Author: Sekhar Vajjhala

Email id: sekhar.vajjhala@sun.com

Date : 9/19/01

Version: 0.1

Use of XML DSIG in ebXML Registry

Status of this document

· This document is WORK IN PROGRESS. There are open issues.

Introduction

This document specifies the use of XML Digital Signatures [XMLDSIG] by ebXML Registry Clients and ebXML Registry. The specification is targeted for Version 2.0 of the ebXML Registry Services Specification.

Related Documents

The following documents provide the necessary background and additional background to the reader:

· SOAP Messages with Attachments [SOAPATTACH]

· XML-Signature Syntax and Processing [XMLDSIG]

Use Cases

The use of XML Digital Signatures is intended to cover the following use cases. The Use Cases (indicated in bold) refer to the use case numbers in the Security Risks Document.

Use Case 9: Registry Client wants to ensure that the Registry Content he is publishing to Registry is not changed on the network.

Use Case 11: Registry Client wants to ensure that the Registry Content he has published to the Registry is not changed by the Registry Administrator.

Use Case 13: Registry Client wants to ensure that the Registry Content sent to him by Registry is not changed on the network.

Use Case 14: Registry Client wants to ensure that the Registry Content received from Registry is legitimate. For example, Registry Client wants to verify that the information claiming to have been published by a company XYZ was really published by company XYZ.

Note To Reviewers: I have omitted the use cases for peer entity authentication since I would like to get some clarifications about these
.

Caveats and Assumptions

The following assumptions are made by this specification:

1. The protocol
 between a Registry Client and a Registry is assumed to be SOAP with Attachments [SOAPATTACH].

2. Registry Content can include payloads consisting of arbitrary digital content (i.e. payloads need not necessarily be XML documents). Payloads are carried in a SOAP Message with Attachments [SOAPATTACH].

3. EbXML message headers (which contain data other than payload data in request/response messages) are carried in the SOAP body
.

Packaging of XML Digital Signature

An XML digital signature is generated by the Registry Client or the Registry. A digital signature is packaged within a SOAP header element as ds:Signature element. The ds:Signature element is specified by [XMLDSIG]. Its usage is specified later on in this specification.

Multiple Signature Elements

There can be more than one ds:Signature element within the SOAP header element
. Payload and a message header may be signed by different principals and packaged as separate ds:Signature elements. For example, in Use Case 14:

· RC1 (Registry Client 1) signs content and publishes it to the Registry.

· RC2 (Registry Client 2) retrieves RC1’s content from the Registry.

· RC2 wants to verify that RC1 published the content. In order to do this, when RC2 retrieves the content, the response from the Registry to RC2 would have to contain the following:

· Payload containing the content that has been published by RC1.

· A ds:Signature element containing RC1’s signature over RC1’s published content.

· Either pass the key for validating RC1’s signature in ds:Signature element (using the KeyInfo element as specified in [XMLDSIG]) or passing RC1’s identity so RC2 can obtain the validation key for signature itself (e.g. retrieve a certificate containing the public key for RC1).

· Another ds:Signature element containing the signature over the message header. This signature is generated by Registry not RC1.

When there is more than ds:Signature element, the first one is a signature over the message header. ds:Signature elements following the first one are signatures over the payloads.

OPEN ISSUE

The requirement that the first ds:Signature element must be the digital signature for the ebXML header implies that only the following combinations of header and payload signatures can be represented.

Header Signature
Payload Signature
 Usage

Yes
Yes
Non secure client access

No
Yes
Cannot be represented

Yes
No
Delete object

Yes
Yes
Submit Objects with payload

Note To Reviewers: It is possible for each payload to be signed separately. The use case for this is RC1 submits content that has been authored and signed by RC2. In the discussions it was agreed that this use case was desirable in the long term but not in the short term. However, if Use Case 14 is to be supported, then multiple signatures would have to be supported. In this case, we might as well solve the use case where each payload is signed separately. This is because allowing 2 digital signatures is no more complicated than allowing n digital signatures where n > 2.

ds:Signature Element packaging in SOAP Header

This section shows how the ds:Signature element is packaged in a SOAP header field.

MIME-Version: 1.0

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;

Content-Description: ebXML Message

-- MIME_boundary

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: 8bit

Content-ID: http://claiming-it.com/claim061400a.xml

<?xml version='1.0' encoding="utf-8"?>

<SOAP-ENV:Envelope>

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Header>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 ….. signature over message header

 </ds:Signature>

 <ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 ….. signature over payload1 and payload2

 </ds:Signature>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 <SubmitObjectsRequest>…….</SubmitObjectsRequest>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

--MIME_boundary

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: 8bit

Content-ID: payload1

<CPP>

</CPP>

--MIME_boundary

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: 8bit
Content-ID: payload2
<CPP>

</CPP>

Message Header Signature Requirements

A ds:Signature element must be generated for an ebXML message header by a client (originator of the request) as specified by [XMLDSIG] specification. However, a ds:Signature element is not necessary for every ebXML message since not every message may be signed.

A ds:Signature element contains:

· ds:SignedInfo

· ds:SignatureValue

· ds:KeyInfo

The ds:SignedInfo element for an ebXML message header must be generated as follows:

1. ds:SignatureMethod must be present. XMLDSIG requires that the algorithm be identified using the Algorithm attribute. While [XMLDSIG] allows more than one Algorithm Attribute, a client must be capable of signing using only the following Algorithm attribute:

http://www.w3.org/2000/09/xmldsig/#dsa-sha1
The above algorithm is being chosen because it is required
 to be supported by

any XMLDSIG implementation conforming to the [XMLDSIG] specification.

2. an optional ds:CanonicalizationMethod element. If it is not specified, then the canonicalization method must default to [XMLC14N] which is the default specified by [XMLDSIG].

3. A ds:Reference element that must contain the following transform:

http://www.w3.org/2000/09/xmldsig#enveloped-signature
The above signature ensures that the signature (which is embedded in the SOAP header) is not included in the signature calculation.

4. A ds:Reference element to include the <SOAP-ENV:Body> in the signature calculation. The ds:Reference element:

· Must identify the <SOAP-ENV:Body> element using the URI attribute of the ds:Reference element (The URI attribute is optional in the [XMLDSIG] specification.)

· Must contain the <ds:DigestMethod> as specified in [XMLDSIG]. A client must be support the following digest algorithm:

http://www.w3.org/2000/09/xmldsig/#sha1
· Must contain a <ds:DigestValue> which is computed as specified in [XMLDSIG].

If there is payload to be signed, then the ds:Signature element for the payload must be generated first and added to the SOAP header. The digital signature for the header (generated as above) must include the digital signature of the payload.

The ds:SignedValue must be generated as specified in [XMLDSIG].

The ds:KeyInfo element is not required for reasons noted later in the section “Key Distribution and KeyInfo element”.

Message Header Signature Example

The following example shows the format of the digital signature for message headers
.

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<ds:SignedInfo>

<ds:CanonicalizationMethod>

 Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-2001026">

 </ds:CanonicalizationMethod>

<ds:Reference URI="">

http://www.w3.org/2000/09/xmldsig#enveloped-signature

</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue> ... </ds:SignatureValue>

</ds:Signature>

Message Payload Signature Requirements

A ds:Signature element for payload must be generated by a client as specified here. This must be generated and added to the header before the ds:Signature element for the Message header is generated.

The ds:SignedInfo element for an ebXML payload must be generated as follows:

1. ds:SignatureMethod must be present. For same reasons as noted in the Message Header Requirements”, the client must be capable of signing using only the following Algorithm attribute:

http://www.w3.org/2000/09/xmldsig/#dsa-sha1
2. An optional ds:CanonicalizationMethod element. If it is not specified, then the canonicalization method must default to [XMLC14N], which is the default specified by [XMLDSIG].

3. One or more Reference/Manifest elements to reference the payload that needs to be signed. The Reference/Manifest element:

· Must identify the payload to be signed using the URI attribute of the ds:Reference element. (The URI attribute is optional in the XMLDSIG specification.)

· Must contain the <ds:DigestMethod> as specified in [XMLDSIG]. A client must be support the following digest algorithm:

http://www.w3.org/2000/09/xmldsig/#sha1
· Must contain a <ds:DigestValue> which is computed as specified in [XMLDSIG].

Note To Reviewers: I need to think some more about the requirements for the URI attribute for identification of the payload
.

The ds:SignedValue must be generated as specified in [XMLDSIG].

The ds:KeyInfo element is not required for reasons noted later in the section “Key Distribution and KeyInfo element”.

Payload Signature Example

The following example shows the format of the digital signature for an ebXML payload.

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<ds:SignedInfo>

<ds:CanonicalizationMethod>

 Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-2001026">

 </ds:CanonicalizationMethod>

<ds:Reference URI=???://Payload1>

<ds:DigestMethod DigestAlgorithm="./xmldsig#sha1">

<ds:DigestValue> ... </ds:DigestValue>

 <ds:Reference URI=???://Payload2>

 <ds:DigestMethod DigestAlgorithm="./xmldsig#sha1">

 <ds:DigestValue> ... </ds:DigestValue>

 <ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue> ... </ds:SignatureValue>

</ds:Signature>

Message Header Signature Validation

The ds:Signature element for the ebXML message header must be validated by the recipient as specified by [XMLDSIG].

Message Payload Signature Validation

The ds:Signature element must be validated by the Registry as specified in the [XMLDSIG].

Key Distribution and KeyInfo Element

To validate a signature, the recipient of the signature needs the validation key corresponding to the signer’s key. The following use cases need to be handled:

· Registry needs the validation key of the Registry Client to validate the signature

· Registry Client needs the validation key of the Registry to validate the Registry’s signature.

· Registry Client RC1 needs the validation key of Registry Client (RC2) to validate the content signed by RC1.

 [XMLDSIG] provides a ds:KeyInfo element which can be used to pass the recipient information for retrieving the validation key. ds:KeyInfo is an optional element as specified in [XMLDSIG]. This field together with the procedures outlined in this section is used to securely pass the validation key to a recipient.

Ds:Keyinfo can be used to pass information such as keys, certificates, names etc. The intended usage of KeyInfo field for ebXML is as follows:

· Pass a DN (Distinguished Name). The recipient extracts the certificate corresponding to the DN name from its own key store location. The public key is then obtained from the certificate.

· Pass a X509 Certificate. This recipient extracts the X509 Certificate and the public key from the certificate.

The following assumptions are also made:

1. Certificate
s are associated with both the Registry Operator and a Registry Client.

2. A Registry Client registers its certificate with the Registry. The mechanism used for this is not specified here. The certificate registered with the Registry must match the DN name, which is passed in KeyInfo.

3. A Registry Client obtains the Registry’s certificate and stores it in its own local key store. The mechanism is not specified here. The DN name in the Registry’s certificate must match Registry’s certificate has a DN name, which is passed in KeyInfo.

The usage of ds:KeyInfo field for different use cases is illustrated below:

· Use Case 9 and 11.

1. Registry Client (RC) signs the payload and the ebXML header
using its private key.

2. The DN name of RC is passed to the Registry in KeyInfo field

3. Registry retrieves the certificate from the DN name (since RC must have already registered its certificate).

4. Registry validates the signature using the public key from the certificate.

· Use Case 13

1. Registry signs the ebXML header and payload using its private key.

2. The DN name of the Registry is passed to RC in KeyInfo field.

3. RC retrieves the certificate from the DN name (since RC must have obtained the Registry’s certificate and stored it in its local key store).

4. RC validates the signature using the public key from the certificate.

· Use Case 14

1. RC1 signs the payload and ebXML header using its private key and publishes to the Registry.

2. The DN name of RC1 is passed to the Registry in the KeyInfo field.

3. RC2 retrieves content from the Registry.

4. Registry signs the ebXML header using its private key. Registry sends RC1’s content and the RC1’s signature (signed by RC1).

5. Registry sends its own DN name in the KeyInfo field of the signature. It also sends RC1’s certificate in the KeyInfo field. Note that if PKI infrastructure were assumed, then it would have been sufficient to send DN of RC1. RC2 would then have obtained the certificate from the PKI infrastructure (for e.g. using XKMS).

6. RC2 obtains Registry’s certificate using Registry’s DN name and verifies Registry’s signature.

7. RC2 obtains RC1’s certificate from the KeyInfo field and validates the signature on the payload.

Note To Reviewers: Support of Use Case 14 significantly increases the complexity. If this use were dropped, then only the DN name would have to be included in the KeyInfo field.

Based on the above use cases, a Registry Client and Registry must support the following:

· X509Subject element. This is a child element of X509Data which in turn is a child element of KeyInfo. X509SubjectName element can be used to indicate a X.509 subject distinguished name. [XMLDSIG] states that:

“subject distinguished name SHOULD be compliant with RFC 2253[LDAP-DN]”

· X509Certificate element. This is a child element of X509Data which in turn is a child element of KeyInfo. This can be used to pass the certificate to the recipient. X509Certificate element contains a base64-encoded certificate.

The following table illustrates what is possible in the KeyInfo field.

Request | Payload

DN Name
Certificate
DN Name
Certificate

RC to Registry
 Yes
No
Yes
No (yes ok too)

Registry to RC
 Yes
Yes
No (XKMS needed)
Yes

Relationship to XKMS

XKMS defines a protocol for key registration and distribution. It consists of two parts:

· X-KISS (XML Key Information Service Specification) for processing key information in an XML digital signature. This allows a client of XKMS to delegate processing (in part or whole) of KeyInfo field to XKMS.

· X-KRSS (XML Key Registration Service Specification) for registration of keys.

Alignment with SOAP-SEC

SOAP Security Extensions [SOAPSEC] proposes a standard to use the XML Digital Signatures to SOAP 1.1 messages. The signature is transmitted in a SOAP header entry <SOAP-SEC:Signature>.

The primary reason that this specification does not use the SOAP security extensions is because the SOAP Security Extensions currently only support a single digital signature within the SOAP header entry. But ebXML contains a use case that requires more than one digital signature in the SOAP header.

An additional reason that the SOAP Security Extensions are not used by this specification is that it appears to be work in progress.

Versioning Information

If a standard for signing SOAP Messages with Attachments is specified and that satisfies the use cases outlined earlier in the beginning of this document, then that standard could be adopted by future versions of ebXML Registry Specifications. This document assumes that there is sufficient versioning information which would allow future versions of Registry Clients and the Registry to distinguish between the different standards for signing.

References

[SOAPATTACH] SOAP Messages with Attachments

http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211/
[XMLDSIG]
XML-Signature Syntax and Processing,

http://www.w3.org/TR/2001/PR-xmldsig-core-20010820/
[SOAPSEC]
SOAP Security Extensions: Digital Signature

http://www.w3.org/TR/2001/NOTE-SOAP-dsig-20010206/
�PAGE \# "'Page: '#'�'" ��Related Documents: Add reference to ebXML MSG and Security Risks

�PAGE \# "'Page: '#'�'" ��Use cases: Replace “Registry” with “Registry Operator”

�PAGE \# "'Page: '#'�'" ��Use cases for peer authentication: Do you like to include them now, since we have more

“clarifications” now?

�PAGE \# "'Page: '#'�'" ��43: You meant “message representation?”

�PAGE \# "'Page: '#'�'" ��You might mention that in ebXML Messages, the envelope does not carry any Registry Content, and is always carried as payload

�PAGE \# "'Page: '#'�'" ��ebXML message headers are carried in SOAP-ENV:Header (See Section 12.32.1.1 in ebXML Messaging spec. ebXML manifests are carried in SOAP-ENV:Body.

�PAGE \# "'Page: '#'�'" ��59: My thinking is that we don’t need multiple signatures in the Header. The Header signature is done by the Registry Operator, and payloads are signed – independently – by RC1 when the contents are created. Those signatures will be with the payloads. It may be necessary to have 2 files to be attached with the SOAP message for non XML payloads – one containing the signature for the payload, and the other for the actual payload. I prefer this to the alternative that you are suggesting because the header can be entirely discarded by RC2 when it receives message from RO after verification. Another reason is to make processing the header to be independent of processing the payload while implementing it. Yet another reason is that we can do this with the current MSG spec. I would also make signing the payload optional, but creating the message digest a REQUIRED (this is for the Trusted Registry case where RC2 does not care how the content was created [because RC2 trusts RO to take care of that], but wants to make sure it gets uncorrupted content from RO). Like to hear what you think.

�PAGE \# "'Page: '#'�'" ��EbXML MSg specifies 12.3.1.1 item (4) that <ds:Signature> follows TraceHeaderList. It will be nice if you can also show the <eb:..> </eb:…> in this picture.

�PAGE \# "'Page: '#'�'" ��This is not the only reason. EbXML RECOMMENDS this, again 12.3.1.1 of MSG

�PAGE \# "'Page: '#'�'" ��We will have to discuss the relevance of ebXML Manifest here, and how they can be used? Again, the example needs <eb:Manifest> and other <eb> tags.

�PAGE \# "'Page: '#'�'" ��Oops! Looks like I am looking at the earlier version here – I see a “URI=???” in the later doc. URI could be a cid or http. Can it be other things?

�PAGE \# "'Page: '#'�'" ��I would suggest talking about cid and http and leave other options open.

�PAGE \# "'Page: '#'�'" ��Yet another option (really the most practical one) is to use the CPPA that the message is referring to, to get the DN. In this case, the DN doesn’t travel. It appears to me that to satisfy RAWS, we need to exclude “UnRegisterd Users” from the requirement to have a CPPA.

�PAGE \# "'Page: '#'�'" �� Check the edits

�PAGE \# "'Page: '#'�'" ��Signs the whole <SOAP-ENV>, not just the ebXML Header – please change the other use cases too accordingly

�PAGE \# "'Page: '#'�'" ��I would like to keep this use case. Again, CPPA is an alternative.

�PAGE \# "'Page: '#'�'" ��How about we design a versioning string that we stick in somewhere within the <ds:Transform>. This string should identify the Registry signature version?

�PAGE \# "'Page: '#'�'" ��ebXML MSG, CPPA, and our Risks documents are missing here.

