
OASIS ebXML Registry 1

Proposal: Content-based Discovery 2

Category: New feature 3

Date: August 15, 2002 4

Version 0.2 5

Authors: Farrukh Najmi, Nikola Stojanovic, Matt MacKenzie 6

Table of Contents 7
1 Abstract ..2 8
2 Motivation ..2 9
3 Assumptions ...2 10
4 Design Goals ...2 11
5 External Dependencies..2 12
6 Use Cases ..3 13

6.1 Find All CPPs Where Role is “Buyer”..3 14
6.2 Find All XML Schema’s That Use Specified Namespace3 15
6.3 Find All WSDL Descriptions with a SOAP Binding ..3 16

7 Content-based Discovery...3 17
7.1 Content Indexing Service ..4 18

7.1.1 Illustrative Example ...4 19
7.2 Index Definition File..5 20
7.3 Index-able Content ...5 21
7.4 Index Metadata ..5 22
7.5 Content Indexing Protocol...6 23

7.5.1 IndexContentRequest...6 24
7.5.2 IndexContentResponse ..8 25

7.6 Publishing a Content Indexing Service..8 26
7.6.1 Multiple Indexers and Index Definition Files..9 27
7.6.2 Restrictions On Publishing Content Indexing Services9 28

7.7 Dynamic Content Indexing..9 29
7.7.1 Content Indexing Service Resolution Algorithm10 30
7.7.2 Index Definition File Resolution Algorithm..10 31

7.8 Dynamic Content-based Discovery...10 32
7.9 Default XML Content Indexer...11 33

7.9.1 Publishing of Default XML Content Indexer11 34
8 Notes..11 35

 36

Status of this Document 37

This note describes the initial proposal for the Content-based Discovery work 38
item for OASIS ebXML Registry V3.0. It is expected that the Query sub-team of the 39
OASIS ebXML Registry TC will improve upon this initial proposal and then submit it for 40
consideration by ebXML Registry TC at large. 41

1 Abstract 42

This document proposes a new feature being added to the query capabilities of the 43
OASIS ebXML Regis try targeted for version 3.0. The Content-based Discovery 44
feature enables the registry to handle queries that can predicate their results on the 45
content defined by the repository items in addition to predicating on the metadata defined 46
by the RegistryObjects. The feature enables client to discover repository items based 47
upon specific criteria matching their content. 48

2 Motivation 49

The following motivations drive this proposal: 50
 51

1. Radically improve the discovery capabilities of the OASIS ebXML 52
Registry. 53

2. Enable typical business use-cases that require discovery of content based 54
upon the data within the content. 55
 56

3 Assumptions 57

The following assumptions are made in this proposal: 58

1. The design center of the proposal will focus on content-based discovery of 59
repository items that are XML documents. 60

The proposal will allow for supporting content-based discovery on other types of 61
content besides XML documents. 62

 63

4 Design Goals 64

The following design goals have been pursued in this proposal: 65
Require no new interfaces to allow this feature to be implemented in a V2.x registry. 66
 67

5 External Dependencies 68

This proposal depends upon the following external artifacts and event: 69
o No external dependencies 70

6 Use Cases 71

There are many scenarios where content-based discovery is necessary. 72

6.1 Find All CPPs Where Role is “Buyer” 73

A company that sells a product using the RosettaNet PIP3A4 Purchase Order process 74
wants to find CPPs for other companies where the Role element of the CPP is that of 75
“Buyer”. 76

6.2 Find All XML Schema’s That Use Specified Namespace 77

A client may wish to discover all XML Schema documents in the registry that use an 78
XML namespace containing the word “oasis”. 79

6.3 Find All WSDL Descriptions with a SOAP Binding 80

An ebXML registry client is attempting to discover all repository items that are WSDL 81
descriptions that have a SOAP binding defined. Note that SOAP binding related 82
information is content within the WSDL document and not metadata. 83
 84

7 Content-based Discovery 85

[Note]The following will be a chapter in ebRS 86
immediately following Chapter 8 on Queries. 87

This chapter describes the Content-based discovery facility of the ebXML Registry. This 88
facility enables clients to discover repository items based upon the content contained 89
within the repository item. 90

The essence of the content-based discovery features is based upon the ability to 91
selectively convert repository content into RegistryObject metadata. 92
A registry uses one or more content indexing services to automatically index repository 93
items when they are submitted to the registry. Indexing a repository item creates 94
RegistryObject metadata such as Classification instances. The indexed metadata enables 95
clients to discover the repository item using existing query capabilities of the registry. 96

[Note]The term index is used to refer to 97
RegistryObject Metadata generated from 98
selective repository item content. It should 99
not be confused with databases indexes. It is 100
named such because it is similar in concept to 101
database indexes, which are metadata generated 102
from content. 103

 104

7.1 Content Indexing Service 105

Figure 1 shows that conceptually, a content indexing service (or indexer) accepts as input 106
a repository item and generates as output one or more Classification instances that are 107
used to classify the ExtrinsicObject for that repository item. In addition an indexer 108
accepts as control input an index definition file, which is also a repository item. 109
 110

 111
??Figure 1: Abstract Content Indexing Service: Inputs and Outputs 112

7.1.1 Illustrative Example 113

Figure 2 shows a UML instance diagram to illustrate how a Content Indexing Service is 114
used. The content indexing service is the normative Default XML Indexing Service 115
described in section 7.9. 116

o In the center we see a Content Indexing Service name defaultXMLIndexer. 117
o On the left side we see a CPP repository item and its ExtrinsicObject 118

inputExtObjForCPP being input as Indexable Content to the defaultXMLIndexer. 119
o On top we see an XSLT style sheet repository item and its ExtrinsicObject being 120

sent as an Index Definition File to the defaultXMLIndexer. 121
o On the right we see the outputExtObjForCPP, which is the modified 122

ExtrinsicObject for the CPP. We also see a Classification roleClassification, 123
which classifies the CPP by the Role element within the CPP. These are the Index 124
Metadata generated as a result of the indexer indexing the CPP. 125

 126
??Figure 2: Example of CPP indexing using Default XML Indexer 127

7.2 Index Definition File 128

The Index Definition File describes what information should the indexer extract from the 129
repository item and subsequently map it to the generated Classification(s). This 130
specification does not define the format of the Index Definition File. Each indexer is free 131
to define its own Index Definition File format in an indexer specific manner. The only 132
constraint in this specification is that the index definition file must be a repository item. 133

7.3 Index-able Content 134

The index-able content is the content that the client wishes to be indexed by the Content 135
Indexing Service. As such it is the subject of the content indexing action. 136
This specification does not define the format of index-able content. This specification 137
describes how a client may register arbitrary indexers for indexing arbitrary content 138
types. 139
The most common use case for an indexer is for indexing XML documents. Therefore, 140
this specification also provides a normative definition for a specialized XML Content 141
Indexer in section 7.9. 142
An ebXML Registry must provide native built- in support for the normative XML Content 143
Indexer. 144
In addition, an ebXML Registry must allow clients to register arbitrary indexers for 145
arbitrary content. In either case the registry must use the appropriate indexer if one exists, 146
to index a repository item when it is submitted. 147

7.4 Index Metadata 148

A content indexing service indexes a repository item by processing it and extracting 149
specific information content as specified by the Index Definition File. The content 150
indexing service must map the extracted content to index metadata in form of instances of 151
RIM classes. 152

For example, the index metadata may consists of: 153
Classification instances 154

o ExternalIdentifier instances 155
o ExternalLink instances 156
o The name attribute for the ExtrinsicObject for the index-able content 157
o The description attribute for the ExtrinsicObject for the able-able content 158

A content indexing service is free to generate any class defined by RIM as index 159
metadata in an application specific manner. 160

7.5 Content Indexing Protocol 161

The interface of the content indexing service must implement a single method called 162
indexContent. The indexContent method accepts an IndexContentRequest as parameter 163
and returns an IndexContentResponse as its response if there are no errors. 164
The IndexContentRequest contains repository items that need to be indexed. The 165
resulting IndexContentResponse contains the metadata that gets generated by the Content 166
Indexing Service as a result of indexing the specified repository items. 167
The content indexing protocol is abstract and does not specify the interface or behavior of 168
any specific Content Indexing Service. 169

 170
??Figure 3: Content Indexing Protocol 171

7.5.1 IndexContentRequest 172

The IndexContentRequest is used to submit repository items to a Content Indexing 173
Service so that it can create index metadata for the specified repository items. 174

7.5.1.1 Syntax: 175

 176
??Figure 4: IndexContentRequest Syntax 177

7.5.1.2 Parameters: 178

?? id: Inherited request id attribute common to all requests. 179

?? IndexExtrinsicObject: This parameter specifies the ExtrinsicObject for the 180
repository item that the caller wishes to specify as the Index Definition 181
file. This specification does not specify the format of this repository item. 182
There must a corresponding repository item as an attachment to this 183
request. The corresponding repository item should follow the same rules 184
as attachments in SubmitObjectsRequest. 185

?? SubjectExtrinsicObject: This parameter specifies the ExtrinsicObject for 186
the repository item that the caller wishes to be indexed. This specification 187
does not specify the format of this repository item. There must a 188
corresponding repository item as an attachment to this request. The 189
corresponding repository item should fo llow the same rules as attachments 190
in SubmitObjectsRequest. 191

 192

7.5.1.3 Returns: 193
This request returns an IndexContentResponse upon success. See section 7.5.2 for details. 194

7.5.1.4 Exceptions: 195

In addition to the exceptions common to all requests, the following exceptions may be 196
returned: 197

??MissingRepositoryItemException: signifies that the caller did not provide 198
a required repository item as an attachment to this request. 199

??UnsupportedIndexException: signifies that this Content Indexing Service 200
did not support the IndexExtrinsicObject provided by the client. 201

??UnsupportedSubjectException: signifies that this Content Indexing 202
Service did not support the SubjectExtrinsicObject provided by the client. 203

 204

7.5.2 IndexContentResponse 205

The IndexContentRequest is sent by the Content Indexing Service as a response to an 206
IndexContentRequest. 207

 208

7.5.2.1 Syntax: 209

 210
??Figure 5: IndexContentResponse Syntax 211

7.5.2.2 Parameters: 212

??ExternalLink: This parameter specifies one or more ExternalLink 213
elements that may be generated as index metadata during the indexing of 214
the repository item. 215

?? id: id attribute inherited from RegistryResponseType. 216

?? IndexedExtrinsicObject: This parameter specifies the modified 217
ExtrinsicObject for the repository item that has been indexed by the 218
Content Indexing Service. The Content Indexing Service may add 219
metadata such as Classifications, ExternalIdentifiers, name, description 220
etc. to the IndexedExtrinsicObject element. There must not be an 221
accompanying repository item as an attachment to this request. 222

 223

7.6 Publishing a Content Indexing Service 224

Any publisher may publish an arbitrary content indexing service to an ebXML Registry. 225
The content indexing service must be published using the existing LifeCycleManager 226
interface. The publisher must use the existing SubmitObjectsRequest to publish: 227
A Service instances with two required slots named supportedObjectType and 228
supportedMimeType. The values of these slots are explained in section 7.7.1. 229

o A ServiceBinding instance contained within the Service instance 230
o An ExternalLink instance on the ServiceBinding that must be resolvable to a web 231

page describing: 232
o The format of the supported Index-able Content 233
o The format of the supported Index Definition File 234

Note that that no SpecificationLink is required since this specification is implicit for 235
Content Indexing Services. 236

A content indexing service must be published with a default index definition file that 237
must be an ExtrinsicObject and repository item pair. The ExtrinsicObject for the index 238
definition must have two required slots named supportedObjectType and 239
supportedMimeType. The values of these slots are explained in section 7.7.2. 240

7.6.1 Multiple Indexers and Index Definition Files 241

This specification allows clients to submit multiple indexers and index definition files for 242
the same mimeType/objectType. How a registry handles multiple indexer and index 243
definition file submission for the same type of content is a matter of registry specific 244
policy. If a registry does not allow this then it must send an InvalidRequestException 245
with a reason, when a duplicate indexer or index def is submitted. If a registry allows this 246
then it must provide a conflict resolution mechanism to select the appropriate indexer and 247
index definition file in some registry specific manner. 248

7.6.2 Restrictions On Publishing Content Indexing Services 249

A client may submit any content indexing service or index definition file. A registry may 250
use registry specific policies to determine whether a client submitted content indexing 251
service or index definition file are acceptable. For example a registry may require that the 252
content indexing service or index definition file does not create excessive metadata. A 253
registry may reject a SubmitObjectRequest with an InvalidRequestException and give a 254
reason why the request was rejected, upon receiving requests publishing Content 255
Indexing Service or Index Definition File that is unreasonable. 256

7.7 Dynamic Content Indexing 257

Some time during or after a publisher submits a repository item, the registry must check 258
to see if there is a Content Indexing Service and index definition file registered for that 259
type of repository item. This is referred to as Content Indexing Service resolution as 260
described in section 7.7.1 and index definition file resolution as described in section 261
7.7.2. 262
If a Content Indexing Service and index definition file are found then the registry must 263
invoke that service using the Content Indexing Protocol. In the invocation, it gives a 264
repository item as Index-able Content and a repository item as Index Definition File 265
within an IndexContentRequest. The Content Indexing Service must index the content 266
and return the modified ExtrinsicObject for the Index-able Content such that it has index 267
metadata generated from relevant portions of the Index-able Content. 268
The registry must store the repository item along with the modified ExtrinsicObject 269
annotated with the index metadata once the Content Indexing Protocol is completed. 270
Note that a registry may do dynamic content indexing synchronous with the original 271
SubmitObjectRequest request or it may do so asynchronously sometime after the request 272
is committed. It is suggested that asynchronous indexing latency should be no more than 273
24 hours. 274
The result of dynamic content indexing is that index-able content gets indexed 275
dynamically when it is submitted. Once indexed it is possible to use the index metadata to 276
do dynamic content-based discovery of the index-able content. 277

7.7.1 Content Indexing Service Resolution Algorithm 278

When a registry receives a submission of an ExtrinsicObject EO1 and repository item 279
pair, it must use the following algorithm to determine or resolve the content indexing 280
service to be used to index that content : 281

1. Check if a Service instance for the indexer exists that has a slot named 282
supportedObjectType with value matching the objectType of the 283
ExtrinsicObject EO1, AND a slot named supportedMimeType with value 284
matching the mimeType of the ExtrinsicObject. If so use that indexer. 285

2. Otherwise, Check if a Service instance for the indexer exists that has a 286
slot named supportedObjectType with value matching the objectType of 287
the ExtrinsicObject EO1. If so use that indexer. 288

3. Check if a Service instance for the indexer exists that has a slot named 289
supportedMimeType with value matching the mimeType of the 290
ExtrinsicObject EO1. If so use that indexer. 291

If no indexer is found then content should not be indexed. If an indexer is found then the 292
registry must resolve an index definition file as defined next. 293

7.7.2 Index Definition File Resolution Algorithm 294

When a registry receives a submission of an ExtrinsicObject instance EO1 and repository 295
item pair, it must first resolve a content indexing service as described in section 7.7.1. 296
If a content indexing service has been resolved then the registry must use the following 297
algorithm to determine or resolve the index definition file to be used to index that 298
content: 299

1. Check if an ExtrinsicObject instance for the index definition file exists that 300
has a slot named supportedObjectType with value matching the 301
objectType of the ExtrinsicObject EO1, AND a slot named 302
supportedMimeType with value matching the mimeType of the 303
ExtrinsicObject. If so use that index definition file. 304

2. Otherwise, Check if an ExtrinsicObject instance for the index definition file 305
exists that has a slot named supportedObjectType with value matching the 306
objectType of the ExtrinsicObject EO1. If so use that index definition file . 307

3. Check if an ExtrinsicObject instance for the index definition file exists that 308
has a slot named supportedMimeType with value matching the mimeType 309
of the ExtrinsicObject EO1. If so use that index definition file. 310

If no index definition file is found then content should not be indexed. 311

7.8 Dynamic Content-based Discovery 312

As described earlier, index-able content is automatically indexed when it is submitted to 313
the registry. This content may subsequently be dynamically discovered using the index 314
metadata within existing AdhocQueryRequest. Because the index metadata is based upon 315
index-able content, an AdhocQueryRequest can perform dynamic content- based 316

discovery. 317

7.9 Default XML Content Indexer 318

An ebXML Registry must provide the XML Content Indexing Service natively as a built-319
in service. The XML content indexing service accepts an XML instance document as its 320
input and it accepts an XSLT Style sheet as a Content Definition File. Each type of 321
content should have its own unique XSLT style sheet. For example and ebXML CPP 322
document should have a specialize ebXML CPP index definition style sheet. The XML 323
content indexing service must apply the XSLT style sheet to the XML instance document 324
input to generate the index metadata. Since a single style sheet must be applied to both 325
the ExtrinsicObject and the Index-able Content, we must assume the two documents to be 326
composed within a single virtual document the schema for which is as follows: 327
 328
Do we need the outer <somename> tag at all? 329
<somename> 330
 <ExtrinsicObject/> 331
 <CPP/> 332
</somename> 333

7.9.1 Publishing of Default XML Content Indexer 334

The default XML Content Indexing Service need not be explicitly published to an 335
ebXML Registry. An ebXML Registry must provide the XML Content Indexing Service 336
natively as a built- in service. This built- in service must be published to the registry as 337
part of the intrinsic bootstrapping of required data within the registry. 338

8 Notes 339

These notes are here to not lose the thought and will be merged into the proposal later. 340

o Need replacement term for index. Choices suggested so far are: promotion, 341

o Need illustrative example to include sample Index Def file, sample CPP and 342
sample output. 343

o Do we need to replace repository item with ExtrinsicObject for inedex-able 344
content? Reason, EO can be without repository item. [FN] No I don’t think so. 345
Nikola do you still want this? 346

o How to establish ClassificationScheme, identificationScheme etc. 347

o Instead of using slots maybe we can do Classifications to pre-defined 348
schemes/nodes. Nikola please explain this. Do we still need it? 349

o Same client goes to 2 registries that have 2 different indexer. User may be 350
confused by different output for same input and control. 351

o IndexContentResponse: how to handle any non-composed metadata such as 352
ExternalIdentifier, Package etc.? 353

o How to track generated metadata separate from submitted metadata? Should we 354
also log which indexer and index file created it? 355

o Should we allow a way for client to override default index def file and/or default 356
indexer? 357

 358

 359
 360

