

UML Query View for both Internal and External Classifications – 10 Sept 2001

RegistryEntry
URN
name
description
objectType
status
userVersion
majorVers ion
minorVers ion
stability
expirationDate

Class ificationScheme
URN
name
description
objectType
status
userVers ion
majorVersion
minorVersion
stability
expirationDate

PathRepresentation
path(derived from Parents or PathElements)

PathElement
level
value

1..*1..*

Class ificati on
name
desc ription

0..*0..*

HasClassi fi cat ion s

FromScheme

HasPath

Class ificationNode
name
description
code

Parent

0..*0..*

HasNodes

FromScheme
HasPath

0..1

LocalNode

0..1

Assumptions

1) A Classification can be either an InternalClassification or an ExternalClassification, but the query writer need

not know which it is. An InternalClassification will have a LocalNode association to ClassificationNode; an
ExternalClassification will not.

2) The name attribute of Classification has no role to play in this presentation, so it is “locked”, i.e. not visible.
3) If the HasNodes association is empty, then the ClassificationScheme instance describes an external

classification scheme; otherwise, it describes an internal classification scheme.
4) Every RegistryEntry instance has a required URN that is a unique identifier for that instance. If the

RegistryEntry points to a repository item in an external Registry, then the RegistrationAuthority will enforce a
requirement that the local Registry use the same URN as does the external Registry.

5) The Classification class has a method defined, e.g. FromScheme(), that identifies a ClassificationScheme
instance in the local Registry. For internal classifications, FromScheme() is derived from
LocalNode.FromScheme().

6) Every Classification and every ClassificationNode maps to a set of PathElement instances that determine the
full path of a node from some external or internal classification scheme. The set of PathElement instances is
represented as a “path” character string visible as a “special” attribute of ClassificationNode and of
Classification.

7) The Classification class has a method defined, e.g. HasPath(), that identifies a “path” to represent the node. For
internal classifications, HasPath() is derived from LocalNode.HasPath().

8) The special “path” node in both Classification and ClassificationNode can be queried by XPATH syntax, which
is not yet specified in RIM or RS. Alternatively, the “path” can be queried by a PathElementFilter, which is also
not yet specified in RIM or RS.

Conclusions

If the above assumptions hold, then it is possible to specify a RegistryEntryQuery whose XML
HasClassificationBranch element (cf ebRS Section 8.2.2) is identical for both ExternalClassification and
InternalClassification instances.

If the above assumptions hold, then I think it is possible to represent all of the Browse and Drill Down queries (cf
ebRS Section 8.1) as a revised and extended ClassificationNodeQuery (cf ebRS Section 8.2.4).

Revised ebRS Syntax

In the syntax for querying repository items that have been classified (e.g. ebRS Section 8.2.2), I propose that the
HasClassificationBranch element be replaced by the following (or equivalent XML schema) in accord with the
above UML view.

 <!ELEMENT HasClassificationBranch
 (ClassificationFilter?,
 FromSchemeBranch?,

HasPathBranch?,
LocalNodeBranch?)>

<!ELEMENT FromSchemeBranch
 (ClassificationSchemeQuery)>

<!ELEMENT HasPathBranch
 (PathFilter | XPATHnodeQuery | PathElementFilter)>

<!ELEMENT PathFilter (Clause)>

<!ELEMENT XPATHnodeQuery TO BE SPECIFIED as special XPATH synatx >

<!ELEMENT PathElementFilter (Clause)>

<!ELEMENT LocalNodeBranch
 (ClassificationNodeFilter)>

Examples

It doesn’t matter if NAICS is an internal or external classification scheme. A RegistryEntryQuery can retrieve all
RegistryEntry instances classified as NAICS with code=33611 as follows:

<RegistryEntryQuery>
 <HasClassificationBranch>
 <FromSchemeBranch>
 <ClassificationSchemeQuery>
 <RegistryEntryFilter>
 URN EQUAL “urn:ntis-gov:naics:1997”
 </RegistryEntryFilter>
 </ClassificationSchemeQuery>
 </FromSchemeBranch>
 <HasPathBranch>
 <PathFilter>
 path = “33611”
 </PathFilter>
 </HasPathBranch>
 </HasClassificationBranch>
</RegistryEntryQuery>

The above RegistryEntryQuery doesn’t include any shortcuts. However, if we assume the existence of two derived
attributes in a Classification instance, i.e. path and schemeURN, then the above query could be shortened to:

<RegistryEntryQuery>
 <HasClassificationBranch>
 <ClassificationFilter>
 schemeURN EQUAL “urn:ntis-gov:naics:1997”
 AND
 path = “33611”
 </ClassificationFilter>
 </HasClassificationBranch>
</RegistryEntryQuery>

In general, the judicious specification of popular derived attributes in many of the RIM classes could substantially
shorten the specification of many filter queries.

The advantage of the longer, fully spelled out query, is that it provides much more flexibility. For example, suppose
someone wishes to identify all items that have been classified by a classification scheme owned by OASIS, but they
have no idea what the URN or name of the classification scheme is. The following should do the trick:

<RegistryEntryQuery>
 <HasClassificationBranch>
 <FromSchemeBranch>
 <ClassificationSchemeQuery>
 <SubmittingOrganizationBranch>
 <OrganizationFilter>
 URN EQUAL “urn:org:oasis-open”
 </OrganizationFilter>
 </SubmittingOrganizationBranch>
 </ClassificationSchemeQuery>
 </FromSchemeBranch>
 </HasClassificationBranch>
</RegistryEntryQquery>

Suppose the query writer doesn’t know the “code” or “path” attribute of the classification scheme, and instead wants
to find all repository items classified by a “local” classification scheme that has any of the words “truck” or “tractor”
in the name attribute of its corresponding ClassificationNode instance. The following should do it:

<RegistryEntryQuery>
 <HasClassificationBranch>
 <LocalNodeBranch>
 <ClassificationNodeFilter>
 name CONTAINS “truck”
 OR
 name CONTAINS “tractor”
 </ClassificationNodeFilter>
 </LocalNodeBranch>
 </HasClassificationBranch>
</RegistryEntryQquery>

NOTE: The above query would not work in general for external classifications because the local Registry
implementation may not know how to access the external classification scheme. It knows the path of the
classification but not necessarily the spelling of the various node names represented by codes in that path.

