OASIS ebXML Registry

Proposal: Cooperating Registries

Category: New Feature

Date: July 1, 2002
Version 0.3

Authors:

Status of this Document

This note describes the initial proposal for the Cooperating Registries work item for OASIS ebXML Registry V3.0. It is expected that the Cooperating Registries sub-team of the OASIS ebXML Registry TC will improve upon this initial proposal and then submit it for consideration by ebXML Registry TC at large.

1 Abstract

This document proposes a new feature of the OASIS ebXML Registry targeted for version 3.0. The Cooperating Registries feature allows a group of registries to form a loose federation that represents a single unified logical registry to their registry clients.

2 Motivation

The following motivations drive this proposal:

1. Enables multiple ebXML Registries to work together in a cooperative manner.

2. Enable large-scale registries using a DNS like divide-and-conquer approach. Avoid the need to have gigantic monolithic registries.

3. Allow local autonomy and control of registries while allowing participation in a larger registry federation.

3 Assumptions

The following assumptions are made in this proposal:

1. All registries participating in a federation are assumed to be OASIS ebXML V3.0 registries.

2. Interoperability with non-ebXML registries is outside the scope of this proposal. Those use cases may be addressed by other proposal for V3.0.

4 External Dependencies

This proposal depends upon the following external artifacts and event:

· The “REST Interface to ebXML Registry” proposal for V3. This dependency is in the home attribute for ObjectRef.

· The “Event Notification” proposal for V3. This dependency is in the data caching design.

5 Cooperating Registries

[Note] This will be a chapter in ebRIM 3.0.

This chapter describes the ability of OASIS ebXML Registries to cooperate with each within a registry federation to better serve client requests.

5.1 Use Cases

There are many different ways that ebXML registries cooperate with each other. The following is a list of use cases that illustrate different ways that ebXML registries cooperate with each other.

5.1.1 Inter-registry Object References

A Submitting Organization wishes to submit a RegistryObject to a registry such that the submitted object references a RegistryObject in another registry.

An example might be where a RegistryObject in one registry is associated with a RegistryObject in another registry.

[image: image1.png]Registry-1 Registry-2

EA/Mzaﬁon-l [b

Organization-A Organization-B

Figure 1: Inter-registry Object References

5.1.2 Object Relocation

A Submitting Organization wishes to relocate its RegistryObjects and/or repository items from the registry where it was submitted to another registry.

[image: image2.png]Registry-1 Registry-1

b

(Organization-A .
Registry-2 v Registry-2

Organization-B Organization-A Organization-B

Before After

Figure 2: Object Relocation

5.1.3 Federated Queries

A client wishes to issue a single query against multiple registries and get back a single response that contains results based on all the data contained in all the registries. From the client’s perspective it is issuing its query against a single logical registry that has the union of all data within all the physical registries.

5.1.4 Local Caching of Data from Another Registry

A target registry wishes to cache some or all the data of another source registry that is willing to share its data. The shared dataset is copied from the source registry to the target registry and is visible to queries on the target registry even when the source registry is not available.

Local caching of data is desirable in order to improve performance and availability of accessing that object.

An example might be where a RegistryObject in one registry is associated with a RegistryObject in another registry, and the first registry caches the second RegistryObject locally.

5.1.5 Hierarchical Registries

Two registries wish to have a hierarchical parent/child relationship such that the child registry represents a subset of data within the larger parent registry. Changes made to the dataset of the child are eventually reflected in the parent dataset. Queries made to the child registry return results that reflect the dataset of both the parent and the child registries combined.

Note that this use case is a degenerate form of the “Local Caching” use case in section 5.1.4, where a child registry exclusively contains a cached subset of parent registry’s data.

5.2 Class ObjectRef

[image: image3]
[Note] The ObjectRef class should be placed in ebRIM chapter 7 after data types section.

An instance of the ObjectRef class is used to reference a RegistryObject. A RegistryObject may be referenced via an ObjectRef instance regardless of its location or that of the object referring to it.

5.2.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	Id
	UUID
	Yes
	
	Client
	Yes

	home
	URI
	No
	
	Client
	Yes

5.2.2 Attribute id

Every ObjectRef instance must have an id attribute. The id attribute must contain the value of the id attribute of the RegistryObject being referenced.

5.2.3 Attribute home

Every ObjectRef instance may optionally have a home attribute specified. The home attribute if present must contain the base URI to the home registry for the referenced RegistryObject as described by the REST interface to the registry. When the home attribute is specified, the ObjectRef is referred to as a remote ObjectRef.

[Note] The home attribute depends upon the REST interface proposal (formerly called URI interface to registry), defining a pattern for accessing RegistryObjects, repository items, ObjectManager and LifeCycleManager interfaces via a pattern based URI.

If the home attribute is null then its default value is the base URI to current registry. When the home attribute is null, the ObjectRef is referred to as a local ObjectRef.

5.3 Registry Federations

A registry federation is a group of registries that have voluntarily agreed to have a loosely coupled union. Such a federation may be based on common business interests and specialties the registries may share. Registry federations appear as a single logical registry, to registry clients.

[image: image4.png]Registry-1

b b

(Organization-A . Organization-A
Registry-2

Organization-B Organization-B

Individual Registries Registry Federation

Figure 3: Registry Federations

Registry federations are based on a peer-to-peer (P2P) model where all participating registries are equal. Each participating registry is called a registry peer. There is no distinction between the registry operator that created a federation and those registry operators that joined that Federation later.

Any registry operator may form a registry federation at any time. When a federation is created it must have exactly one registry peer which is the registry operated by the registry operator that creates the federation.

Any registry may choose to voluntarily join or leave a federation at any time.

5.3.1 Class Registry

Super Classes:

RegistryEntry
[image: image5]
Registry instances are used to represent a single physical OASIS ebXML registry.

5.3.1.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	operator
	ObjectRef

	Yes
	
	Client
	Yes

5.3.1.2 Attribute operator

Each Registry instance must have an attribute named operator that is a reference to the Organization instance representing the organization for the registry’s operator. Since the same Organization may operate multiple registries, it is possible that the home registry for the Organization referenced by operator may not be the local registry.

5.3.2 Class Federation

Super Classes:

RegistryEntry
[image: image6]
Federation instances are used to represent a registry federation.

5.3.2.1 Attribute Summary

There are currently no attributes defined for the Federation class other those inherited from RegistryEntry.

5.3.3 Federation Information Model

A federation is created by the creation of a Federation instance. Membership of a registry within a federation is established by creating an Association between the Registry instance for the registry seeking membership with the Federation instance. The Association must have its associationType be “FederationMember”, the federation instance as its sourceObject and the Registry instance as its targetObject as shown in Figure 4.

[image: image7.png]Registry-3

Souncsotjec]

oucesiest

Py E—
lssociatiorype=Fecaratoniemban|

“eu2 fedtAssociation
lascosiatorypo=Fedsratonnomben|

rargetoniect

targetopject

‘

Registry-1

Registry-2

Figure 4: Federation Information Model

5.3.4 Template Description of Registry Peer

This section describes the recommended manner in which a registry peer is described within an ebXML Registry.

<TBD once the V3 schema settles down>

5.3.5 Local Vs. Federated Queries

A federation appears to registry clients as a single unified logical registry. An AdhocQueryRequest sent by a client to a federation member may be local or federated in scope. A new boolean attribute named scope is added to AdhocQueryRequest to indicate the scope of the query.

5.3.5.1 Local Queries

When the scope attribute of AdhocQueryRequest has the value of local then the query is a local query. In the absence of a scope attribute the default value of scope attribute is local.

A local AdhocQueryRequest is only processed by the registry that receives the request. A local AdhocQueryRequest does not operate on data that belongs to other registries.

5.3.5.2 Federated Queries

When the scope attribute of AdhocQueryRequest has the value of federated then the query is a federated query.

A federated query to any federation member, must be routed by that member to all other federation member registries as parallel distributed queries. A federated query operates on data that belongs to all members of the federation.

A registry that is not a federation member must be silently handle a federated query by treating it as a local query.

5.3.5.2.1 Membership in Multiple Federations

A registry may be a member of multiple federations. In such cases if the scope attribute of AdhocQueryRequest has the value of federated then the registry must route the federated query to all federations that it is a member of.

Alternatively, the client may specify the id of a specific federation that the registry is a member of, as the value of the federation parameter. In such cases the registry must route the federated query to the specified federation only.

5.3.6 Federated Life Cycle Management Operations

Unlike query requests, lifecycle management operations do not support any federated capabilities. All lifecycle operations must be performed on a RegistryObject within its home registry using the operations defined by the LifeCycleManager interface.

5.3.7 Federations and Local Caching of Remote Data

A federation member is not required to maintain a local cache of RegistryObjects and repository items that belong to other members of the federation.

A registry may choose to locally cache some or all data from any other registry whether that registry is a federation member or not. Data caching is orthogonal to registry federation and is described in chapter 0.

A special case for local caching is the caching of the Federation and related Associations to each Federation members. We need to decide whether this is required for fault tolerance in case federation directory is not available.

Since by default there is minimal replication in the members of a federation, the federation architecture scales well with respect to memory and disk utilization at each registry.

Data replication is often necessary for performance and fault-tolerance reasons.

5.3.8 Time Synchronization Between Registry Peers

Federation members are not required to synchronize their system clocks with each other.

5.3.9 Federations and Security

<TBD>

5.4 Object Caching Via Replication

Data caching will be described later in more detail once the event notification proposal is flushed out. This is because it is likely to depend upon the event notification feature.

5.4.1 Write Operations on Local Replica

Local Replicas are read-only objects. Lifecycle management operations of RegistryObjects are not permitted on local replicas. All lifecycle management operation to RegistryObjects must be performed in the home registry for the object.

5.4.2 Creating a Local Replica

<Details TBD>

[image: image8.png]Registry-1

(Organization-A

Registry-1

Registry-2

Organization-B

v Registry-2

| B

Replica of .
Organization- Organization-B

Before Replication

After Replication

Figure 5: Object Caching Via Replication

5.4.2.1 Bulk Replication

This section describes how large sets of registryObjects may be cached locally.

5.4.3 Tracking Location of a Replica

A local replica of a remote RegistryObject instance must have exactly one ObjectRef instance within the local registry. The home attribute of the ObjectRef associated with the replica tracks its home location.mangerRegistryhome A RegistryObject must have exactly one home. The home for a RegistryObject may change via Object Relocation as described in section 5.5.

5.4.4 Updating a Local Replica

5.4.5 Deprecating a Local Replica

5.4.6 Removing a Local Replica

5.5 Object Relocation

<Details TBD>

Object relocation does not require that the source and target registries be in the same federation or that either registry have a prior contract.

6 Lifecycle Management of Federations

[Note] This chapter will go in the RS 3.0 specification.

This chapter describes the various operations that manage the life cycle of a federation and its membership. A key design objective is to allow federation life cycle operations to be done using existing LifeCycleManager interface of the registry in a stylized manner.

6.1 Creating a Federation

The following rules govern how a federation is created:

· A Federation is created by submitting a Federation instance to a registry using SubmitObjectsRequest.

· The registry where the Federation is submitted is referred to as the federation home.

· The federation home may or may not be a member of that Federation.

· A federation home may contain multiple Federation instances.

6.2 Joining a Federation

The following rules govern how a registry joins a federation:

· Each registry must have exactly one Registry instance within that registry for which it is a home. The Registry instance is owned by the RegistryOperator and may be placed in the registry using any operator specific means. The Registry instance must never change its home registry via Object Relocation.

· A registry may request to join an existing federation by submitting an instance of an Extramural Association that associates the Federation instance as sourceObject, to its Registry instance as targetObject, using an associationType of “FederationMember”. The home registry for the Association and the Federation objects must be the same.

· The owner of the Federation instance must confirm the Extramural Association in order for the registry to be accepted as a member of the federation. Do we want to enhance extramural associations to allow an auto-confirmation mode?

6.3 Leaving a Federation

The following rules govern how a registry leaves a federation:

A registry may leave a federation at any time by removing its “FederationMember” Association instance that links it with the Federation instance. This is done using the normal RemoveObjectsRequest.

6.4 Dissolving a Federation

The following rules govern how a federation is dissolved:

· A federation is dissolved by removing its Federation instance by sending a RemoveObjectsRequest to its home registry.

· The removal of a Federation instance is controlled by the same Access Control Policies that govern any RegistryObject.

· The removal of a Federation instance is controlled by the same life cycle management rules that govern any RegistryObject. Typically, this means that a federation may not be dissolved while it has federation members. It may however be deprecated at any time. Once a Federation is deprecated no new members can join it.

7 Notes

These notes are here to not loose the thought and will be merged into the proposal later.

· Creating and ObjectRef to a remote object registers interest in that remote object such that any changes to that objects location will result in a notification to the referring registry.

· A SubmitObjectRequest may have a remote ObjectRef. Remote ObjectRefs must specify the home attribute.

· May want to rename FederationMember to HasFederationMember for consistency with HasMember associationType.

� Must change all of RIM to replace UUID with ObjectRef to allow remote references.

�PAGE \# "'Page: '#'�'" ��

�PAGE \# "'Page: '#'�'" ��

