
OASIS ebXML Registry1

Proposal: REST Interface2

Category: New Feature3

Date: July 3, 20024

Version 0.35

Authors: Matthew MacKenzie6

Status of this Document7
8

This note describes the initial proposal for the REST Interface work item for OASIS9
ebXML Registry V3.0. It is expected that the Federated Registries sub-team of the10
OASIS ebXML Registry TC will improve upon this initial proposal and then submit it for11
consideration by ebXML Registry TC at large.12

1 Abstract13
14

This document proposes a new feature of the OASIS ebXML Registry targeted for15
version 3.0. REST, or REpresentational State Transfer, is an architectural style of16
exposing applications via the web or other URI centric transports. The key tenet of the17
style is the use of URIs, or in the case of http, URL’s to define the actions and parameters18
of an interfaces invocation. REST also tends to be biased toward the http GET action, as19
opposed to POST or PUT, mainly because POST/PUT based applications tend to hide all20
of the request information in the content which is POSTed, thereby devaluing the location21
specificity of the URI.22

23
This document proposes a hybrid REST approach, with POST being used where GET is24
not practical. When the invocation parameters are too numerous or complicated, using25
POST is necessary, however, this is a hybrid approach because we try to still keep the26
URI somewhat meaningful even when performing a POST.27

28
29

2 Motivation30
31

The following motivations drive this proposal:32
33

1. Provide a mechanism to be used in conjunction with the ObjectRef object34
which is a proposed addition to the registry information model, version 3.0,35
for referencing objects which are physically located in another registry.36
This mechanism mustn’t hamper a registry’s ability to manage large37
numbers of ObjectRefs by being too “heavy” in processing or network38
demands.39

2. Enable distribution of registry content.40
3. Provide another integration route for developers who are integrating the41

use of ebXML Registry into their offerings.42
4. Incorporate the functionality described in an earlier proposal/best practice43

document for ebXML Registry v2, entitled “URL Interface to OASIS44
ebXML Registry”.45

46
47
48

3 External Dependencies49
50

This proposal depends upon the following external artifacts:51
• HTTP 1.1. The REST interface must be implemented upon an implementation of52

HTTP 1.1.53
54
55

4 REST Interface56
57

This section defines the REST interface to ebXML Registry 3.0+.58
59

4.1 Use Cases60
61

This section defines a couple of use cases for the REST interface.62
63

4.1.1 Use Case: Inter-registry Object References64
65
66

A non-ebXML registry such as UDDI wishes to reference and access the repository items67
in the repository of an ebXML Registry. For example a bindingTemplate may reference a68
WSDL document that is stored in an ebXML Registry's repository.69

4.2 What is REST?70
71

REST, which stands for Representational State Transfer, is an architectural style for72
distributed hypermedia systems. When you expose an interface to the world (or some73
subset thereof), you are essentially embedding method calls in the request URI. For74
example, if we were exposing a class named Catalog using REST, a client would send a75
http GET request to a URL that is formed something like the following:76

http://www.mysite.com/restprocessor?object=Catalog&method=listItems77
The return value would be sent back to the client synchronously in a format that is78
appropriate for such a request, or perhaps there is a URL parameter that can be set to79
define the return format (XML, HTML or CSV perhaps?). REST is more of a concept80
than a technology, and better yet, REST is easily implemented using standard facilities81
found on a web server or development environment.82

4.3 Definition of the REST Interface for ebXML Registry83
The specification of the REST Interface for ebXML Registry is constrained to the84
specification of what URI parameters must be used to specify the interface, method and85
invocation parameters being used.86

87

4.3.1 What needs to be exposed?88
89

At the bare minimum, it is necessary to expose functionality via REST to retrieve90
Registry Objects with. This is required to support the Registry Federation feature of91
ebXML Registry 3.0.92
The minimum interface that needs to be exposed is explained below:93

94
interface: ObjectQueryManager95
operation: submitAdhocQueryRequest96
parameters: id97
response: RegistryResponse98

99
NOTE:100

Since a certain amount of interface mapping is required to expose all of the101
registry’s lifecycle management via REST, this document will describe how this102
should be done, although implementing a complete REST interface is not required103
by this proposal.104

105

4.3.2 URI Parameters106
107

This section defines the URI parameters that must be used by the REST Interface.108
109

Parameter Name Required Purpose Notes
interface

Yes Declares the interface,
or object to perform
methods upon.

Example:
ObjectQueryManager

operation
Yes Declares the method to

be performed on the
specified interface.

Example:
submitAdhocQueryRequest

param-<key>
[optional]

No Declares named
parameters to be passed
into the specified
method call.

Example: param-id=899-677

var-<key> [optional]
No Declares variables. Example: var-output=HTML

110

5 QueryManager REST Interface111

112
The REST Interface to QueryManager consists of the interface name “QueryManager”,113
and the one method defined in that interface, submitAdhocQueryRequest.114
!115
There are two ways to access the QueryManager via the REST interface: http GET based,116
and http POST based. The GET based method represents the minimum implementation of117
this proposal.118

5.1 HTTP GET Based Access to QueryManager119
120

In order to facilitate simple, ID based access to a RegistryObject, two new methods will121
be added to QueryManager:122

123
• getRegistryEntryByID124
• getRegistryObjectByID125

126
To execute these requests, a URI parameter, named “id” must be used to specify the ID.127
The response returned will be a RegistryResponse in XML fomat. Below is a sample128
request and response:129

130
Request:131
!132
GET /rest?interface=QueryManager&method=getRegistryEntryByID¶m-id=urn:uuid:8788-133
hhghh-ttttt HTTP/1.0134
!135
!136
Response:137

!138
HTTP/1.1 200 OK139
Content-Type: text/xml140
Content-Length: 555141
!142
<?xml version=”1.0”?>143
<RegistryResponse />144

145

5.2 HTTP POST Based Access to QueryManager146
147

The submitAdhocQueryRequest method takes a properly formed AdhocQueryRequest,148
and returns a RegistryResponse in XML format.! In the REST interface, the149
AdhocQueryRequest is delivered using the http POST action.! Below is a sample request150
and response:151
!152
Request:153
!154
POST /rest?interface=QueryManager&method=submitAdhocQueryRequest HTTP/1.0155
User-Agent: Foo-ebXML/1.0156
Host: www.registryserver.com157
Content-Type: text/xml158
Content-Length: 555159
!160
<?xml version=”1.0”?>161
<AdhocQueryRequest />162
!163
!164
Response:165
!166
HTTP/1.1 200 OK167
Content-Type: text/xml168
Content-Length: 555169
!170
<?xml version=”1.0”?>171
<RegistryResponse />172
!173
Please refer to the most current ebXML RS and RIM specifications for details on how to174
for the requests and responses mentioned above.175

176

6 LifecycleManager REST Interface177
178

The REST Interface to LifecycleManager consists of the interface name179
“LifecycleManager”, and all methods defined in that interface including:180
!181

• approveObjects182
• deprecateObjects183
• removeObjects184
• submitObjects185
• updateObjects186

• addSlots187
• removeSlots188

189
!190
The requests for each method must be delivered using http POST in XML format. The191
return value will always be a RegistryResponse in XML format.! Below is a sample192
request and response:193
!194
Request:195
!196
POST /rest?interface=LifecycleManager&method=approveObjects HTTP/1.0197
User-Agent: Foo-ebXML/1.0198
Host: www.registryserver.com199
Content-Type: text/xml200
Content-Length: 555201
!202
<?xml version=”1.0”?>203
<ApproveObjectsRequest />204
!205
!206
Response:207
!208
HTTP/1.1 200 OK209
Content-Type: text/xml210
Content-Length: 555211
!212
<?xml version=”1.0”?>213
<RegistryResponse />214
!215
Please refer to the most current ebXML RS and RIM specifications for details on how to216
for the requests and responses mentioned above.217

218

7 References219
220

Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software221
Architectures. Doctoral dissertation, University of California, Irvine, 2000.222

223
224

MacKenzie, Chad Matthew. URL Interface to OASIS ebXML Registry. Best Practices225
Document. http://groups.yahoo.com/group/ebxmlrr-dev/files/UAM/226

227
228

229

230
231

