OASIS/ebXML Registry TC – Core Components Review



          August 7, 2003

CCTS Requirements Mapping


	Requirement
	RIM Mapping
	Comments

	[S1]
	· Unique Identifier – defer to existing RIM spec (UUID) – no updates required
· Version – defer to existing RIM spec (“majorVersion” and “minorVersion” RegistryEntry attributes) – no updates required
· Dictionary Entry Name – maps to RegistryObject.name
· Definition – maps to RegistryObject.description
· Usage Rule – out of our scope, as it references Section 6. Most likely will be covered by OASIS CAM
	· Core Components will be represented as ExtrinsicObjects – this covers: Basic Core Components (BCCs), Aggregate Core Components (ACCs), and Core Component Types (CCTs).

· For information on Association Core Components (ASCCs), see [S2]. 

	[S2]
	· We will store only 3 out of the 4 types listed as ExtrinsicObjects: Basic Core Component, Aggregate Core Component, and Core Component Type

· Association Core Components will be represented as Associations between ACCs, and will not be considered as “first rate” Core Components
· A level will exist within the ObjectType classification scheme at which all stored Core Component entities will exist. The entire ObjectType hierarchy will look as follows:

            Object Type

                           |

           RegistryObject

                             |

            RegistryEntry

                             |

           ExtrinsicObject

           |                          |

       _CCTS__        all others

      |          |        |
ACC  BCC  etc.    
	

	[S3]
	· Business Term – use Slot mechanism  
	

	[S4]
	· Aggregate Core Components shall contain all attributes listed in [S1], plus other attributes listed in other requirements
	

	[S5]
	· We are not storing Properties; rather, we are distributing the attributes of the “Properties” entities to other entities as appropriate

· We therefore consider this requirement to be “Stored Aggregate Core Components shall contain one or more Basic Core Components”
· Our handling: We will use Associations between Aggregate Core Components (ACCs) and the Basic Core Components (BCCs) that they contain
	

	[S6]
	· We are not storing Properties; rather, we are distributing the attributes of the “Properties” entities to other entities as appropriate

· We therefore consider this requirement to be “Stored Aggregate Core Components can be referenced by one or more Association Core Components”
· Our handling: We are not representing Association Core Components as entities in the registry. Reference requirement [S2]. 
	This requirement can be ignored for our purposes.

	[S7]
	· Object Class Term – use Slot mechanism
	

	[S8]
	· We are not storing Properties; rather, we are distributing the attributes of the “Properties” entities to other entities as appropriate
	This requirement can be ignored for our purposes.

	[S9]
	· We are not storing Properties; rather, we are distributing the attributes of the “Properties” entities to other entities as appropriate
	This requirement can be ignored for our purposes.

	[S10]
	· We are not storing Properties; rather, we are distributing the attributes of the “Properties” entities to other entities as appropriate

· We therefore consider this requirement to be “Stored Core Components shall include the following attributes”
· Our handling:
· Property Term - will be an attribute of a Basic Core Component (use Slot mechanism)

· Cardinality – will be an attribute on the Association that joins a Basic Core Component to an Aggregate Core Component, rather than on the Basic Core Component itself  (use Slot mechanism)
	

	[S11]
	· We are not storing Properties; rather, we are distributing the attributes of the “Properties” entities to other entities as appropriate

· We therefore consider this requirement to be “Basic Core Components are a particular category of Core Components.  As such, stored Basic Core Components shall include all attributes of Stored Core Components.”
· Our handling: Basic Core Components shall contain all attributes listed in [S1], plus other attributes listed in other requirements
	

	[S12]
	· We are not storing Properties; rather, we are distributing the attributes of the “Properties” entities to other entities as appropriate

· We therefore consider this requirement to be “Stored Basic Core Components shall be linked to the Data Type that describes the possible values of the Basic Core Component.”
· Our handling: We will use Associations between a Basic Core Component and a Data Type
	

	[S13]
	· We are not storing Properties; rather, we are distributing the attributes of the “Properties” entities to other entities as appropriate

· We therefore consider this requirement to be “Association Core Components are a particular category of Core Components.  As such, stored Association Core Components shall include all attributes of Stored Core Components.”
· Our handling: We are not representing Association Core Components as entities in the registry. Reference requirement [S2].
	This requirement can be ignored for our purposes.

	[S14]
	· We are not storing Properties

· We consider this requirement to be the same as [S6], but from an inverse perspective
	This requirement can be ignored for our purposes.

	[S15]
	· We consider this requirement to be the same as our interpretation of [S11]
	This requirement can be ignored for our purposes.

	[S16]
	· We consider this requirement to be the same as our interpretation of [S5], but from an inverse perspective
	This requirement can be ignored for our purposes.

	[S17]
	· We consider this requirement to be the same as our interpretation of [S13]
	This requirement can be ignored for our purposes.

	[S18]
	· We consider this requirement to be the same as our interpretation of [S6], but from an inverse perspective
	This requirement can be ignored for our purposes.

	[S19]
	· Core Component Types shall contain all attributes listed in [S1]
	

	[S20]
	· We believe that there is no need to represent a Content Component in the registry, for reasons that will be explained in the entry for requirement [S26]
· We believe that the Primitive Type (which we will call the “Content Primitive Type”) should be defined as an attribute of the Core Component Type (use Slot mechanism)
	

	[S21]
	· This cannot be enforced by the registry – it is a user issue
	This requirement can be ignored for our purposes.

	[S22]
	· Primary Representation Term – use Slot mechanism  

· Secondary Representation Term – use Slot mechanism
	

	[S23]
	· We will represent Supplementary Components as ExtrinsicObjects

· We will use Associations between a Supplementary Component and the Core Component Type to which it belongs
	

	[S24]
	· Name – maps to RegistryObject.name
· Definition – maps to RegistryObject.description

· Primitive Type – use Slot mechanism
· Valid Primitive Type values can be handled as instructions to Implementers

· Possible Values – use Slot mechanism
	

	[S25]
	See [S26]
	This requirement can be ignored for our purposes.

	[S26]
	· We will not represent Content Components in the registry

· The Primitive Type will be specified as an attribute of the Core Component Type – it will be known as a “Content Primitive Type” in order to differentiate it from a Supplementary Component Primitive Type

· Its value will be based on Table 8-2 of CCTS spec
	This requirement can be ignored for our purposes.

	[S27]
	· We will represent Data Types as ExtrinsicObjects

· Data Types shall contain all attributes listed in [S1]
	

	[S28]
	· Qualifier Term – this is the Property Term Qualifier Term
· It does not belong on Data Type; rather, we will place this attribute on Basic Core Components and Basic Business Information Entities (use Slot mechanism)
	This is currently in discussion. We may allow a Property Term Qualifier Term to exist on all 3 entities:

· Basic Core Component

· Basic Business Information Entity

· Data Type

	[S29]
	· We will use Associations between a Data Type and the Core Component Type on which it is based
	

	[S30]
	· Because we are not representing Content Components in the registry, we will rename Content Component Restrictions to Core Component Content Restrictions 

· We will represent Core Component Content Restrictions and Supplementary Component Restrictions as ExtrinsicObjects

· We will use Associations between a Core Component Content Restriction and the Data Type to which it relates

· We will use Associations between a Supplementary Component Content Restriction and the Data Type to which it relates
	

	[S31]
	· This is explanatory, and does not affect the registry architecture
	This requirement can be ignored for our purposes.

	[S32]
	· Restriction Type – use Slot mechanism 

· Valid Restriction Type values can be handled as instructions to Implementers; must be one of the values listed in Table 7-1 of CCTS spec, “Format Restriction” column

· Restriction Value – use Slot mechanism 

· Valid Restriction Value values will depend on the “Primitive Type” column of Table 7-1 of CCTS spec

· Expression Type – No other mention in CCTS, and no feedback received from CCTS Team; we will ignore this attribute
	

	[S33]
	· This is explanatory, and does not affect the registry architecture
	This requirement can be ignored for our purposes.

	[S34]
	· Supplementary Component Name – use Slot mechanism

· Must match the name of a Supplementary Component that already exists in the registry  

· Restriction Value:

· Valid Restriction Value values will depend on the “Primitive Type” column of Table 7-1 of CCTS spec
	

	[S35]
	·   We can consider a Business Context to simply be a classification scheme in the registry - for example, the "Geopolitical Context" classification scheme.

· No special representation is required in CCRIM

· Implementers will be instructed to create a classification scheme for each of the 8 context categories
	

	[S36]
	· This is explanatory, and does not affect the registry architecture
	This requirement can be ignored for our purposes.

	[S37]
	·   Requirement does not exist in CCTS spec
	This requirement can be ignored for our purposes.

	[S38]
	·   This requirement is superceded by our current classification mechanism 
	This requirement can be ignored for our purposes.

	[S39]
	· This is represented by the ClassificationNode.code attribute in our current registry architecture

· No special representation is required in CCRIM
	This requirement can be ignored for our purposes.

	[S40]
	·   This is handled by the fact that a classification node belongs to a given classification scheme that represents one of the "8 recognized types"

· No special representation is required in CCRIM.
	This requirement can be ignored for our purposes.

	[S41]
	·   For us, this is actually "Stored Context values MUST belong to a particular Classification Scheme."

· No special representation is required in CCRIM.
	This requirement can be ignored for our purposes.

	[S42]
	· This can be handled by the creation of a "Contains" Association between 2 classification nodes – for example, “United States” CONTAINS “New Jersey”
	

	[S43]
	· This requirement is superceded by our current classification mechanism and its representation of classification nodes
	This requirement can be ignored for our purposes.

	[S44]
	
	

	[S45]
	
	

	[S46]
	
	

	[S47]
	
	

	[S48]
	
	

	[S49]
	
	

	[S50]
	
	

	[S51]
	
	

	[S52]
	
	

	[S53]
	
	

	[S54]
	
	

	[S55]
	
	

	[S56]
	
	

	[S57]
	
	

	[S58]
	
	

	[S59]
	
	

	[S60]
	
	

	[S61]
	
	

	[S62]
	
	

	[S63]
	
	

	[S64]
	
	

	[S65]
	
	

	[S66]
	
	

	[S67]
	
	

	[S68]
	
	

	[S69]
	
	

	[S70]
	
	

	[S71]
	
	

	[S72]
	
	

	[S73]
	
	

	[S74]
	
	

	[S75]
	
	

	[S76]
	
	

	[S77]
	
	

	[S78]
	
	

	[S79]
	
	

	[S80]
	
	

	[S81]
	
	











