OASIS/ebXML Registry Services Specification v2.0
September 2002

[image: image51.wmf]

[image: image52.wmf]

This page intentionally left blank.

1 Status of this Document

This document is an OASIS Registry Technical Committee Working Draft - September 2002.

Distribution of this document is unlimited.

The document formatting is based on the Internet Society’s Standard RFC format.

This version:

http://www.oasis-open.org/committees/regrep/documents/2.2/specs/ebrim.pdf
Latest Technical Committee Approved version:

http://www.oasis-open.org/committees/regrep/documents/2.1/specs/ebRIM.pdf

Latest OASIS Approved Standard:

http://www.oasis-open.org/committees/regrep/documents/2.0/specs/ebRIM.pdf
2 OASIS/ebXML Registry Technical Committee

This is an OASIS/ebXML Registry Technical Committee draft document. The following persons are members of the OASIS/ebXML Registry Technical Committee:

Zachary Alexander, Individual Member
John Bekisz, Software AG, Inc.
Kathryn Breininger, Boeing
Lisa Carnahan, NIST
Joseph M. Chiusano, LMI
Suresh Damodaran, Sterling Commerce
Fred Federlein, Sun Microsystems
Sally Fuger, Individual Member
Michael Kass,
NIST
Kyu-Chul Lee, Individual Member
Matthew MacKenzie, XML Global
Komal Mangtani, BEA Systems
Monica Martin, Drake Certivo, Inc.
Farrukh Najmi, Sun Microsystems
Sanjay Patil, IONA
Nikola Stojanovic, Individual Member
Scott Zimmerman, Storagepoint

Contributors

The following persons contributed to the content of this document, but were not a voting member of the OASIS/ebXML Registry Technical Committee.

Anne Fischer, Individual
Len Gallagher, NIST
Sekhar Vajjhala, Sun Microsystems

Table of Contents

21
Status of this Document

32
OASIS/ebXML Registry Technical Committee

103
Introduction

103.1
Summary of Contents of Document

103.2
General Conventions

103.2.1
Naming Conventions

113.3
Audience

113.4
Related Documents

124
Design Objectives

124.1
Goals

135
System Overview

135.1
Role of ebXML Registry

135.2
Registry Services

135.3
What the Registry Information Model Does

135.4
How the Registry Information Model Works

145.5
Where the Registry Information Model May Be Implemented

145.6
Conformance to an ebXML Registry

156
Registry Information Model: High Level Public View

156.1
RegistryObject

156.2
Slot

166.3
Association

166.4
ExternalIdentifier

166.5
ExternalLink

166.6
ClassificationScheme

176.7
ClassificationNode

176.8
Classification

176.9
RegistryPackage

176.10
AuditableEvent

176.11
User

176.12
PostalAddress

176.13
EmailAddress

176.14
Organization

186.15
Service

186.16
ServiceBinding

186.17
SpecificationLink

197
Registry Information Model: Detail View

207.1
Attribute and Methods of Information Model Classes

217.2
Data Types

217.3
Object Reference Support

217.3.1
Class ObjectRef

227.4
Internationalization (I18N) Support

227.4.1
Class InternationalString

237.4.2
Class LocalizedString

237.5
Class RegistryObject

247.5.1
Attribute Summary

257.5.2
Attribute accessControlPolicy

257.5.3
Attribute description

257.5.4
Attribute id

257.5.5
Attribute name

257.5.6
Attribute objectType

277.5.7
Method Summary

277.6
Class RegistryEntry

287.6.1
Attribute Summary

287.6.2
Attribute expiration

287.6.3
Attribute majorVersion

287.6.4
Attribute minorVersion

287.6.5
Attribute stability

297.6.6
Attribute status

297.6.7
Attribute userVersion

307.7
Class Slot

307.7.1
Attribute Summary

307.7.2
Attribute name

307.7.3
Attribute slotType

307.7.4
Attribute values

307.8
Class ExtrinsicObject

317.8.1
Attribute Summary

317.8.2
Attribute isOpaque

317.8.3
Attribute mimeType

317.9
Class RegistryPackage

317.9.1
Attribute Summary

327.9.2
Method Summary

327.10
Class ExternalIdentifier

327.10.1
Attribute Summary

327.10.2
Attribute identificationScheme

337.10.3
Attribute registryObject

337.10.4
Attribute value

337.11
Class ExternalLink

337.11.1
Attribute Summary

337.11.2
Attribute externalURI

337.11.3
Method Summary

347.12
Class User

347.12.1
Attribute Summary

347.12.2
Attribute address

347.12.3
Attribute emailAddresses

347.12.4
Attribute organization

347.12.5
Attribute personName

357.12.6
Attribute telephoneNumbers

357.12.7
Attribute url

357.13
Class Organization

357.13.1
Attribute Summary

357.13.2
Attribute address

357.13.3
Attribute parent

357.13.4
Attribute primaryContact

367.13.5
Attribute telephoneNumbers

367.14
Class PostalAddress

367.14.1
Attribute Summary

367.14.2
Attribute city

367.14.3
Attribute country

367.14.4
Attribute postalCode

367.14.5
Attribute state

367.14.6
Attribute street

377.14.7
Attribute streetNumber

377.14.8
Method Summary

377.15
Class TelephoneNumber

377.15.1
Attribute Summary

377.15.2
Attribute areaCode

377.15.3
Attribute countryCode

387.15.4
Attribute extension

387.15.5
Attribute number

387.15.6
Attribute phoneType

387.16
Class EmailAddress

387.16.1
Attribute Summary

387.16.2
Attribute address

387.16.3
Attribute type

387.17
Class PersonName

387.17.1
Attribute Summary

397.17.2
Attribute firstName

397.17.3
Attribute lastName

397.17.4
Attribute middleName

408
Association Information Model

408.1
Example of an Association

408.2
Source and Target Objects

408.3
Association Types

418.4
Intramural Association

418.5
Extramural Association

428.6
Confirmation of an Association

428.6.1
Confirmation of Intramural Associations

438.6.2
Confirmation of Extramural Associations

438.6.3
Deleting an Extramural Associations

438.7
Visibility of Unconfirmed Associations

438.8
Possible Confirmation States

448.9
Class Association

448.9.1
Attribute Summary

448.9.2
Attribute associationType

468.9.3
Attribute sourceObject

468.9.4
Attribute targetObject

468.9.5
Attribute isConfirmedBySourceOwner

468.9.6
Attribute isConfirmedByTargetOwner

479
Classification Information Model

509.1
Class ClassificationScheme

509.1.1
Attribute Summary

509.1.2
Attribute isInternal

509.1.3
Attribute nodeType

519.2
Class ClassificationNode

519.2.1
Attribute Summary

519.2.2
Attribute parent

519.2.3
Attribute code

529.2.4
Attribute path

529.2.5
Method Summary

529.2.6
Canonical Path Syntax

539.3
Class Classification

539.3.1
Attribute Summary

549.3.2
Attribute classificationScheme

549.3.3
Attribute classificationNode

549.3.4
Attribute classifiedObject

549.3.5
Attribute nodeRepresentation

559.3.6
Context Sensitive Classification

569.3.7
Method Summary

579.4
Example of Classification Schemes

5810
Service Information Model

5810.1
Class Service

5810.1.1
Attribute Summary

5810.1.2
Method Summary

5810.2
Class ServiceBinding

5910.2.1
Attribute Summary

5910.2.2
Attribute accessURI

5910.2.3
Attribute targetBinding

5910.2.4
Method Summary

5910.3
Class SpecificationLink

6010.3.1
Attribute Summary

6010.3.2
Attribute specificationObject

6010.3.3
Attribute usageDescription

6010.3.4
Attribute usageParameters

6111
Event Information Model

6111.1
Class AuditableEvent

6111.1.1
Attribute Summary

6111.1.2
Attribute eventType

6211.1.3
Attribute affectedObjects

6211.1.4
Attribute requestId

6211.1.5
Attribute timestamp

6211.1.6
Attribute user

6211.2
Class Subscription

6211.2.1
Attribute Summary

6311.2.2
Attribute action

6311.2.3
Attribute endDate

6311.2.4
Attribute notificationInterval

6311.2.5
Attribute selector

6311.2.6
Attribute startDate

6411.3
Class Selector

6411.4
Class QuerySelector

6411.4.1
Attribute Summary

6411.4.2
Attribute query

6411.5
Class Action

6411.5.1
Attribute Summary

6511.5.2
Attribute notificationOption

6511.6
Class ListenerNotifyAction

6511.6.1
Attribute Summary

6511.6.2
Attribute service

6511.7
Class EmailNotifyAction

6611.7.1
Attribute Summary

6611.7.2
Attribute emailAddress

6611.8
Class Notification

6611.8.1
Attribute Summary

6611.8.2
Attribute subscription

6611.9
Class EventRefsNotification

6611.9.1
Attribute Summary

6711.9.2
Attribute eventRefs

6711.10
Class EventsNotification

6711.10.1
Attribute Summary

6711.10.2
Attribute events

6711.11
Class EventsAndObjectsNotification

6711.11.1
Attribute Summary

6811.11.2
Attribute eventScopes

6811.12
Class EventScope

6811.12.1
Attribute Summary

6811.12.2
Attribute event

6811.12.3
Attribute affectedObjects

6912
Cooperating Registries Information Model

6912.1.1
Class Registry

6912.1.2
Class Federation

7012.1.3
Federation Configuration

7113
Security Information Model

7213.1
Class AccessControlPolicy

7213.2
Class Permission

7213.3
Class Privilege

7313.4
Class PrivilegeAttribute

7313.5
Class Role

7413.5.1
A security Role PrivilegeAttribute

7413.6
Class Group

7413.6.1
A security Group PrivilegeAttribute

7413.7
Class Identity

7413.7.1
A security Identity PrivilegeAttribute

7413.8
Class Principal

7614
References

7715
Disclaimer

7816
Contact Information

79Copyright Statement

 Table of Figures

15
Figure 1: Information Model High Level Public View

19
Figure 2: Information Model Inheritance View

40
Figure 3: Example of RegistryObject Association

41
Figure 4: Example of Intramural Association

42
Figure 5: Example of Extramural Association

48
Figure 6: Example showing a Classification Tree

49
Figure 7: Information Model Classification View

49
Figure 8: Classification Instance Diagram

55
Figure 9: Context Sensitive Classification

70Figure 10: Federation Information Model

71
Figure 11: Information Model: Security View

Table of Tables

57
Table 1: Sample Classification Schemes

3 Introduction

3.1 Summary of Contents of Document

This document specifies the information model for the ebXML Registry.

A separate document, ebXML Registry Services Specification [ebRS], describes how to build Registry Services that provide access to the information content in the ebXML Registry.

3.2 General Conventions

The following conventions are used throughout this document:

UML diagrams are used as a way to concisely describe concepts. They are not intended to convey any specific Implementation or methodology requirements.

The term “repository item” is used to refer to an object that has resides in a repository for storage and safekeeping (e.g., an XML document or a DTD). Every repository item is described in the Registry by a RegistryObject instance.

The term "RegistryEntry" is used to refer to an object that provides metadata about a repository item.

The information model does not deal with the actual content of the repository. All Elements of the information model represent metadata about the content and not the content itself.

Capitalized Italic words are defined in the ebXML Glossary.

The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this document, are to be interpreted as described in RFC 2119 [Bra97].

Software practitioners MAY use this document in combination with other ebXML specification documents when creating ebXML compliant software.

3.2.1 Naming Conventions

In order to enforce a consistent capitalization and naming convention in this document, "Upper Camel Case" (UCC) and "Lower Camel Case" (LCC) Capitalization styles are used in the following conventions:

· Element name is in UCC convention

(example: <UpperCamelCaseElement/>)

· Attribute name is in LCC convention

(example: <UpperCamelCaseElement lowerCamelCaseAttribute="whatEver"/>)

· Class, Interface names use UCC convention

(examples: ClassificationNode, Versionable)

· Method name uses LCC convention

(example: getName(), setName()).

Also, Capitalized Italics words are defined in the ebXML Glossary [ebGLOSS].

3.3 Audience

The target audience for this specification is the community of software developers who are:

· Implementers of ebXML Registry Services

· Implementers of ebXML Registry Clients
3.4 Related Documents

The following specifications provide some background and related information to the reader:

a) ebXML Registry Services Specification [ebRS] - defines the actual Registry Services based on this information model

b) ebXML Collaboration-Protocol Profile and Agreement Specification [ebCPP] - defines how profiles can be defined for a Party and how two Parties’ profiles may be used to define a Party agreement

4 Design Objectives

4.1 Goals

The goals of this version of the specification are to:

· Communicate what information is in the Registry and how that information is organized

· Leverage as much as possible the work done in the OASIS [OAS] and the ISO 11179 [ISO] Registry models

· Align with relevant works within other ebXML working groups

· Be able to evolve to support future ebXML Registry requirements

· Be compatible with other ebXML specifications

5 System Overview

5.1 Role of ebXML Registry

The Registry provides a stable store where information submitted by a Submitting Organization is made persistent. Such information is used to facilitate ebXML-based Business to Business (B2B) partnerships and transactions. Submitted content may be XML schema and documents, process descriptions, ebXML Core Components, context descriptions, UML models, information about parties and even software components.

5.2 Registry Services

A set of Registry Services that provide access to Registry content to clients of the Registry is defined in the ebXML Registry Services Specification [ebRS]. This document does not provide details on these services but may occasionally refer to them.

5.3 What the Registry Information Model Does

The Registry Information Model provides a blueprint or high-level schema for the ebXML Registry. Its primary value is for implementers of ebXML Registries. It provides these implementers with information on the type of metadata that is stored in the Registry as well as the relationships among metadata Classes.

The Registry information model:

· Defines what types of objects are stored in the Registry
· Defines how stored objects are organized in the Registry
5.4 How the Registry Information Model Works

Implementers of the ebXML Registry MAY use the information model to determine which Classes to include in their Registry Implementation and what attributes and methods these Classes may have. They MAY also use it to determine what sort of database schema their Registry Implementation may need.

[Note] The information model is meant to be illustrative and does not prescribe any specific Implementation choices.

5.5 Where the Registry Information Model May Be Implemented

The Registry Information Model MAY be implemented within an ebXML Registry in the form of a relational database schema, object database schema or some other physical schema. It MAY also be implemented as interfaces and Classes within a Registry Implementation.

5.6 Conformance to an ebXML Registry
If an Implementation claims Conformance to this specification then it supports all required information model Classes and interfaces, their attributes and their semantic definitions that are visible through the ebXML Registry Services.

6 Registry Information Model: High Level Public View

This section provides a high level public view of the most visible objects in the Registry.

Figure 1 shows the high level public view of the objects in the Registry and their relationships as a UML Class Diagram. It does not show Inheritance, Class attributes or Class methods.

The reader is again reminded that the information model is not modeling actual repository items.

[image: image1.png]RegistyEntry

|Registrypackage| 0." o+ Extemattink [Externatidentitr]
packages
“rssosiation externallinks
0. |exemaldentiters
St <(Association)>
0 .-
0.%[stots members linkedobjects identifcationscheme
|Registryonject] Classitcation]
B classifcations 0.
augitTrai 1
1 clasincationscherme
[RuditabioE vent] Association
RegisthEntry
Spoditcatontink classificationS cheme
requestor
1.7 classificationNode.

e

afliatedilh

primaryContact

parent

bin targetBinding

[Emaiiadaress

[Tetephon

eNumber

RegistyEntry

[Postaladaress

Service

classificationgcheme

parent

· Figure 1: Information Model High Level Public View

6.1 RegistryObject

The RegistryObject class is an abstract base class used by most classes in the model. It provides minimal metadata for registry objects. It also provides methods for accessing related objects that provide additional dynamic metadata for the registry object.

6.2 RepositoryItem

Need some description here??
6.3 Slot

Slot instances provide a dynamic way to add arbitrary attributes to RegistryObject instances. This ability to add attributes dynamically to RegistryObject instances enables extensibility within the Registry Information Model. For example, if a company wants to add a “copyright” attribute to each RegistryObject instance that it submits, it can do so by adding a slot with name “copyright” and value containing the copyrights statement.

6.4 Association

Association instances are RegistryObject instances that are used to define many-to-many associations between objects in the information model. Associations are described in detail in section 8.

6.5 ExternalIdentifier

ExternalIdentifier instances provide additional identifier information to a RegistryObject instance, such as DUNS number, Social Security Number, or an alias name of the organization.

6.6 ExternalLink

ExternalLink instances are RegistryObject instances that model a named URI to content that is not managed by the Registry. Unlike managed content, such external content may change or be deleted at any time without the knowledge of the Registry. A RegistryObject instance may be associated with any number of ExternalLinks.

Consider the case where a Submitting Organization submits a repository item (e.g., a DTD) and wants to associate some external content to that object (e.g., the Submitting Organization's home page). The ExternalLink enables this capability. A potential use of the ExternalLink capability may be in a GUI tool that displays the ExternalLinks to a RegistryObject. The user may click on such links and navigate to an external web page referenced by the link.

6.7 ClassificationScheme

ClassificationScheme instances are RegistryEntry instances that describe a structured way to classify or categorize RegistryObject instances. The structure of the classification scheme may be defined internal or external to the registry, resulting in a distinction between internal and external classification schemes. A very common example of a classification scheme in science is the Classification of living things where living things are categorized in a tree like structure. Another example is the Dewey Decimal system used in libraries to categorize books and other publications. ClassificationScheme is described in detail in section 9.

6.8 ClassificationNode

ClassificationNode instances are RegistryObject instances that are used to define tree structures under a ClassificationScheme, where each node in the tree is a ClassificationNode and the root is the ClassificationScheme. Classification trees constructed with ClassificationNodes are used to define the structure of Classification schemes or ontologies. ClassificationNode is described in detail in section 9.

6.9 Classification

Classification instances are RegistryObject instances that are used to classify other RegistryObject instances. A Classification instance identifies a ClassificationScheme instance and taxonomy value defined within the classification scheme. Classifications can be internal or external depending on whether the referenced classification scheme is internal or external. Classification is described in detail in section 9.

6.10 RegistryPackage

RegistryPackage instances are RegistryEntry instances that group logically related RegistryObject instances together.

6.11 AuditableEvent

AuditableEvent instances are RegistryObject instances that are used to provide an audit trail for RegistryObject instances. AuditableEvent is described in detail in section Error! Reference source not found..

6.12 User

User instances are RegistryObject instances that are used to provide information about registered users within the Registry. User objects are used in audit trail for RegistryObject instances. User is described in detail in section Error! Reference source not found..

6.13 PostalAddress

PostalAddress is a simple reusable Entity Class that defines attributes of a postal address.

6.14 EmailAddress

EmailAddress is a simple reusable Entity Class that defines attributes of an email address.

6.15 Organization

Organization instances are RegistryObject instances that provide information on organizations such as a Submitting Organization. Each Organization instance may have a reference to a parent Organization.

6.16 Service

Service instances are RegistryEntry instances that provide information on services (e.g., web services).
6.17 ServiceBinding

ServiceBinding instances are RegistryObject instances that represent technical information on a specific way to access a specific interface offered by a Service instance. A Service has a collection of ServiceBindings.
6.18 SpecificationLink

A SpecificationLink provides the linkage between a ServiceBinding and one of its technical specifications that describes how to use the service with that ServiceBinding. For example, a ServiceBinding may have a SpecificationLink instance that describes how to access the service using a technical specification in the form of a WSDL document or a CORBA IDL document.

7 Registry Information Model: Detail View

Follow same sequence of classes as public view for consistency??
This section covers the information model Classes in more detail than the Public View. The detail view introduces some additional Classes within the model that were not described in the public view of the information model.

Figure 2 shows the Inheritance or “is a” relationships between the Classes in the information model. Note that it does not show the other types of relationships, such as “has a” relationships, since they have already been shown in a previous figure. Class attributes and class methods are also not shown. Detailed description of methods and attributes of most interfaces and Classes will be displayed in tabular form following the description of each Class in the model.

The class Association will be covered in detail separately in section 8. The classes ClassificationScheme, Classification, and ClassificationNode will be covered in detail separately in section 9.

The reader is again reminded that the information model is not modeling actual repository items.

[image: image2.png]Base class for all metadata objects
in registry Provides minimal static
metadata atributes for objets that
need uniqus identity and have independe.
litecycles. Also provides support for
dynamic metadata

|Registryopject|

|RegistryEntry

Base class that provides|
exended
metadata atributes

Serviceginding|

[Externatin|

|Externandentiner|

Classificationscheme

|Registrypackage | [Extnnsicotject]

organization| |Specificationt ink|

Wetadata describing
contentwhose type is
not known to Redistry

· Figure 2: Information Model Inheritance View

7.1 Attribute and Methods of Information Model Classes

Information model classes are defined primarily in terms of the attributes they carry. These attributes provide state information on instances of these classes. Implementations of a registry often map class attributes to attributes in an XML store or columns in a relational store.

Information model classes may also have methods defined for them. These methods provide additional behavior for the class they are defined within. Methods are currently used in mapping to filter query and the SQL query capabilities defined in [ebRS].

Since the model supports inheritance between classes, it is usually the case that a class in the model inherits attributes and methods from its base classes, in addition to defining its own specialized attributes and methods.

7.2 Data Types

The following table lists the various data types used by the attributes within information model classes:

	Data Type
	XML Schema

Data Type
	Description
	Length

	Boolean
	boolean
	Used for a true or false value
	

	String4
	string
	Used for 4 character long strings
	4 characters

	String8
	string
	Used for 8 character long strings
	8 characters

	String16
	string
	Used for 16 character long strings
	16 characters

	String32
	string
	Used for 32 character long strings
	32 characters

	String
	string
	Used for unbounded Strings
	unbounded

	ShortName
	string
	A short text string
	64 characters

	LongName
	string
	A long text string
	128 characters

	FreeFormText
	string
	A very long text string for free-form text
	256 characters

	UUID
	string
	DCE 128 Bit Universally unique Ids used for referencing another object
	64 characters

	URI
	string
	Used for URL and URN values
	256 characters

	Integer
	integer
	Used for integer values
	4 bytes

	DateTime
	dateTime
	Used for a timestamp value such as Date
	

Move ObjectRef and I18N after RegistryObject which should be first??
7.3 Object Reference Support

The information model supports the ability for an attribute in an instance of an information model class to reference a RegistryObejct instance using an object reference. An object reference is modeled in this specification with the ObjectRef class.

7.3.1 Class ObjectRef

An instance of the ObjectRef class is used to reference a RegistryObject. A RegistryObject may be referenced via an ObjectRef instance regardless of its location or that of the object referring to it.

7.3.1.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	id
	UUID
	Yes
	
	Client
	Yes

	home
	URI
	No
	
	Client
	Yes

7.3.1.2 Attribute id

Every ObjectRef instance must have an id attribute. The id attribute must contain the value of the id attribute of the RegistryObject being referenced.

7.3.1.3 Attribute home

Every ObjectRef instance may optionally have a home attribute specified. The home attribute if present must contain the base URI to the home registry for the referenced RegistryObject as described by the REST interface to the registry as defined by [ebRS].

When the home attribute is specified, and matches the base URI of a remote registry, then ObjectRef is referred to as a remote ObjectRef.

If the home attribute is null then its default value is the base URI to current registry. When the home attribute is null or matches the base URI of the current registry, then the ObjectRef is referred to as a local ObjectRef.

7.4 Internationalization (I18N) Support

Some information model classes have String attributes that are I18N capable and may be localized into multiple native languages. Examples include the name and description attributes of the RegistryObject class in 7.5.

The information model defines the InternationalString and the LocalizedString interfaces to support I18N capable attributes within the information model classes. These classes are defined below.

7.4.1 Class InternationalString

This class is used as a replacement for the String type whenever a String attribute needs to be I18N capable. An instance of the InternationalString class composes within it Collection of LocalizedString instances, where each String is specific to a particular locale. The InternationalString class provides set/get methods for adding or getting locale specific String values for the InternationalString instance.

7.4.1.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	localized-Strings
	Collection of Localized-String
	No
	
	Client
	Yes

7.4.1.2 Attribute localizedStrings

Each InternationalString instance may have localizedString attribute that is a Collection of zero or more LocalizedString instances.

7.4.2 Class LocalizedString

This class is used as a simple wrapper class that associates a String with its locale. The class is needed in the InternationalString class where a Collection of LocalizedString instances are kept. Each LocalizedString instance has a charset and lang attribute as well as a value attribute of type String.

7.4.2.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	lang
	language
	No
	en-us
	Client
	Yes

	charset
	string
	No
	UTF-8
	Client
	Yes

	value
	string
	Yes
	
	CLient
	Yes

7.4.2.2 Attribute lang

Each LocalizedString instance may have a lang attribute that specifies the language used by that LocalizedString.

7.4.2.3 Attribute charset

Each LocalizedString instance may have a charset attribute that specifies the name of the character set used by that LocalizedString.

7.4.2.4 Attribute value

Each LocalizedString instance must have a value attribute that specifies the string value used by that LocalizedString.

7.5 Class RegistryObject

Direct Known Subclasses:

Association, AuditableEvent, Classification, ClassificationNode, ExternalIdentifier, ExternalLink, Organization, RegistryEntry, User, Service, ServiceBinding, SpecificationLink

[image: image3]
RegistryObject provides a common base class for almost all objects in the information model. Information model Classes whose instances have a unique identity are descendants of the RegistryObject Class.

Note that Slot, PostalAddress, and a few other classes are not descendants of the RegistryObject Class because their instances do not have an independent existence and unique identity. They are always a part of some other Class's Instance (e.g., Organization has a PostalAddress).

7.5.1 Attribute Summary

The following is the first of many tables that summarize the attributes of a class. The columns in the table are described as follows:

	Column
	Description

	Attribute
	The name of the attribute

	Data Type
	The data type for the attribute

	Required
	Specifies whether the attribute is required to be specified

	Default
	Specifies the default value in case the attribute is omitted

	Specified By
	Indicates whether the attribute is specified by the client or specified by the registry. In some cases it may be both

	Mutable
	Specifies whether an attribute may be changed once it has been set to a certain value

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	accessControlPolicy
	UUID
	No
	
	Registry
	No

	description
	International-String
	No
	
	Client
	Yes

	id
	UUID
	Yes
	
	Client or registry
	No

	name
	International-String
	No
	
	Client
	Yes

	objectType
	LongName
	Yes
	
	Registry
	No

7.5.2 Attribute accessControlPolicy

Each RegistryObject instance may have an accessControlPolicy instance associated with it. An accessControlPolicy instance defines the Security Model associated with the RegistryObject in terms of “who is permitted to do what” with that RegistryObject.

7.5.3 Attribute description

Each RegistryObject instance may have textual description in a human readable and user-friendly manner. This attribute is I18N capable and therefore of type InternationalString.

7.5.4 Attribute id

Each RegistryObject instance must have a universally unique ID. Registry objects use the id of other RegistryObject instances for the purpose of referencing those objects.

Note that some classes in the information model do not have a need for a unique id. Such classes do not inherit from RegistryObject class. Examples include Entity classes such as TelephoneNumber, PostalAddress, EmailAddress and PersonName.

All classes derived from RegistryObject have an id that is a Universally Unique ID as defined by [UUID]. Such UUID based id attributes may be specified by the client. If the UUID based id is not specified, then it must be generated by the registry when a new RegistryObject instance is first submitted to the registry.

7.5.5 Attribute name

Each RegistryObject instance may have human readable name. The name does not need to be unique with respect to other RegistryObject instances. This attribute is I18N capable and therefore of type InternationalString.

7.5.6 Attribute objectType

Each RegistryObject instance has an objectType. The objectType for almost all objects in the information model is the name of their class. For example the objectType for a Classification is “Classification”. The only exception to this rule is that the objectType for an ExtrinsicObject instance is user defined and indicates the type of repository item associated with the ExtrinsicObject.

7.5.6.1 Pre-defined Object Types

The following table lists pre-defined object types. Note that for an ExtrinsicObject there are many types defined based on the type of repository item the ExtrinsicObject catalogs. In addition there are object types defined for all leaf sub-classes of RegistryObject.

These pre-defined object types are defined as a ClassificationScheme. While the scheme may easily be extended a Registry MUST support the object types listed below.

[image: image4]
	Name
	description

	Unknown
	An ExtrinsicObject that catalogues content whose type is unspecified or unknown.

	CPA
	An ExtrinsicObject of this type catalogues an XML document

Collaboration Protocol Agreement (CPA) representing a technical agreement between two parties on how they plan to communicate with each other using a specific protocol.

	CPP
	An ExtrinsicObject of this type catalogues an
 document called Collaboration Protocol Profile (CPP) that provides information about a Party participating in a Business transaction. See [ebCPP] for details.

	Process
	An ExtrinsicObject of this type catalogues a process description document.

	SoftwareComponent
	An ExtrinsicObject of this type catalogues a software component (e.g., an EJB or Class library).

	UMLModel
	An ExtrinsicObject of this type catalogues a UML model.

	XMLSchema
	An ExtrinsicObject of this type catalogues an XML schema (DTD, XML Schema, RELAX grammar, etc.).

	RegistryPackage
	A RegistryPackage object

	ExternalLink
	An ExternalLink object

	ExternalIdentifier
	An ExternalIdentifier object

	Association
	An Association object

	ClassificationScheme
	A ClassificationScheme object

	Classification
	A Classification object

	ClassificationNode
	A ClassificationNode object

	AuditableEvent
	An AuditableEvent object

	User
	A User object

	Organization
	An Organization object

	Service
	A Service object

	ServiceBinding
	A ServiceBinding object

	SpecificationLink
	A SpecificationLink object

7.5.7 Method Summary

In addition to its attributes, the RegistryObject class also defines the following methods. These methods are used to navigate relationship links from a RegistryObject instance to other objects.

	Method Summary for RegistryObject

	Collection
	getAuditTrail()
 Gets the complete audit trail of all requests that effected a state change in this object as an ordered Collection of AuditableEvent objects.

	Collection
	getClassifications()
 Gets the Classification that classify this object.

	Collection
	getExternalIdentifiers()
 Gets the collection of ExternalIdentifiers associated with this object.

	Collection
	getExternalLinks()
 Gets the ExternalLinks associated with this object.

	Collection
	getRegistryPackages()
 Gets the RegistryPackages that this object is a member of.

	Collection
	getSlots()
 Gets the Slots associated with this object.

[image: image5]
7.6 Class RegistryEntry

Super Classes:

RegistryObject
Direct Known Subclasses:

ClassificationScheme, ExtrinsicObject, RegistryPackage, Service
[image: image6]
RegistryEntry is a common base Class for classes in the information model that require additional metadata beyond the minimal metadata provided by RegistryObject class. RegistryEntry is used as a base class for high level coarse grained objects in the registry. Their life cycle typically requires more management (e.g. may require approval, deprecation). They typically have relatively fewer instances but serve as a root of a composition hierarchy consisting of numerous objects that are sub-classes of RegistryObject but not RegistryEntry.

The additional metadata is described by the attributes of the RegistryEntry class below.

7.6.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	expiration
	DateTime
	No
	
	Client
	Yes

	majorVersion
	Integer
	Yes
	1
	Registry
	Yes

	minorVersion
	Integer
	Yes
	0
	Registry
	Yes

	stability
	LongName
	No
	
	Client
	Yes

	status
	LongName
	Yes
	
	Registry
	Yes

	userVersion
	ShortName
	No
	
	Client
	Yes

Note that attributes inherited by RegistryEntry class from the RegistryObject class are not shown in the table above.

7.6.2 Attribute expiration

Each RegistryEntry instance may have an expirationDate. This attribute defines a time limit upon the stability indication provided by the stability attribute. Once the expirationDate has been reached the stability attribute in effect becomes STABILITY_DYNAMIC implying that the repository item can change at any time and in any manner. A null value implies that there is no expiration on stability attribute.

7.6.3 Attribute majorVersion

Each RegistryEntry instance must have a major revision number for the current version of the RegistryEntry instance. This number is assigned by the registry when the object is created. This number may be updated by the registry when an object is updated.

7.6.4 Attribute minorVersion

Each RegistryEntry instance must have a minor revision number for the current version of the RegistryEntry instance. This number is assigned by the registry when the object is created. This number may be updated by the registry when an object is updated.

7.6.5 Attribute stability

Each RegistryEntry instance may have a stability indicator. The stability indicator is provided by the submitter as an indication of the level of stability for the repository item.

7.6.5.1 Pre-defined RegistryEntry Stability Enumerations

The following table lists pre-defined choices for RegistryEntry stability attribute.

These pre-defined stability types are defined as a ClassificationScheme. While the scheme may easily be extended, a Registry MAY support the stability types listed below.

[image: image7]
	Name
	Description

	Dynamic
	Stability of a RegistryEntry that indicates that the content is dynamic and may be changed arbitrarily by submitter at any time.

	DynamicCompatible
	Stability of a RegistryEntry that indicates that the content is dynamic and may be changed in a backward compatible way by submitter at any time.

	Static
	Stability of a RegistryEntry that indicates that the content is static and will not be changed by submitter.

7.6.6 Attribute status

Each RegistryEntry instance must have a life cycle status indicator. The status is assigned by the registry.

7.6.6.1 Pre-defined RegistryObject Status Types

The following table lists pre-defined choices for RegistryObject status attribute.

These pre-defined status types are defined as a ClassificationScheme.

[image: image8]
	Name
	Description

	Submitted
	Status of a RegistryObject that catalogues content that has been submitted to the Registry.

	Approved
	Status of a RegistryObject that catalogues content that has been submitted to the Registry and has been subsequently approved.

	Deprecated
	Status of a RegistryObject that catalogues content that has been submitted to the Registry and has been subsequently deprecated.

	Withdrawn
	Status of a RegistryObject that catalogues content that has been withdrawn from the Registry. A repository item has been removed but its ExtrinsicObject still exists.

7.6.7 Attribute userVersion

Each RegistryEntry instance may have a userVersion. The userVersion is similar to the majorVersion-minorVersion tuple. They both provide an indication of the version of the object. The majorVersion-minorVersion tuple is provided by the registry while userVersion provides a user specified version for the object.

7.7 Class Slot

Slot instances provide a dynamic way to add arbitrary attributes to RegistryObject instances. This ability to add attributes dynamically to RegistryObject instances enables extensibility within the information model.

A RegistryObject may have 0 or more Slots. A slot is composed of a name, a slotType and a collection of values.

7.7.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	name
	LongName
	Yes
	
	Client
	No

	slotType
	LongName
	No
	
	Client
	No

	values
	Collection of LongName
	Yes
	
	Client
	No

7.7.2 Attribute name

Each Slot instance must have a name. The name is the primary means for identifying a Slot instance within a RegistryObject. Consequently, the name of a Slot instance must be locally unique within the RegistryObject Instance.

7.7.3 Attribute slotType

Each Slot instance may have a slotType that allows different slots to be grouped together.

7.7.4 Attribute values

A Slot instance must have a Collection of values. The collection of values may be empty. Since a Slot represent an extensible attribute whose value may be a collection, therefore a Slot is allowed to have a collection of values rather than a single value.

7.8 Class ExtrinsicObject

Super Classes:

RegistryEntry, RegistryObject
[image: image9]
ExtrinsicObjects provide metadata that describes submitted content whose type is not intrinsically known to the Registry and therefore MUST be described by means of additional attributes (e.g., mime type).

Since the registry can contain arbitrary content without intrinsic knowledge about that content, ExtrinsicObjects require special metadata attributes to provide some knowledge about the object (e.g., mime type).

Examples of content described by ExtrinsicObject include Collaboration Protocol Profiles [ebCPP], Business Process descriptions, and schemas.

7.8.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	isOpaque
	Boolean
	No
	
	Client
	No

	mimeType
	LongName
	No
	
	Client
	No

Note that attributes inherited from RegistryEntry and RegistryObject are not shown in the table above.

7.8.2 Attribute isOpaque

Each ExtrinsicObject instance may have an isOpaque attribute defined. This attribute determines whether the content catalogued by this ExtrinsicObject is opaque to (not readable by) the Registry. In some situations, a Submitting Organization may submit content that is encrypted and not even readable by the Registry.

7.8.3 Attribute mimeType

Each ExtrinsicObject instance may have a mimeType attribute defined. The mimeType provides information on the type of repository item catalogued by the ExtrinsicObject instance.

7.9 Class RegistryPackage

Super Classes:

RegistryEntry, RegistryObject
[image: image10]
RegistryPackage instances allow for grouping of logically related RegistryObject instances even if individual member objects belong to different Submitting Organizations.

7.9.1 Attribute Summary

The RegistryPackage class defines no new attributes other than those that are inherited from RegistryEntry and RegistryObject base classes. The inherited attributes are not shown here.

7.9.2 Method Summary

In addition to its attributes, the RegistryPackage class also defines the following methods.

[image: image11]
	Method Summary of RegistryPackage

	 Collection
	getMemberObjects()
 Get the collection of RegistryObject instances that are members of this RegistryPackage.

7.10 Class ExternalIdentifier

Super Classes:

RegistryObject
[image: image12]
ExternalIdentifier instances provide the additional identifier information to RegistryObject such as DUNS number, Social Security Number, or an alias name of the organization. The attribute identificationScheme is used to reference the identification scheme (e.g., “DUNS”, “Social Security #”), and the attribute value contains the actual information (e.g., the DUNS number, the social security number). Each RegistryObject may contain 0 or more ExternalIdentifier instances.

7.10.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	identificationScheme
	UUID
	Yes
	
	Client
	Yes

	registryObject
	UUID
	Yes
	
	Client
	No

	value
	ShortName
	Yes
	
	Client
	Yes

Note that attributes inherited from the base classes of this class are not shown.

7.10.2 Attribute identificationScheme

Each ExternalIdentifier instance must have an identificationScheme attribute that references a ClassificationScheme. This ClassificationScheme defines the namespace within which an identifier is defined using the value attribute for the RegistryObject referenced by the RegistryObject attribute.

7.10.3 Attribute registryObject

Each ExternalIdentifier instance must have a RegistryObject attribute that references the parent RegistryObject for which this is an ExternalIdentifier.

7.10.4 Attribute value

Each ExternalIdentifier instance must have a value attribute that provides the identifier value for this ExternalIdentifier (e.g., the actual social security number).

7.11 Class ExternalLink

Super Classes:

RegistryObject
[image: image13]
ExternalLinks use URIs to associate content in the Registry with content that may reside outside the Registry. For example, an organization submitting a DTD could use an ExternalLink to associate the DTD with the organization's home page.

7.11.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	externalURI
	URI
	Yes
	
	Client
	Yes

7.11.2 Attribute externalURI

Each ExternalLink instance must have an externalURI attribute defined. The externalURI attribute provides a URI to the external resource pointed to by this ExternalLink instance. If the URI is a URL then a registry must validate the URL to be resolvable at the time of submission before accepting an ExternalLink submission to the registry.

7.11.3 Method Summary

In addition to its attributes, the ExternalLink class also defines the following methods.

[image: image14]
	Method Summary of ExternalLink

	 Collection
	getLinkedObjects()
 Gets the collection of RegistryObjects that are linked by this

ExternalLink to content outside the registry.

7.12 Class User

Super Classes:

RegistryObject
[image: image15]
User instances are used in an AuditableEvent to keep track of the identity of the requestor that sent the request that generated the AuditableEvent.

7.12.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	address
	PostalAddress
	Yes
	
	Client
	Yes

	emailAddresses
	Collection of EmailAddress
	Yes
	
	Client
	Yes

	organization
	UUID
	Yes
	
	Client
	No

	personName
	PersonName
	Yes
	
	Client
	No

	telephoneNumbers
	Collection of TelephoneNumber
	Yes
	
	Client
	Yes

	url
	URI
	No
	
	Client
	Yes

7.12.2 Attribute address

Each User instance must have an address attribute that provides the postal address for that user.

7.12.3 Attribute emailAddresses

Each User instance has an attribute emailAddresses that is a Collection of EmailAddress instances. Each EmailAddress provides an email address for that user. A User must have at least one email address.

7.12.4 Attribute organization

Each User instance must have an organization attribute that references the Organization instance for the organization that the user is affiliated with.

7.12.5 Attribute personName

Each User instance must have a personName attribute that provides the human name for that user.

7.12.6 Attribute telephoneNumbers

Each User instance must have a telephoneNumbers attribute that contains the Collection of TelephoneNumber instances for each telephone number defined for that user. A User must have at least one telephone number.

7.12.7 Attribute url

Each User instance may have a url attribute that provides the URL address for the web page associated with that user.

7.13 Class Organization

Super Classes:

RegistryObject
[image: image16]
Organization instances provide information on organizations such as a Submitting Organization. Each Organization Instance may have a reference to a parent Organization.

7.13.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	address
	PostalAddress
	Yes
	
	Client
	Yes

	parent
	UUID
	No
	
	Client
	Yes

	primaryContact
	UUID
	Yes
	
	Client
	No

	telephoneNumbers
	Collection of TelephoneNumber
	Yes
	
	Client
	Yes

7.13.2 Attribute address

Each Organization instance must have an address attribute that provides the postal address for that organization.

7.13.3 Attribute parent

Each Organization instance may have a parent attribute that references the parent Organization instance, if any, for that organization.

7.13.4 Attribute primaryContact

Each Organization instance must have a primaryContact attribute that references the User instance for the user that is the primary contact for that organization.

7.13.5 Attribute telephoneNumbers

Each Organization instance must have a telephoneNumbers attribute that contains the Collection of TelephoneNumber instances for each telephone number defined for that organization. An Organization must have at least one telephone number.

7.14 Class PostalAddress

Maybe place non-RegistryObject classes in a separate chapter??
PostalAddress is a simple reusable Entity Class that defines attributes of a postal address.

7.14.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	city
	ShortName
	No
	
	Client
	Yes

	country
	ShortName
	No
	
	Client
	Yes

	postalCode
	ShortName
	No
	
	Client
	Yes

	state
	ShortName
	No
	
	Client
	Yes

	street
	ShortName
	No
	
	Client
	Yes

	streetNumber
	String32
	No
	
	Client
	Yes

7.14.2 Attribute city

Each PostalAddress may have a city attribute identifying the city for that address.

7.14.3 Attribute country

Each PostalAddress may have a country attribute identifying the country for that address.

7.14.4 Attribute postalCode

Each PostalAddress may have a postalCode attribute identifying the postal code (e.g., zip code) for that address.

7.14.5 Attribute state

Each PostalAddress may have a state attribute identifying the state, province or region for that address.

7.14.6 Attribute street

Each PostalAddress may have a street attribute identifying the street name for that address.

7.14.7 Attribute streetNumber

Each PostalAddress may have a streetNumber attribute identifying the street number (e.g., 65) for the street address.

7.14.8 Method Summary

In addition to its attributes, the PostalAddress class also defines the following methods.

[image: image17]
	Method Summary of ExternalLink

	 Collection
	getSlots()
 Gets the collection of Slots for this object. Each PostalAddress may have multiple Slot instances where a Slot is a dynamically defined attribute. The use of Slots allows the client to extend PostalAddress class by defining additional dynamic attributes using slots to handle locale specific needs.

7.15 Class TelephoneNumber

A simple reusable Entity Class that defines attributes of a telephone number.

7.15.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	areaCode
	String4
	No
	
	Client
	Yes

	countryCode
	String4
	No
	
	Client
	Yes

	extension
	String8
	No
	
	Client
	Yes

	number
	String16
	No
	
	Client
	Yes

	phoneType
	String32
	No
	
	Client
	Yes

	url
	URI
	No
	
	Client
	Yes

7.15.2 Attribute areaCode

Each TelephoneNumber instance may have an areaCode attribute that provides the area code for that telephone number.

7.15.3 Attribute countryCode

Each TelephoneNumber instance may have an countryCode attribute that provides the country code for that telephone number.

7.15.4 Attribute extension

Each TelephoneNumber instance may have an extension attribute that provides the extension number, if any, for that telephone number.

7.15.5 Attribute number

Each TelephoneNumber instance may have a number attribute that provides the local number (without area code, country code and extension) for that telephone number.

7.15.6 Attribute phoneType

Each TelephoneNumber instance may have phoneType attribute that provides the type for the TelephoneNumber. Some examples of phoneType are “home”, “office”.

7.16 Class EmailAddress

A simple reusable Entity Class that defines attributes of an email address.

7.16.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	address
	ShortName
	Yes
	
	Client
	Yes

	type
	String32
	No
	
	Client
	Yes

7.16.2 Attribute address

Each EmailAddress instance must have an address attribute that provides the actual email address.

7.16.3 Attribute type

Each EmailAddress instance may have a type attribute that provides the type for that email address. This is an arbitrary value. Examples include “home”, “work” etc.

7.17 Class PersonName

A simple Entity Class for a person’s name.

7.17.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	firstName
	ShortName
	No
	
	Client
	Yes

	lastName
	ShortName
	No
	
	Client
	Yes

	middleName
	ShortName
	No
	
	Client
	Yes

7.17.2 Attribute firstName

Each PersonName may have a firstName attribute that is the first name of the person.

7.17.3 Attribute lastName

Each PersonName may have a lastName attribute that is the last name of the person.

7.17.4 Attribute middleName

Each PersonName may have a middleName attribute that is the middle name of the person.

8 Association Information Model

A RegistryObject instance may be associated with zero or more RegistryObject instances. The information model defines an Association class, an instance of which may be used to associate any two RegistryObject instances.

8.1 Example of an Association

One example of such an association is between two ClassificationScheme instances, where one ClassificationScheme supersedes the other ClassificationScheme as shown in Figure 3. This may be the case when a new version of a ClassificationScheme is submitted.

In Figure 3, we see how an Association is defined between a new version of the NAICS ClassificationScheme and an older version of the NAICS ClassificationScheme.

[image: image18.png]NAICS2001-NAICS1997-Assoc s
[assosiationType = Supersedes]

targetobject

sourceObject

[NAICS1007:ClassificationScheme

· Figure 3: Example of RegistryObject Association

8.2 Source and Target Objects

An Association instance represents an association between a source RegistryObject and a target RegistryObject. These are referred to as sourceObject and targetObject for the Association instance. It is important which object is the sourceObject and which is the targetObject as it determines the directional semantics of an Association.

In the example in Figure 3, it is important to make the newer version of NAICS ClassificationScheme be the sourceObject and the older version of NAICS be the targetObject because the associationType implies that the sourceObject supersedes the targetObject (and not the other way around).

8.3 Association Types

Each Association must have an associationType attribute that identifies the type of that association.

8.4 Intramural Association

A common use case for the Association class is when a User “u” creates an Association “a” between two RegistryObjects “o1” and “o2” where association “a” and RegistryObjects “o1” and “o2” are objects that were created by the same User “u.” This is the simplest use case, where the association is between two objects that are owned by the same User that is defining the Association. Such associations are referred to as intramural associations.

Figure 4 below, extends the previous example in Figure 3 for the intramural association case.

· [image: image19.png]NAICS2001-NAICS1997-Association:Associ
[associationType = Supersedes]

sourceObject targetobject

[NAICS1007:ClassificationScheme

· Figure 4: Example of Intramural Association

8.5 Extramural Association

The information model also allows more sophisticated use cases. For example, a User “u1” creates an Association “a” between two RegistryObjects “o1” and “o2” where association “a” is owned by User “u1”, but RegistryObjects “o1” and “o2” are owned by User “u2” and User “u3” respectively.

In this use case an Association is defined where either or both objects that are being associated are owned by a User different from the User defining the Association. Such associations are referred to as extramural associations. The Association class provides a convenience method called isExtramural that returns "true" if the Association instance is an extramural Association.

Figure 5 below, extends the previous example in Figure 3 for the extramural association case. Note that it is possible for an extramural association to have two distinct Users rather than three distinct Users as shown in Figure 5. In such case, one of the two users owns two of the three objects involved (Association, sourceObject and targetObject).

[image: image20.png]user

NAICS2001-NAICS1997-Association:Association

[associaionTyp:

upersedes]

sourceObject

targetobject

user

luz:user

· Figure 5: Example of Extramural Association

8.6 Confirmation of an Association

An association may need to be confirmed by the parties whose objects are involved in that Association as the sourceObject or targetObject. This section describes the semantics of confirmation of an association by the parties involved.

8.6.1 Confirmation of Intramural Associations

Intramural associations may be viewed as declarations of truth and do not require any explicit steps to confirm that Association as being true. In other words, intramural associations are implicitly considered confirmed.

8.6.2 Confirmation of Extramural Associations

An extramural association may be thought of as a unilateral assertion that may not be viewed as truth until it has been confirmed by the other (extramural) parties involved (Users “u2” and “u3” in the example in section 8.5).

To confirm an extramural association, each of the extramural parties (parties that own the source or target object but do not own the Association) must submit an identical Association (clone Association) as the Association they are intending to confirm using a SubmitObjectsRequest. The clone Association must have the same id as the original Association.

8.6.3 Deleting an Extramural Associations

An Extramural Association is deleted like any other type of RegistryObject, using the RemoveObjectsRequest as defined in [ebRS]. However, in some cases deleting an extramural Association may not actually delete it but instead only revert a confirmed association to unconfirmed state.

An Association must always be deleted when deleted by the owner of that Association, irrespective of its confirmation state. An extramural Association must become unconfirmed by the owner of its source/target object when deleted by the owner of its source/target object when the requestor is not the owner of the Association itself.

8.7 Visibility of Unconfirmed Associations

Extramural associations require each extramural party to confirm the assertion being made by the extramural Association before the Association is visible to third parties that are not involved in the Association. This ensures that unconfirmed Associations are not visible to third party registry clients.

8.8 Possible Confirmation States

Assume the most general case where there are three distinct User instances as shown in Figure 5 for an extramural Association. The extramural Association needs to be confirmed by both the other (extramural) parties (Users “u2” and “u3” in example) in order to be fully confirmed. The methods isConfirmedBySourceOwner and isConfirmedByTargetOwner in the Association class provide access to the confirmation state for both the sourceObject and targetObject. A third convenience method called isConfirmed provides a way to determine whether the Association is fully confirmed or not. So there are the following four possibilities related to the confirmation state of an extramural Association:

· The Association is confirmed neither by the owner of the sourceObject nor by the owner of the targetObject.

· The Association is confirmed by the owner of the sourceObject but it is not confirmed by the owner of the targetObject.

· The Association is not confirmed by the owner of the sourceObject but it is confirmed by the owner of the targetObject.

· The Association is confirmed by both the owner of the sourceObject and the owner of the targetObject. This is the only state where the Association is fully confirmed.

8.9 Class Association

 Super Classes:

RegistryObject
[image: image21]
Association instances are used to define many-to-many associations among RegistryObjects in the information model.

An Instance of the Association Class represents an association between two RegistryObjects.

8.9.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	associationType
	LongName
	Yes
	
	Client
	No

	sourceObject
	UUID
	Yes
	
	Client
	No

	targetObject
	UUID
	Yes
	
	Client
	No

	IsConfirmedBy-SourceOwner
	boolean
	No
	false
	Registry
	No

	IsConfirmedBy-TargetOwner
	boolean
	No
	false
	Registry
	No

8.9.2 Attribute associationType

Each Association must have an associationType attribute that identifies the type of that association.

8.9.2.1 Pre-defined Association Types

The following table lists pre-defined association types. These pre-defined association types are defined as a Classification scheme. While the scheme may easily be extended a Registry MUST support the association types listed below.

[image: image22]
	name
	description

	RelatedTo
	Defines that source RegistryObject is related to target RegistryObject.

	HasMember
	Defines that the source RegistryPackage object has the target RegistryObject object as a member. Reserved for use in Packaging of RegistryEntries.

	ExternallyLinks
	Defines that the source ExternalLink object externally links the target RegistryObject object. Reserved for use in associating ExternalLinks with RegistryEntries.

	Contains
	Defines that source RegistryObject contains the target RegistryObject. The details of the containment relationship are specific to the usage. For example a parts catalog may define an Engine object to have a contains relationship with a Transmission object.

	EquivalentTo
	Defines that source RegistryObject is equivalent to the target RegistryObject.

	Extends
	Defines that source RegistryObject inherits from or specializes the target RegistryObject.

	Implements
	Defines that source RegistryObject implements the functionality defined by the target RegistryObject.

	InstanceOf
	Defines that source RegistryObject is an Instance of target RegistryObject.

	Supersedes
	Defines that the source RegistryObject supersedes the target RegistryObject.

	Uses
	Defines that the source RegistryObject uses the target RegistryObject in some manner.

	Replaces
	Defines that the source RegistryObject replaces the target RegistryObject in some manner.

	SubmitterOf
	Defines that the source Organization is the submitter of the target RegistryObject.

	ResponsibleFor
	Defines that the source Organization is responsible for the ongoing maintainence of the target RegistryObject.

	OffersService
	Defines that the source Organization object offers the target Service object as a service. Reserved for use in indicating that an Organization offers a Service.

8.9.3 Attribute sourceObject

Each Association must have a sourceObject attribute that references the RegistryObject instance that is the source of that association.

8.9.4 Attribute targetObject

Each Association must have a targetObject attribute that references the RegistryObject instance that is the target of that association.

8.9.5 Attribute isConfirmedBySourceOwner

Each Association may have an isConfirmedBySourceOwner attribute that is set by the registry to be true if the association has been confirmed by the owner of the sourceObject. For intramural Associations this attribute is always true. This attribute must be present when the object is retrieved from the registry. This attribute must be ignored if specified by the client when the object is submitted to the registry.

8.9.6 Attribute isConfirmedByTargetOwner

Each Association may have an isConfirmedByTargetOwner attribute that is set by the registry to be true if the association has been confirmed by the owner of the targetObject. For intramural Associations this attribute is always true. This attribute must be present when the object is retrieved from the registry. This attribute must be ignored if specified by the client when the object is submitted to the registry.

	Method Summary of Association

	 Boolean
	isConfirmed()

 Returns true if isConfirmedBySourceOwner and isConfirmedByTargetOwner attributes are both true. For intramural Associations always return true. An association should only be visible to third parties (not involved with the Association) if isConfirmed returns true.

	 Boolean
	isExtramural()
 Returns true if the sourceObject and/or the targetObject are owned by a User that is different from the User that created the Association.

9 Classification Information Model

This section describes the how the information model supports Classification of RegistryObject. It is a simplified version of the OASIS classification model [OAS].

A RegistryObject may be classified in many ways. For example the RegistryObject for the same Collaboration Protocol Profile (CPP) may be classified by its industry, by the products it sells and by its geographical location.

A general ClassificationScheme can be viewed as a Classification tree. In the example shown in Figure 6, RegistryObject instances representing Collaboration Protocol Profiles are shown as shaded boxes. Each Collaboration Protocol Profile represents an automobile manufacturer. Each Collaboration Protocol Profile is classified by the ClassificationNode named “Automotive” under the ClassificationScheme instance with name “Industry.” Furthermore, the US Automobile manufacturers are classified by the US ClassificationNode under the ClassificationScheme with name “Geography." Similarly, a European automobile manufacturer is classified by the “Europe” ClassificationNode under the ClassificationScheme with name “Geography.”

The example shows how a RegistryObject may be classified by multiple ClassificationNode instances under multiple ClassificationScheme instances (e.g., Industry, Geography).

[image: image23.png]Industry:ClassificationScheme

[automotive:CiassificationNode

classifiedBy

classifiedBy classifiedBy

classifiedBy

lwasGuzzlerinc:RegistryEntry]

[ourDadsCarinc:ReaistrvEntry |

[bisBadauto:ReaistrvEntry| fuppvEuroautoinc:RegistryEntry]

classifiedBy

classifiedsy classifiedBy

classifiedBy

urope:ClassificationNode

[GeouraphyCiassificationScheme

· Figure 6: Example showing a Classification Tree

[Note] It is important to point out that the dark nodes (gasGuzzlerInc, yourDadsCarInc etc.) are not part of the Classification tree. The leaf nodes of the Classification tree are Health Care, Automotive, Retail, US and Europe. The dark nodes are associated with the Classification tree via a Classification Instance that is not shown in the picture

In order to support a general Classification scheme that can support single level as well as multi-level Classifications, the information model defines the Classes and relationships shown in Figure 7.

[image: image24.png]ClassificationScheme

classificationgcheme

RegistryObjet | g+

<(Classifcation)> 0-

|Registryopject|

ClassificationNodel ¢\ cationnoes classifiedOblects

parent

assotiatedObjects

<{hssociation)>

· Figure 7: Information Model Classification View

A Classification is somewhat like a specialized form of an Association. Figure 8 shows an example of an ExtrinsicObject Instance for a Collaboration Protocol Profile (CPP) object that is classified by a ClassificationNode representing the Industry that it belongs to.

[image: image25.png]copTolndusty

classifiedObject classificationhiode

‘yourDadscarincCPP:ExtrinsicObiect | [Automotive Industry:ClassificationNode

· Figure 8: Classification Instance Diagram

9.1 Class ClassificationScheme

Base classes:

RegistryEntry, RegistryObject

[image: image26]
A ClassificationScheme instance is metadata that describes a registered taxonomy. The taxonomy hierarchy may be defined internally to the Registry by instances of ClassificationNode or it may be defined externally to the Registry, in which case the structure and values of the taxonomy elements are not known to the Registry.

In the first case the classification scheme is defined to be internal and in the second case the classification scheme is defined to be external.

The ClassificationScheme class inherits attributes and methods from the RegistryObject and RegistryEntry classes.

9.1.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	isInternal
	Boolean
	Yes
	
	Client
	No

	nodeType
	String32
	Yes
	
	Client
	No

Note that attributes inherited by ClassificationScheme class from the RegistryEntry class are not shown.

9.1.2 Attribute isInternal

When submitting a ClassificationScheme instance the Submitting Organization needs to declare whether the ClassificationScheme instance represents an internal or an external taxonomy. This allows the registry to validate the subsequent submissions of ClassificationNode and Classification instances in order to maintain the type of ClassificationScheme consistent throughout its lifecycle.

9.1.3 Attribute nodeType

When submitting a ClassificationScheme instance the Submitting Organization needs to declare what is the structure of taxonomy nodes that this ClassificationScheme instance will represent. This attribute is an enumeration with the following values:

· UniqueCode. This value says that each node of the taxonomy has a unique code assigned to it.

· EmbeddedPath. This value says that a unique code assigned to each node of the taxonomy at the same time encodes its path. This is the case in the NAICS taxonomy.

· NonUniqueCode. In some cases nodes are not unique, and it is necessary to nominate the full path in order to identify the node. For example, in a geography taxonomy Moscow could be under both Russia and the USA, where there are five cities of that name in different states.

This enumeration might expand in the future with some new values. An example for possible future values for this enumeration might be NamedPathElements for support of Named-Level taxonomies such as Genus/Species.

9.2 Class ClassificationNode

Base classes:

RegistryObject
[image: image27]
ClassificationNode instances are used to define tree structures where each node in the tree is a ClassificationNode. Such Classification trees are constructed with ClassificationNode instances under a ClassificationScheme instance, and are used to define Classification schemes or ontologies.

9.2.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	parent
	UUID
	No
	
	Client
	No

	code
	ShortName
	No
	
	Client
	No

	path
	String
	No
	
	Registry
	No

9.2.2 Attribute parent

Each ClassificationNode may have a parent attribute. The parent attribute either references a parent ClassificationNode or a ClassificationScheme instance in case of first level ClassificationNode instances.

9.2.3 Attribute code

Each ClassificationNode may have a code attribute. The code attribute contains a code within a standard coding scheme.

9.2.4 Attribute path

Each ClassificationNode may have a path attribute. The path attribute must be present when a ClassificationNode is retrieved from the registry. The path attribute must be ignored when the path is specified by the client when the object is submitted to the registry. The path attribute contains the canonical path from the ClassificationScheme of this ClassificationNode. The path syntax is defined in 9.2.6.

9.2.5 Method Summary

In addition to its attributes, the ClassificationNode class also defines the following methods.

[image: image28]
	Method Summary of ClassificationNode

	ClassificationScheme
	getClassificationScheme()
 Get the ClassificationScheme that this ClassificationNode belongs to.

	 Collection
	getClassifiedObjects()
 Get the collection of RegistryObjects classified by this ClassificationNode.

	Integer
	getLevelNumber()

 Gets the level number of this ClassificationNode in the

classification scheme hierarchy. This method returns a

positive integer and is defined for every node instance.

In Figure 6, several instances of ClassificationNode are defined (all light colored boxes). A ClassificationNode has zero or one parent and zero or more ClassificationNodes for its immediate children. The parent of a ClassificationNode may be another ClassificationNode or a ClassificationScheme in case of first level ClassificationNodes.

9.2.6 Canonical Path Syntax

The path attribute of the ClassificationNode class contains an absolute path in a canonical representation that uniquely identifies the path leading from the ClassificationScheme to that ClassificationNode.

The canonical path representation is defined by the following BNF grammar:

canonicalPath ::= '/' schemeId nodePath

nodePath
::=
'/' nodeCode

|
'/' nodeCode (nodePath)?

In the above grammar, schemeId is the id attribute of the ClassificationScheme instance, and nodeCode is defined by NCName production as defined by http://www.w3.org/TR/REC-xml-names/#NT-NCName.

9.2.6.1 Example of Canonical Path Representation

The following canonical path represents what the path attribute would contain for the ClassificationNode with code ‘United States’ in the sample Geography scheme in section 9.2.6.2.

/Geography-id/NorthAmerica/UnitedStates

9.2.6.2 Sample Geography Scheme

Note that in the following examples, the ID attributes have been chosen for ease of readability and are therefore not valid URN or UUID values.

<ClassificationScheme id='Geography-id' name="Geography”/>

<ClassificationNode id="NorthAmerica-id" parent="Geography-id" code=NorthAmerica" />

<ClassificationNode id="UnitedStates-id" parent="NorthAmerica-id" code="UnitedStates" />

<ClassificationNode id="Asia-id" parent="Geography-id" code="Asia" />

<ClassificationNode id="Japan-id" parent="Asia-id" code="Japan" />

<ClassificationNode id="Tokyo-id" parent="Japan-id" code="Tokyo" />
9.3 Class Classification

Base Classes:

RegistryObject
[image: image29]
A Classification instance classifies a RegistryObject instance by referencing a node defined within a particular classification scheme. An internal classification will always reference the node directly, by its id, while an external classification will reference the node indirectly by specifying a representation of its value that is unique within the external classification scheme.

The attributes and methods for the Classification class are intended to allow for representation of both internal and external classifications in order to minimize the need for a submission or a query to distinguish between internal and external classifications.

In Figure 6, Classification instances are not explicitly shown but are implied as associations between the RegistryObject instances (shaded leaf node) and the associated ClassificationNode.

9.3.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	classificationScheme
	UUID
	for external classifications
	null
	Client
	No

	classificationNode
	UUID
	for internal classifications
	null
	Client
	No

	classifiedObject
	UUID
	Yes
	
	Client
	No

	nodeRepresentation
	LongName
	for external classifications
	null
	Client
	No

Note that attributes inherited from the base classes of this class are not shown.

9.3.2 Attribute classificationScheme

If the Classification instance represents an external classification, then the classificationScheme attribute is required. The classificationScheme value must reference a ClassificationScheme instance.

9.3.3 Attribute classificationNode

If the Classification instance represents an internal classification, then the classificationNode attribute is required. The classificationNode value must reference a ClassificationNode instance.

9.3.4 Attribute classifiedObject

For both internal and external classifications, the ClassifiedObject attribute is required and it references the RegistryObject instance that is classified by this Classification.

9.3.5 Attribute nodeRepresentation

If the Classification instance represents an external classification, then the nodeRepresentation attribute is required. It is a representation of a taxonomy element from a classification scheme. It is the responsibility of the registry to distinguish between different types of nodeRepresentation, like between the classification scheme node code and the classification scheme node canonical path. This allows client to transparently use different syntaxes for nodeRepresentation.

9.3.6 Context Sensitive Classification
Consider the case depicted in Figure 9 where a Collaboration Protocol Profile for ACME Inc. is classified by the Japan ClassificationNode under the Geography Classification scheme. In the absence of the context for this Classification its meaning is ambiguous. Does it mean that ACME is located in Japan, or does it mean that ACME ships products to Japan, or does it have some other meaning? To address this ambiguity a Classification may optionally be associated with another ClassificationNode (in this example named isLocatedIn) that provides the missing context for the Classification. Another Collaboration Protocol Profile for MyParcelService may be classified by the Japan ClassificationNode where this Classification is associated with a different ClassificationNode (e.g., named shipsTo) to indicate a different context than the one used by ACME Inc.

[image: image30.png]classificationhiode classifiedObject

classifiedObject

Classification

classificationNode

myParcelServicePartyProfile:RegistryEntry.

classificationNode

glassifiedObject

‘Classification classifiedObject

· Figure 9: Context Sensitive Classification
Thus, in order to support the possibility of Classification within multiple contexts, a Classification is itself classified by any number of Classifications that bind the first Classification to ClassificationNodes that provide the missing contexts.

In summary, the generalized support for Classification schemes in the information model allows:

· A RegistryObject to be classified by defining an internal Classification that associates it with a ClassificationNode in a ClassificationScheme.

· A RegistryObject to be classified by defining an external Classification that associates it with a value in an external ClassificationScheme.

· A RegistryObject to be classified along multiple facets by having multiple Classifications that associate it with multiple ClassificationNodes or value within a ClassificationScheme.

· A Classification defined for a RegistryObject to be qualified by the contexts in which it is being classified.

9.3.7 Method Summary

In addition to its attributes, the Classification class also defines the following methods:

	Return Type Method

	UUID
	getClassificationScheme()
 For an external classification, returns the scheme identified by the classificationScheme attribute.

For an internal classification, returns the scheme identified by the same method applied to the ClassificationNode instance

	String
	getPath()

 For an external classification returns a string that conforms to the canonical path syntax as specified in 9.2.6.

For an internal classification, returns the value contained in the path attribute of the ClassificationNode instance identified by the classificationNode attribute.

	ShortName
	getCode()

 For an external classification, returns a string that represents the declared value of the taxonomy element. It will not necessarily uniquely identify that node.

For an internal classification, returns the value of the code attribute of the ClassificationNode instance identified by the classificationNode attribute.

9.4 Example of Classification Schemes

The following table lists some examples of possible Classification schemes enabled by the information model. These schemes are based on a subset of contextual concepts identified by the ebXML Business Process and Core Components Project Teams. This list is meant to be illustrative not prescriptive.

	Classification Scheme
	Usage Example
	Standard Classification Schemes

	Industry
	Find all Parties in Automotive industry
	NAICS

	Process
	Find a ServiceInterface that implements a Process
	

	Product / Services
	Find a Business that sells a product or offers a service
	UNSPSC

	Locale
	Find a Supplier located in Japan
	ISO 3166

	Temporal
	Find Supplier that can ship with 24 hours
	

	Role
	Find All Suppliers that have a Role of “Seller”
	

· Table 1: Sample Classification Schemes

10 Service Information Model

This chapter describes the classes in the information model that support the registration of services. The service registration information model is flexible and supports the registration of web services as well as other types of services.

10.1 Class Service

Super Classes:

RegistryEntry, RegistryObject

[image: image31]
Service instances provide information on services, such as web services.

10.1.1 Attribute Summary

The Service class does not define any specialized attributes other than its inherited attributes.

10.1.2 Method Summary

In addition to its attributes, the Service class also defines the following methods.

	Method Summary of Service

	 Collection
	getServiceBindings()
 Gets the collection of ServiceBinding instances defined for this Service.

10.2 Class ServiceBinding

Super Classes:

RegistryObject
[image: image32]
ServiceBinding instances are RegistryObjects that represent technical information on a specific way to access a specific interface offered by a Service instance. A Service has a Collection of ServiceBindings.

The description attribute of ServiceBinding provides details about the relationship between several specification links comprising the Service Binding. This description can be useful for human understanding such that the runtime system can be appropriately configured by the human being. There is possibility of enforcing a structure on this description for enabling machine processing of the Service Binding, which is however not addressed by the current document.

10.2.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	accessURI
	URI
	No
	
	Client
	Yes

	targetBinding
	UUID
	No
	
	Client
	Yes

10.2.2 Attribute accessURI

A ServiceBinding may have an accessURI attribute that defines the URI to access that ServiceBinding. This attribute is ignored if a targetBinding attribute is specified for the ServiceBinding. If the URI is a URL then a registry must validate the URL to be resolvable at the time of submission before accepting a ServiceBinding submission to the registry.

10.2.3 Attribute targetBinding

A ServiceBinding may have a targetBinding attribute defined which references another ServiceBinding. A targetBinding may be specified when a service is being redirected to another service. This allows the rehosting of a service by another service provider.
10.2.4 Method Summary

In addition to its attributes, the ServiceBinding class also defines the following methods.

	Method Summary of ServiceBinding

	 Collection
	getSpecificationLinks()
 Get the collection of SpecificationLink instances defined for this ServiceBinding.

10.3 Class SpecificationLink

Super Classes:

RegistryObject
[image: image33]
A SpecificationLink provides the linkage between a ServiceBinding and one of its technical specifications that describes how to use the service using the ServiceBinding. For example, a ServiceBinding may have a SpecificationLink instances that describe how to access the service using a technical specification in form of a WSDL document or a CORBA IDL document.

10.3.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	specificationObject
	UUID
	Yes
	
	Client
	Yes

	usageDescription
	InternationalString
	No
	
	Client
	Yes

	usageParameters
	Collection of FreeFormText
	No
	
	Client
	Yes

10.3.2 Attribute specificationObject

A SpecificationLink instance must have a specificationObject attribute that provides a reference to a RegistryObject instance that provides a technical specification for the parent ServiceBinding. Typically, this is an ExtrinsicObject instance representing the technical specification (e.g., a WSDL document).

10.3.3 Attribute usageDescription

A SpecificationLink instance may have a usageDescription attribute that provides a textual description of how to use the optional usageParameters attribute described next. The usageDescription is of type InternationalString, thus allowing the description to be in multiple languages.

10.3.4 Attribute usageParameters

A SpecificationLink instance may have a usageParameters attribute that provides a collection of Strings representing the instance specific parameters needed to use the technical specification (e.g., a WSDL document) specified by this SpecificationLink object.

11 Event Information Model

This chapter defines the information model classes that support the registry Event Notification feature. These classes include AuditableEvent, Subscription, Selector, Action and Notification. They constitute the foundation of the Event Notification information model.

11.1 Class AuditableEvent

Super Classes:

RegistryObject
[image: image34]
AuditableEvent instances provide a long-term record of Events that effected a change in a RegistryObject. A RegistryObject is associated with an ordered Collection of AuditableEvent instances that provide a complete audit trail for that RegistryObject.

AuditableEvents are usually a result of a client-initiated request. AuditableEvent instances are generated by the Registry Service to log such Events.

Often such Events effect a change in the life cycle of a RegistryObject. For example a client request could Create, Update, Deprecate or Delete a RegistryObject. An AuditableEvent is created if and only if a request creates or alters the content or ownership of a RegistryObject. Read-only requests do not generate an AuditableEvent.

11.1.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	eventType
	LongName
	Yes
	
	Registry
	No

	affectedObjects
	Collection of ObjectRef
	Yes
	
	Registry
	No

	requestId
	ObjectRef
	Yes
	
	Registry
	No

	timestamp
	dateTime
	Yes
	
	Registry
	No

	user
	ObjectRef
	Yes
	
	Registry
	No

11.1.2 Attribute eventType

Each AuditableEvent must have an eventType attribute which identifies the type of event recorded by the AuditableEvent.

11.1.2.1 Pre-defined Auditable Event Types

The following table lists pre-defined auditable event types. These pre-defined event types are defined as a pre-defined ClassificationScheme with name “EventType”. A Registry MUST support the event types listed below. What about Downloaded event type?? It does not fit because it is not a write event and also because there will be so many of them??
[image: image35]
	Name
	Description

	Created
	An Event that marks the creation of a RegistryObject.

	Deleted
	An Event that marks the deletion of a RegistryObject.

	Deprecated
	An Event that marks the deprecation of a RegistryObject.

	Relocated
	An Event that marks the relocation of a RegistryObject.

	Updated
	An Event that that marks the updating of a RegistryObject.

	Versioned
	An Event that marks the vcrsioning of a RegistryObject.

11.1.3 Attribute affectedObjects

Each AuditableEvent must have an affectedObjects attribute that identifies the collection of RegistryObjects instances that were affected by this event.

11.1.4 Attribute requestId

Each AuditableEvent must have a requestId attribute that identifies the client request instance that affected this event.

11.1.5 Attribute timestamp

Each AuditableEvent must have a timestamp attribute that records the date and time that this event occurred.

11.1.6 Attribute user

Each AuditableEvent must have a user attribute that identifies the User that sent the request that generated this event affecting the RegistryObject instance.

11.2 Class Subscription

Subscription instances are RegistryObjects that define a User’s interest in certain types of AuditableEvents. A User may create a subscription with a registry if she wishes to receive notification for a specific type of event.

11.2.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	actions
	Collection of Action
	Yes, may be empty
	
	Client
	Yes

	endDate
	dateTime
	No
	
	Client
	Yes

	notificationInterval
	duration
	No
	
	Client
	No

	selector
	Selector
	Yes
	
	Client
	No

	startDate
	dateTime
	No
	Current time
	Client
	Yes

11.2.2 Attribute action

A Subscription instance must have an actions attribute that is a Collection of zero or more Action instances. An Action instance describes what action the registry must take when an event matching the Subscription transpires. The Action class is decsribed in section 11.5.

11.2.3 Attribute endDate

This attribute denotes the time after which the subscription expires and is no longer active. If this attribute is missing subscription never expires. Should this be called endTime??
11.2.4 Attribute notificationInterval

This attribute denotes the duration that a registry must wait between delivering successive notifications to the client. The client specifies this attribute in order to control the frequency of notification communication between registry and client. If this attribute is missing sending of notifications should happen as soon as relevant events occur.

11.2.5 Attribute selector

This attribute defines the selection criterea that determines which events match this Subscription and are of interest to the User. The Selector class is described in section 11.3.

11.2.6 Attribute startDate

This attribute denotes the time on which the subscription becomes active. If this attribute is missing subscription starts immediately. Should this be called startTime??
11.3 Class Selector

An instance of the Selector class specifies or “selects” events of interest that a subscriber is interested in. It is a base type from which more specialized Selector types are extended. Currently it defines no attributes or elements of its own.

11.4 Class QuerySelector

This class extends the Selector class and specifies or “selects” events of interest in terms of an SQL or Filter query. The query typically is on the AuditableEvent and related registry objects.

11.4.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	query
	Adhoc Query
	Yes
	
	Client
	Yes

11.4.2 Attribute query

The query attribute specifies an SQL or Filter query as decsribed by [ebRS]. The query determines whether an event qualifies for that Subscription or not.

11.5 Class Action

The Action class is an abstract base class that specifies what the registry must do when an event matching the action’s Subscription tranpires. A registry uses Actions within a Subscription to asynchronously deliver event Notifications to the subscriber.

If no Actions are defined within the Subscription that implies that the user does not wish to be notified asynchronously by the registry and instead intends to periodically poll the registry and pull the pending Notifications.

11.5.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	notificationOption
	Enumeration
	No
	“Events And Objects”
	Client
	Yes

11.5.2 Attribute notificationOption

This attribute controls the specific type of event notification content desired by the subscriber. It is used by the subscriber to control the granularity of event notification content communicated by the registry to the subscriber.

11.5.2.1 Pre-defined notificationOption Values

The following table lists pre-defined notificationOption values.

[image: image36]
	Name
	Description

	EventRefs
	Indicates that the subscriber wants to receive only references to AuditableEvents within a notification.

	Events
	Indicates that the subscriber wants to receive actual AuditableEvents within a notification.

	EventsAndObjects
	Indicates that the subscriber wants to receive actual AuditableEvents within a notification as well as the actual RegistryObjects that were impacted by the AuditableEvents.

11.6 Class ListenerNotifyAction

This is a specialized Action where a web service registered by the Subscription’s owner is invoked to deliver the notification of the Subscription events. This Action is suitable for delivery of events to software agents.

11.6.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	service
	Service
	Yes
	
	Client
	Yes

11.6.2 Attribute service

This attribute is an ObjectRef to a Service instance where the Service instance is a registered service that implements the Event Notification protocol describes in [ebRS].

A registry must invoke this service to programmatically deliver event notification to the registered Service.

11.7 Class EmailNotifyAction

This is a specialized Action where the notification is delivered to an email adress. This Action is suitable for delivery of events to humans.

11.7.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	emailAddress
	Email Address
	Yes
	
	Client
	Yes

11.7.2 Attribute emailAddress

This attribute defines the EmailAddress where event notification must be delivered via normal email. This is usually used to deliver even notifications to a human.

11.8 Class Notification

A Notification instance is used to convey event information from the registry to the subscriber during even notification. As such, it serves as a wrapper or envelope for event related content.

While an Action for a Subscription describes how events matching the subscription are delivered to the client, A Notification actually describes what is delivered to the client.

The Notification class is an abstract base class for more specialized Notification classes.

11.8.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	subscription
	ObjectRef
	Yes
	
	Registry
	No

11.8.2 Attribute subscription

This attribute is an ObjectRef to the Subscription that resulted in this Notification.

11.9 Class EventRefsNotification

This is a specialized Notification where only references to AuditableEvents are delivered. The receiver must explicitly pull the actual events from the registry at a later time. This type of Notification is suitable when the most light-weight event notification is desired.

11.9.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	eventRefs
	Collection of ObjectRef
	Yes, may be empty
	
	Registry
	No

11.9.2 Attribute eventRefs

This attribute is a Collection of ObjectRefs where each ObjectRef is a reference to an AuditableEvent matching the Subscription.

11.10 Class EventsNotification

This is a specialized Notification where the actual AuditableEvents are delivered. The RegistryObjects affected by the AuditableEvents are not delieverd. The receiver must explicitly pull the actual RegistryObjects affected by the AuditableEvents from the registry at a later time. This type of Notification is suitable when the more information about the event is desired.

11.10.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	events
	Collectionof AuditableEvent
	Yes, may be empty
	
	Registry
	No

11.10.2 Attribute events

This attribute is a Collection of AuditableEvents matching the Subscription.

11.11 Class EventsAndObjectsNotification

This is a specialized Notification where the actual AuditableEvents as well as the RegistryObjects affected by the events are delivered. This type of Notification is the most heavy-weight and suitable when the most complete information about the event is desired.

11.11.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	eventScopes
	Collection of EventScope
	Yes, may be empty
	
	Registry
	No

11.11.2 Attribute eventScopes

This attribute is a Collection of EventScope instances. Class EventScope is described next.

11.12 Class EventScope

This is a simple entity class that wraps an AuditableEvent and the RegistryObjects affected by that event.

11.12.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	event
	Auditable Event
	Yes
	
	Registry
	No

	affectedObjects
	Collection of Registry Objects
	Yes, may be empty
	
	Registry
	No

11.12.2 Attribute event

This attribute is an AuditableEvent matching the Subscription.

11.12.3 Attribute affectedObjects

This attribute is a Collection of those RegistryObjects that were impacted by the AuditableEvent identified by the event attribute.

12 Cooperating Registries Information Model

This chapter describes the classes in the information model that support the federated registries capability.
12.1.1 Class Registry

Super Classes:

RegistryEntry
[image: image37]
Registry instances are used to represent a single physical OASIS ebXML registry.

[Note] Need to consider adding attributes such as eventRetentionPeriod, notificationRetentionPeriod from Events proposal.

12.1.1.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	operator
	ObjectRef

	Yes
	
	Client
	Yes

12.1.1.2 Attribute operator

Each Registry instance must have an attribute named operator that is a reference to the Organization instance representing the organization for the registry’s operator. Since the same Organization may operate multiple registries, it is possible that the home registry for the Organization referenced by operator may not be the local registry.

12.1.2 Class Federation

Super Classes:

RegistryEntry
[image: image38]
Federation instances are used to represent a registry federation.

12.1.2.1 Attribute Summary

	Attribute
	Data Type
	Required
	Default Value
	Specified By
	Mutable

	replicationSyncLatency
	duration
	No
	24 hours
	Client
	Yes

12.1.2.2 Attribute replicationSyncLatency

Each Federation instance may specify a replicationSyncLatency attribute that describes a time duration. This time duration is the amount of time within which a member of this Federation must synchronize itself with the current state of the Federation. Members of the Federation may use this parameter, to periodically synchronize the federation metadata they must cache locally about the state of the Federation and its members. Such synchronization may be based upon the registry event notification capability.

12.1.3 Federation Configuration

A federation is created by the creation of a Federation instance. Membership of a registry within a federation is established by creating an Association between the Registry instances for the registry seeking membership with the Federation instance. The Association must have its associationType be “HasFederationMember”, the federation instance as its sourceObject and the Registry instance as its targetObject as shown in Figure 10.

[image: image39.png]

Figure 10: Federation Information Model

13 Security Information Model

This section describes the aspects of the information model that relate to the security features of the Registry.

Figure 11 shows the view of the objects in the Registry from a security perspective. It shows object relationships as a UML Class diagram. It does not show Class attributes or Class methods that will be described in subsequent sections. It is meant to be illustrative not prescriptive.

[image: image40.png]interface
Role

interface

| AccessControtPoticy | 0.

interface
Oject

interface
|privitegeAtiibute] 0.

privilgestibutes

privilege

interface
Privifege

interface

aroups

interface

principat | 0"

igentiies

interface
identi

· Figure 11: Information Model: Security View

13.1 Class AccessControlPolicy

Every RegistryObject may be associated with exactly one AccessControlPolicy, which defines the policy rules that govern access to operations or methods performed on that RegistryObject. Such policy rules are defined as a collection of Permissions.

[image: image41]
	Method Summary of AccessControlPolicy

	 Collection
	getPermissions()
 Gets the Permissions defined for this AccessControlPolicy. Maps to attribute named permissions.

13.2 Class Permission

[image: image42]
The Permission object is used for authorization and access control to RegistryObjects in the Registry. The Permissions for a RegistryObject are defined in an AccessControlPolicy object.

A Permission object authorizes access to a method in a RegistryObject if the requesting Principal has any of the Privileges defined in the Permission.

See Also:
Privilege, AccessControlPolicy
[image: image43]
	Method Summary of Permission

	 String
	getMethodName()
 Gets the method name that is accessible to a Principal with specified Privilege by this Permission. Maps to attribute named methodName.

	 Collection
	getPrivileges()
 Gets the Privileges associated with this Permission. Maps to attribute named privileges.

13.3 Class Privilege

[image: image44]
A Privilege object contains zero or more PrivilegeAttributes. A PrivilegeAttribute can be a Group, a Role, or an Identity.

A requesting Principal MUST have all of the PrivilegeAttributes specified in a Privilege in order to gain access to a method in a protected RegistryObject. Permissions defined in the RegistryObject's AccessControlPolicy define the Privileges that can authorize access to specific methods.

This mechanism enables the flexibility to have object access control policies that are based on any combination of Roles, Identities or Groups.

See Also:
PrivilegeAttribute, Permission
	Method Summary of Privilege

	 Collection
	getPrivilegeAttributes()
 Gets the PrivilegeAttributes associated with this Privilege. Maps to attribute named privilegeAttributes.

13.4 Class PrivilegeAttribute

All Known Subclasses:

Group, Identity, Role
[image: image45]
PrivilegeAttribute is a common base Class for all types of security attributes that are used to grant specific access control privileges to a Principal. A Principal may have several different types of PrivilegeAttributes. Specific combination of PrivilegeAttributes may be defined as a Privilege object.

See Also:
Principal, Privilege
13.5 Class Role

All Superclasses:

PrivilegeAttribute
[image: image46]
13.5.1 A security Role PrivilegeAttribute

For example a hospital may have Roles such as Nurse, Doctor, Administrator etc. Roles are used to grant Privileges to Principals. For example a Doctor Role may be allowed to write a prescription but a Nurse Role may not.

13.6 Class Group

All Superclasses:

PrivilegeAttribute
[image: image47]
13.6.1 A security Group PrivilegeAttribute

 A Group is an aggregation of users that may have different Roles. For example a hospital may have a Group defined for Nurses and Doctors that are participating in a specific clinical trial (e.g., AspirinTrial group). Groups are used to grant Privileges to Principals. For example the members of the AspirinTrial group may be allowed to write a prescription for Aspirin (even though Nurse Role as a rule may not be allowed to write prescriptions).

13.7 Class Identity

All Superclasses:

PrivilegeAttribute
[image: image48]
13.7.1 A security Identity PrivilegeAttribute

 This is typically used to identify a person, an organization, or software service. Identity attribute may be in the form of a digital certificate.

13.8 Class Principal

[image: image49]
Principal is a generic term used by the security community to include both people and software systems. The Principal object is an entity that has a set of PrivilegeAttributes. These PrivilegeAttributes include at least one identity, and optionally a set of role memberships, group memberships or security clearances. A principal is used to authenticate a requestor and to authorize the requested action based on the PrivilegeAttributes associated with the Principal.

See Also:
PrivilegeAttributes, Privilege, Permission
[image: image50]
	Method Summary of Principal

	 Collection
	getGroups()
 Gets the Groups associated with this Principal. Maps to attribute named groups.

	 Collection
	getIdentities()
 Gets the Identities associated with this Principal. Maps to attribute named identities.

	 Collection
	getRoles()
 Gets the Roles associated with this Principal. Maps to attribute named roles.

14 References

[ebGLOSS] ebXML Glossary,

http://www.ebxml.org/documents/199909/terms_of_reference.htm
[OAS]
OASIS Information Model

http://xsun.sdct.itl.nist.gov/regrep/OasisRegrepSpec.pdf

[ISO]
ISO 11179 Information Model

http://208.226.167.205/SC32/jtc1sc32.nsf/576871ad2f11bba785256621005419d7/b83fc7816a6064c68525690e0065f913?OpenDocument
[BRA97] IETF (Internet Engineering Task Force). RFC 2119: Key words for use in RFCs to Indicate Requirement Levels

http://www.cis.ohio-state.edu/cgi-bin/rfc/rfc2119.html

[ebRS] ebXML Registry Services Specification

http://www.oasisopen.org/committees/regrep/documents/3.0/specs/ebRS.pdf
[ebCPP] ebXML Collaboration-Protocol Profile and Agreement Specification

http://www.ebxml.org/specfrafts/
[UUID]
 DCE 128 bit Universal Unique Identifier

http://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml"

http://www.opengroup.org/onlinepubs/009629399/apdxa.htm#tagcjh_20

http://www.opengroup.org/publications/catalog/c706.htmttp://www.w3.org/TR/REC-xml

[XPATH] XML Path Language (XPath) Version 1.0

http://www.w3.org/TR/xpath
[NCName] Namespaces in XML 19990114

http://www.w3.org/TR/REC-xml-names/#NT-NCName.

15 Disclaimer

The views and specification expressed in this document are those of the authors and are not necessarily those of their employers. The authors and their employers specifically disclaim responsibility for any problems arising from correct or incorrect implementation or use of this design.

16 Contact Information

Team Leader

Name:
Kathryn R. Breininger

Company:
The Boeing Company

Street:
P.O. Box 3707 MC 62-LC

City, State, Postal Code:
Seattle, WA 98124-2207

Country:
USA

Phone:
425-965-0182
Email:

kathryn.r.breininger@boeing.com
Editor

 Name:

Sally Fuger

 Company:

Automotive Industry Action Group

 Street:

26200 Lahser Road, Suite 200

 City, State, Postal Code:

Southfield, MI 48034

 Country:

USA

 Phone:

(248) 358-9744

 Email:

sfuger@aiag.org
Technical Editor

 Name:

Farrukh S. Najmi

 Company:

Sun Microsystems

 Street:

1 Network Dr., MS BUR02-302

 City, State, Postal Code:

Burlington, MA, 01803-0902

 Country:

USA

 Phone:

(781) 442-0703

 Email:

farrukh.najmi@sun.com
Copyright Statement

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright ©The Organization for the Advancement of Structured Information Standards [OASIS] 2002. All Rights Reserved.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.
This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

OASIS/ebXML Registry Information Model v2.2

–Committee Working Draft

OASIS/ebXML Registry Technical Committee

� SAVEDATE \@ "MMMM yyyy" * MERGEFORMAT �September 2002�

� EMBED Word.Picture.8 ���

� Must change all of RIM to replace UUID with ObjectRef to allow remote references.

Copyright © OASIS, 2002. All Rights Reserved

_1055154165.doc
[image: image1.png]Creating A Single Global Electronic Market

