules

· May want to create a new type of object in registry for “Assembly XML Document” (as opposed to an XML document with data)
	In discussion

	Metadata
	CC spec defines metadata attributes for various items (Core Components, BIE’s, etc.)
	· See “storage” section - if intrinsic objects are used, the metadata attributes will need to be “hardwired” into registry; if extrinsic objects are used, the slot mechanism would be used

· For ABIE, Object Class and Property term are metadata attributes - these can be handled with classifications in registry
	In discussion

	Security
	Security issues regarding items such as BIE’s - i.e. who owns a BIE, who can access it, etc. (CC spec does not reference security - this is from our discussions)
	· May want to represent as extrinsic objects so that certain details are hidden from registry (security reasons); can store key-like information in registry so that object can be accessed (owner, description, etc.)

· We may want to query the CC folks to find out their expectations regarding enforcement of ownership, etc.
	In discussion

