ebXML Registry

OASIS ebXML Registry

Proposal: Improved External Classification Support

Category: Improvements to existing specifications

Date: October 22, 2001
Authors: Farrukh Najmi, Len Gallagher, Nikola Stojanovic

Status of this Document

This document is a draft proposal whose purpose is to solicit additional input.

NOTE: Throughout this document the term “taxonomy” is used in its dictionary meaning of “classification”. This is an attempt to distinguish the taxonomy from the RIM class named “Classification” and its instances.
1 Abstract

This document proposes a new solution for allowing classification of RegistryObject instances based on taxonomies that reside outside the registry (external taxonomies). Although the V1.0 specifications support this capability using Slots, it is very different from classification using taxonomies that reside within the registry (internal taxonomies). It is generally agreed that we need a Classification feature that is similar when using internal or external taxonomies.

2 Motivation

The following motivations drive this proposal:

1. Improve ease-of-understanding of the Classification feature for all use cases.

2. Improve ease-of-use of the Classification feature for all use cases

3. Improve ease-of-implementation of the Classification feature

4. Improve the architecture of the ebXML Registry

They are addressed by having a uniform model for classification using both internal and external taxonomies.

2.1 Assumptions

The following assumptions are made in this proposal:

1. Issues dealing with multiple co-operating registries are not considered. These issues are deferred to the Inter Registry Cooperation (IRC) team.

2. Changes to RS specification will occur after the RIM changes are finalized.

2.2 Internal Vs. External Taxonomies

The ebXML registry allows an entire taxonomy to be defined as a tree-structure within the registry using a ClassificationScheme instance as the root of the tree and a ClassificationNode as nodes in the tree. In this approach the entire taxonomy resides within or internal to the registry. A RegistryObject may be classified by an internal taxonomy by associating it with a ClassificationNode within a ClassificationScheme using a Classification instance.

This proposal focuses on extending the Classification class to allow a RegistryObject to be classified by referencing a taxonomy element defined outside the registry.

3 Use Cases

First two use cases listed below are already supported by the registry, albeit in a very different manner. The proposal allows the two use cases to be handled in a symmetrical manner.

The third use case is also supported by the registry, but in a less straightforward manner then as suggested by this proposal.

3.1 Classification of a RegistryObject Using Internal Taxonomy

A Submitting Organization wishes to classify a RegistryObject using the NAICS taxonomy when the registry contains the full structure of the NAICS taxonomy. Registry must fully validate submitted classification.
3.2 Classification of a RegistryObject Using External Taxonomy

A Submitting Organization wishes to classify a RegistryObject using the NAICS taxonomy when the full structure of the NAICS taxonomy resides outside the registry. Validation of submitted value(s) of taxonomy element(s) is the responsibility of the Submitting Organization and not of the registry itself.

3.3 Lookup of External Taxonomy

User needs a way to locate the existing official definition of an external taxonomy that is placed on the web in order to be able to learn about the structure (names, values, paths, …) of that taxonomy.

4 Proposed Deliverables

The following concrete deliverables are proposed:

1. Changes to ebRIM to enhance the ClassificationScheme, ClassificationNode and Classification classes to support the external classification use cases.

4.1 ebRIM Information Model Changes

ebRIM Section 5.6, ClassificationScheme

Replace the first sentence in this section with the following text:

ClassificationScheme instances are RegistryEntry instances that describe a structured way to classify or categorize RegistryObject instances. The structure of the classification scheme may be defined internally or externally, resulting in a distinction between internal and external classification schemes.

The remaining sentences 2 through 4 can remain as written.

ebRIM Section 5.8, Classification

Replace the text in this section with the following text:

Classification instances are RegistryObject instances that are used to classify other RegistryObject instances. A Classification instance identifies a ClassificationScheme instance and some node defined within the classification scheme. Classifications can be internal or external depending on whether the referenced classification scheme is internal or external. Classification is described in detail in section 10.

ebRIM Section 10, Classification of RegistryObject

The text and examples in this introductory section can remain unchanged.

Figure 4 is OK as presented, but it is not required for this proposal.

Figure 5 should have an additional directional arrow from Classification to ClassificationScheme. This figure is helpful but not required for this proposal.

Figure 6 and the paragraph that describe it are OK as presented, but are not required for this proposal.

ebRIM Section 10.1 Class ClassificationScheme

Replace the text in this section with the following text:

Base classes: RegistryEntry

A ClassificationScheme instance is metadata that describes a registered taxonomy. The taxonomy hierarchy may be defined internally to the Registry by instances of ClassificationNode or it may be defined externally to the Registry, in which case the structure and values of the taxonomy elements are not known to the Registry.

In the first case the classification scheme is defined to be internal and in the second case the classification scheme is defined to be external.

The ClassificationScheme class inherits attributes and methods from the RegistryObject and RegistryEntry classes.

NOTE: This proposal requires the existence of a ClassificationScheme instance before it is possible to classify an object. The only other alternative, in case that one wants to classify objects with elements from the particular taxonomy and doesn’t want to register a classification scheme for it, is to use slots.

ebRIM Section 10.1.1, Attribute Summary

Insert the following table under a new section 10.1.1:

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	isInternal
	Boolean
	Yes
	
	Client
	No

	nodeType
	LongName
	Yes
	
	Client
	No

Note that attributes inherited by ClassificationScheme class from the RegistryEntry class are not shown in the table above.

NOTE: LongName (128 characters might be too much for enumerations). Maybe we should change the RIM to use ShortName for enumerations or maybe we should introduce a new type “Enumeration”, which is something like 32 characters and rules out usage of special characters?

ebRIM Section 10.1.2, Attribute isInternal

Insert a new section as a section 10.1.2 with the following text:

When submitting a ClassificationScheme instance the Submitting Organization needs to declare whether the ClassificationScheme instance represents an internal or an external taxonomy. This allows the registry to validate the subsequent submissions of ClassificationNode and Classification instances in order to maintain the type of ClassificationScheme consistent throughout its lifecycle.

ebRIM Section 10.1.3, Attribute nodeType

Insert a new section as a section 10.1.3 with the following text:

When submitting a ClassificationScheme instance the Submitting Organization needs to declare what is the structure of taxonomy nodes that this ClassificationScheme instance will represent. This attribute is an enumeration with the following values:

· UniqueCode. This value says that each node of taxonomy has a unique code assigned to it.

· EmbeddedPath. This value says that a unique code assigned to each node of taxonomy at the same time encodes its path. This is the case in NAICS taxonomy.

· NonUniqueCode. In some cases nodes are not unique and it is necessary to nominate the full path in order to identify the node. Example might be geography taxonomy where Turkey might be under both Europe and Asia.

This enumeration might expand in the future with some new values. An example for possible future values for this enumeration might be NamedPathElements for support of Named–Level taxonomies like Genus / Species.

ebRIM Section 10.2, Class ClassificationNode
No changes are necessary in Section 10.2 or in any of its subsections.

NOTE: Current RIM (as it stands now) is not accurate because it requires parent relationship between two classification nodes and this is not true for nodes that are pointing to a classification scheme. See: Figure 1 and section 10.2.2

ebRIM Section 10.3, Class Classification

Replace the introductory text in this section with the following text:

Base Classes: RegistryObject

A Classification instance classifies a RegistryObject instance by referencing a node defined within a particular classification scheme. An internal classification will always reference the node directly, by its id, while an external classification will reference the node indirectly by specifying a representation of its value that is unique within the external classification scheme.

The attributes and methods for the Classification class are intended to allow for representation of both internal and external classifications in order to minimize the need for a submission or a query to distinguish between internal and external classifications.

NOTE: In order to make the distinction between the two even more transparent, allow for internal classification of an object to be nominated by using classificationScheme and nodeRepresentation instead of classificationNode. However, make XML schema such, that it allows only the exclusive choice between the two sets of attributes. Unfortunately, this transparence cannot work in case of external classification.

The existing second paragraph of Section 10.3, and its reference to Figure 4, can remain as written, but its retention is not required for this proposal.

ebRIM Section 10.3.1, Attribute Summary

Replace the table in this section with the following table:

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	classificationScheme
	UUID
	for external classifications
	null
	Client
	No

	classificationNode
	UUID
	for internal classifications
	null
	Client
	No

	classifiedObject
	UUID
	Yes
	
	Client
	No

	nodeRepresentation
	String
	for external classifications
	null
	Client
	No

NOTE: In case when nodeRepresentation is a canonical path (and assuming that path includes a scheme id) then classificationScheme might not be required?

ebRIM Sections 10.3.2 through 10.3.3, Attribute details

Replace these 2 sub-sections with the following 4 sub-sections :
10.3.2 Attribute classificationScheme

If the Classification instance represents an external classification, then the classificationScheme attribute is required. The classificationScheme value must reference a ClassificationScheme instance.

10.3.3 Attribute classificationNode

If the Classification instance represents an internal classification, then the classificationNode attribute is required. The classificationNode value must reference a ClassificationNode instance.

10.3.4 Attribute classifiedObject

For both internal and external classifications, the ClassifiedObject attribute is required and it references the RegistryObject instance that is classified by this Classification.
10.3.5 Attribute nodeRepresentation

If the Classification instance represents an external classification, then the nodeRepresentation attribute is required. It is a representation of a taxonomy element from a classification scheme. It is the responsibility of the registry to distinguish between different types of nodeRepresentation, like between the classification scheme node code and the classification scheme node canonical path. This allows client to transparently use different syntaxes for nodeRepresentation.

ebRIM Section 10.3.4, Inherited Attribute id

Replace the text in this section by the following:

If the classification is an internal classification, then the id attribute is attribute based and composed of the value of the classifiedObject and the classificationNode attributes in that order, where each element of the id structure is separated by a ‘:’.

The pattern is as follows:

<classifiedObject id>:< classificationNode id>

An example is as follows:

a2345678-1234-1234-123456789012:a2345678-1234-1234-123456789013

If the classification is an external classification, then the id attribute is attribute based and composed of the classifiedObject and the getPath() return value of the Classification instance in that order, where each element of the id structure is separated by a ‘:’.

The pattern is as follows:

<classifiedObject id>:<getPath()>

An example is as follows:

a2345678-1234-1234-123456789012:Geography:/Asia/Japan

ebRIM Section 10.3.5, Context Sensitive Classification

The material in this subsection is independent of this proposal. It can remain as an independent subsection.

ebRIM Section 10.4, Example of Classification Schemes

The material in this subsection is independent of this proposal. It can remain as an independent subsection.

ebRIM Section 10.5, Standardized Taxonomy Support

Delete this entire section, including its two subsections.

NOTE: The material in this section describes the “full-featured” and “light weight” classifications featured in ebRIM before this proposal. It has the disadvantage that the two types of classifications are represented in the model in two completely different ways. This proposal obviates the need for such dichotomy.

ebRIM, New SubSection, Method Summary

Add the following sentence and table as a new subsection of section 10.3, Class Classification (its new section number will likely be 10.3.7):

In addition to its attributes, the Classification class also defines the following methods:
	ReturnType
	Method

	UUID
	getClassificationScheme()

For an external classification, returns the scheme identified by the classificationScheme attribute.

For an internal classification, returns the scheme identified by the same method applied to the ClassificationNode instance

	String
	getPath()

For an external classification returns a string that conforms to the string structure specified for the result of the getPath() method in the ClassificationNode class.

For an internal classification, returns the same value as does the getPath() method applied to the ClassificationNode instance identified by the classificationNode attribute.

	ShortName
	getCode()

For an external classification, returns a string that represents the declared value of the taxonomy element. It will not necessarily uniquely identify that node.

For an internal classification, returns the value of the code attribute of the ClassificationNode instance identified by the classificationNode attribute.

NOTE: Values returned by these methods are derivable from Classification class attributes.

4.2 Look up of External Taxonomy use case

In order to satisfy the use case defined under section 3.3 of this proposal, the following solutions are considered:

· Use a special ExternalLink to uniquely determine location of the taxonomy. This is already possible by classifying an ExternalLink instance attached to a ClassificationScheme instance. In this way the ExternalLink instance would reference the location and classification would classify the external link. The same could be achieved with the use of a Slot instance. However, both cases do not specify in a standard way classification / slot that would be used for this purpose.

It is also possible to add a new attribute -> “type” to the ExternalLink class. One of the values of this attribute might be ExternalClassification. This approach would imply a need for further specification of this attribute and its domain of values.

· Add a new attribute to the ClassificationScheme class. If this attribute is applicable to more then just the ClassificationScheme class, then the next solution might be more appropriate.

· Add externalURL to the RegistryEntry class. This solution addresses the broader and different use case then the one defined in this proposal and thus justifies a further analysis. When related to just external taxonomies, one downside of this solution might be that it cannot support the use case that allows for more then one location of the official taxonomy.

5 Open Issues

The sub-team has identified a number of open issues. Once these issues are resolved in RIM and / or RS, this proposal can accommodate them with appropriate modifications. Here is the list of open issues that might need a further discussion and resolution:

1. Definition of getPath() syntax and semantics; is the scheme-id part of the Path or not?

2. Definition of getCode() syntax and semantics for external taxonomies when a canonical path is submitted instead of an explicit code.

3. What is the user friendly ClassificationSchemeName? Could “name” attribute inherited from the RegistryEntry be used for it or we need additional attribute?

4. Find solution for “Lookup of External Taxonomy” use case.

5. Allow for internal classifications using classificationScheme and nodeRepresentation instead of just classificationNode.

6. Justify the need, and if needed, define the semantics of canonical ebXML Registry taxonomy, like copying a subtree from one taxonomy to another one.

7. Justify the need, and if needed, define the semantics of importing and exporting taxonomies.

8. Side issue: Reduce Slots to one value instead of list of values?

9. Side issue: return type on getClassificationScheme: Classification Scheme or UUID => should be consistent with the whole RIM.

10. Side issue: mutability of attributes in RIM should be checked on a case-by-case basis.

11. Side issue: define constraints on types like Enumerations, ClasificationNode codes, … in regard to which characters are allowed and such.

 Page 11

