
Comments on SLTPPC Examples

Brian A. LaMacchia
Microsoft Corporation

bal@microsoft.com

Overview
This document contains detailed comments on the examples (draft as of 12/10/02) presented by the Samuelson Law, Technology & Public Policy Clinic to the OASIS RLTC. I’ve organized these comments into eight sections: sections 1-7 correspond to the examples in the SLTPPC document, and section 8 is a general discussion on the communication requirements expressed throughout the SLTPPC examples.

In general, except for the communication requirements/assumptions in the examples, I think the examples are pretty reasonable. (Example 7 needs to be fleshed out a bit more, see below.) However, as I mentioned on the phone previously, I do not believe that the “communication restrictions” described in the examples are correct. This issue is discussed in detail in Section 8 below.

Definition: Throughout this document I use the symbol “r(t” to denote “a right r with respect to resource t”.
1. “Digital First Sale” (a.k.a. non-revocable transfer)
The first example specified in the document, the “Digital First Sale” example, is what I would call an example of a “non-revocable transfer” of rights. Assume that we have three parties CH, A and B. CH grants to A some right r with respect to a resource t (r(t), and assume those rights are transferable through some mechanism (more on this in a bit). At some point following the granting of rights to A, A decides to transfer those rights to B. The example was chosen to model first sale doctrine, so it is assumed that A wishes to transfer all of his rights with respect to the resource to B in a non-revocable transaction. (Revocation could be modeled as a condition on the exercise of the rights, of course.)

The transfer could be done in one of at least two ways (maybe there are more possibilities): “at-most-once” delegation by A to B and issuance of a license from CH to B directly. I think either of these would be reasonable, but the way the example is set up “at-most-once” delegation would have to be used
. In “at-most-once” delegation, when CH grants A r(t, CH also grants A the right to delegate “r(t” exactly once to anyone, and furthermore constrains this second right such that exercising the delegation that will cause the original license to stop working (since A is no longer supposed to have r(t). This probably requires some shared state, which is a fine thing to show in an example.
Note: I think there is a bug in the description of Step 2 in the example. Step 2 reads, “In a step that does not involve the License at all, A agrees to surrender its permissions to B” (italics added). I don’t understand how A can convince B that A has the permissions it’s proposing to surrender to B (r(t) without showing B the license from CH that granted A those permissions. Furthermore, since we’re operating here in a delegation scenario B is going to have to end up with a copy of A’s delegation license at the end of the transaction in order to make his own license (which was issued by A) valid. That is, once the transaction finishes, B has to be able to convince a third party that B has r(t. In this example A is going to issue a license to B that says A gave r(t. If B wants to use that license it’s likely only going to be meaningful when combined with the original delegation license CH granted to A (which gave A the right to delegate r(t in the first place.)
2. “Lending” (reversible transfer where the reversal condition is time-based)

Example 2 in the document, the “Lending” example, is an example of a transfer that is time-limited. For the duration of some defined (positive) lending period, it is desired that A’s license to r(t is suspended and that right should be delegated to B. When the time period expires, B’s license to r(t should automatically be invalidated and A’s license to r(t should be restored.

The interesting part of this example, in my opinion, is the automatic restoration of A’s license to r(t that has to happen when the lending period has expired
. It’s clear that the license B ends up with to r(t can have a validity period that matches the desired lending period, so that upon expiration of the validity period the license is automatically invalidated. However, how would A’s rights be automatically restored? I see a couple of possible approaches, depending again on the overall model:

1. License re-issuance by CH model: If we assume the temporary transfer of r(t from A to B is accomplished with the assistance of the CH, then the CH could effectively “subdivide” the grant of r(t temporally between A and B. That is, assume to start that CH grants a license r(t valid from T0 to T3 to A. A then wants to loan that right to B for the period T1 to T2, with T0 <= T1 < T2 <= T3. A asks CH to subdivide the license. CH revokes (or otherwise invalidates, perhaps via state) the original license to A for r(t from T0 to T3 and issues three replacement licenses:

a. CH issues A r(t from T0 to T1
b. CH issues B r(t from T1 to T2

c. CH issues A r(t from T2 to T3

Notice that upon issuance each of these licenses could be further subdivided. In any case, A is guaranteed to have r(t during the period from T2 to T3 without any additional action required on B’s part.

Of course, this approach requires the participation of CH to subdivide the original license. The example as defined seems to preclude any participation of CH, though. Given that restriction I don’t see how the license can be subdivided after the fact
. Assuming this restriction is desired then the solution will probably have to use some secure state held by a trusted third party. Such a solution would leverage at-most-once delegation (as in the previous example) and probably look something like this:
2. At-most-once delegation model: In this model, we assume CH has issued A r(t from T0 to T3 and the right to delegate that license. Associated with the license would have to be a piece of state “enabling” the license (that’s how the at-most-once delegation would be enforced). At the time at which the loan occurs, A issues B a license granting r(t for time period [T1, T2]. The license from A to B would also have to reference some state location, or at a minimum the state associated with the license from CH to A would have to be disabled during the time period [T1, T2]. The state server would then have to know that when the license from A to B expires at T2, the state needs to migrate back to re-enable A’s license.
Note that a hybrid of schemes 1 and 2 is also possible: when A wishes to lend r(t to B for [T1, T2], A could ask CH to subdivide the license into three time period, but re-issue all three licenses to A. So we’d have:
a. CH issues A r(t from T0 to T1

b. CH issues A r(t from T1 to T2

c. CH issues A r(t from T2 to T3

Then A delegates the new license generated by step (b) to B as in Example 1 above. CH would only know that A wanted to do something on the time subdivision boundary but not know to whom A was lending the right (or even if the subdivision was requested in order to enable A to lend the item in the first place).
3. “Lending with a Subset of Permission” (reversible, subset transfer where the reversal condition is time-based)

The third example in the document, “Lending with a Subset of Permissions,” extends Example 2 with the added feature that only a subset of the permissions granted from CH to A should be delegated from A to B. I believe that XrML’s Grant design naturally solves this example because by definition two independent Grants from CH to A of two separate rights are individually delegable. The Examples SC should certainly show how delegation is separable among n Grants within a single License, but I don’t think there are any difficult issues here.

4. “Lending with a Non-Divisible Group of Permissions” (reversible transfer of a non-divisible group of grants where the reversal condition is time-based)

Example 4, “Preventing Disaggregation of Usage Permissions,” is another variant on Example 2. In this example, CH grants to A the set of delegable rights r1(t, r2(t, …, rn(t, but the rights must be delegated as a unit. That is, A can only delegate all of the rights in the set to B as a unit (all-or-nothing). I believe that non-divisibility of a set of grants is provided directly by XrML’s GrantGroup structure, so solutions for this example will essentially be identical to those presented for Example 2 above except for the use of GrantGroup. Use of GrantGroup definitely needs to be shown by the Examples SC in some of their examples anyway, and this is a fine way to motivate that example.
5. “Lending with re-lending” (reversible transfer across multiple parties)

The fifth example, “Lending a Borrowed Object,” shows the recursive lending of an object that has already been loaned once. This is an obvious composition of some of the previous examples. If A lends an object to B and B subsequently lends that object to C, the licenses & protocols involved in performing the loan from A to B will be analogous to the licenses & protocols involved when B lends the object to C. However, there may be restrictions on the number of times an object can be serially loaned (the “depth” of the loaned object from CH), and I would suggest re-writing this example (and subdividing it) to focus on the types of delegation restrictions that are possible. Four classes of examples come to mind:
1. Unconstrained re-lending of an object (unconstrained delegation). This is the situation that most closely matches Example 5 as described. An object may be loaned from A1 to A2, then from A2 to A3, …, arbitrarily so long as a transfer occurs on each loan.
2. Depth-constrained re-lending of an object. This is a type of constrained delegation where the issuer of a delegable license specifies a depth restriction on the license. For example, if CH grants A r(t and makes the grant delegable with depth=1, A could delegate r(t to B but B would not be permitted to further delegate r(t to C (which would violate the depth constraint). In the degenerate case with depth=0, delegation is not permitted.
3. Re-lending an object with other constraints. In either case 1 or 2 above, there could be other types of constraints imposed on exercising the right to delegate a license. (Example 6 below, where a fee is charged to loan an object, is one such type of constraint.) Such constraints may be present from the initial “sale/license” (when CH grants A r(t), or may be added somewhere “along the chain” (e.g. CH grants A delegable r(t, A then delegates to B r(t with the constraint that B pay A on any further delegations).
4. Restricting the addition of constraints on sub-delegations. Similar to Example 4 above, an issuer of a delegable grant may choose to restrict the ability of the delegator to add restrictions when the grant is later delegated. For example, supposed CH grants to A delegable r(t, but only wants to all A to delegate the grant for free (no fee collections).
I think it will be important for the Examples SC to create examples than demonstrate all four of these classes of delegation.
6. “Lending with fees” (reversible transfer with fee-based conditions)

The sixth example, “Leasing or Renting an Object,” is essentially an instance of sub-case 3 of case 5 above (re-lending an object with other constraints). There are lots of possible fee models one could consider; two that are likely of interest are:

1. Fees for invoking delegation rights (a fee that has to be paid in order to loan an object).
2. Fees for invoking rights that have been granted as part of a loan (fee for use).
It would probably also be interesting to consider scenarios that use fees and restrictions on fees along the lines of sub-case 4 of case 5 above. That is, we can imagine scenarios in which CH grants A delegable r(t and restricts the types of fees that can be collected by A when delegating (e.g. no fees allowed for lending, fee < $1/copy, 15% of fee must be returned to CH, etc.).
The description of Example 6 includes language claiming that there must be “no communication of A’s collection of a fee,” but like the anonymity statements in the other examples this restriction is not fundamental to the example. Whether information about fee collection is reported back upstream is going to be a policy/contract issue between licensor (CH) and licensee (A) and then again between re-licensor (A) and secondary licensee (B). Semantic restrictions on the types of conditions A can add to delegated versions of grants A receives are fine to consider but are not necessarily required in all scenarios. (Perhaps there should be a separate section of the examples produced by the Examples SC showing how a delegable license could contain restrictions on the types of conditions that can be added at “lower levels” in the delegation chain and how such restrictions would be evaluated.)

7. “Format conversion”
The seventh example, “Copying an Object Into Multiple Formats,” is fundamentally different from the types of scenarios presented in the previous six examples. Although underspecified, I believe the goal of this example is to demonstrate the use of variables (or restricted variables) to show that an issuer can write licenses that grant the ability to perform one of a set of actions on a resource, and let the value of the variable – the particular action desired -- be instantiated at license use time. In this particular case, the goal is to show a grant that permits the recipient to convert data among multiple formats serially, where it is assumed that a right to convert the data into format Fi must be held in order to actually convert the data into format Fi
.

Note: I’m not a copyright attorney, so I will defer to those who are, but I don’t believe the first sentence of this example is true, at least under U.S. Copyright law. The first sentence of this example reads, “An important part of the utility of physical copies of works is that the owner of a copy can make a personal copy in a format suitable for use on a particular device.” I don’t believe there’s any provision in U.S. Copyright law that grants the purchaser of a copyrighted work a blanket “format conversion” right. Format conversion is the creation of a derivative work, which is a separate, exclusive right. Nothing that I’m aware of in fair use jurisprudence would automatically grant the owner of a work the right to create a derivative work that was a copy of the work in a different format. Nor am I aware of anything in the statute itself that would imply this. (There might be something in the AHRA that applies to personal audio recordings, but certainly nothing in the digital content space.) Has there been some newly-decided case recently that has changed this?
Notwithstanding whether a content purchaser has an implicit right to convert formats, it’s certainly possible that a content owner would license the work in multiple formats such that an accessible copy only existed in one format at a time. This could be done by combining licenses granting the right to convert content to a particular format with licenses granting the right to play content in a particular format and making sure that only one “play” license was active at any single point in time. The latter operation would require some sort of shared state among the “play in format Fi” licenses so that exactly one is active at a time, but that’s possible to do with shared state. Alternatively, one could make the conversion process contingent on deactivation of the license for the source format, such that the process of converting from Fi to Fj creates the “play” license for Fj and disables the “play” license for Fi. Either way this seems like something interesting to model, although I’d make it lower priority than the other examples.
A related scenario that we should probably include in the examples is something along the lines of “Alice purchases a piece of music/video recorded at quality Q1 and received a play license for that content. At some point in the future Alice decides she wants to upgrade the content to a higher quality Q2. Show how to write a license for r(t at quality Q2 that grants anyone with a license to r(t at Q1 the right to buy the same content at Q2 for a discounted fee.” This is a basic example of using a pre-condition to lower a transaction fee.

8. Communication restrictions and anonymity

My final set of comments has to do with the “communication requirements” present in all of the examples. Generally speaking, these requirements are included as constraints that preclude communication between CH and A when A is delegating a grant obtained from CH to B, or similarly preclude “involving” the license from CH to A granting r(t when A performs some form of delegation or transfer. These restrictions may be appropriate in some cases but I do not believe they make sense in all cases for a number of reasons.
First and foremost, anonymity protections in license transactions are really a function of the protocol not the message format. For a message format, it is sufficient to show that the format supports identification of principals by public keys or, more ideally, possession of some proof that can be communicated using a zero-knowledge protocol. XrML licenses are built on top of the core constructs of XMLDSIG; in particular, an XrML principal can always be a KeyHolder, which in turn can contain an XMLDSIG KeyInfo. In this manner any cryptographic identity (public/private key pair, share of a k-of-n secret, ZK prover) can be communicated to another party. (Issuers have the same anonymity possibilities since the issuer is the signed on the license’s digital signature and the signed of the Signature element, if identified at all, is listed in an XMLDSIG KeyInfo.

Second, the notion that a parent license cannot be “involved” in the creation of a subordinate/delegated license
 seems fundamentally wrong to me, at least if I understand the meaning of “involved” properly. Assume that CH has granted to A r(t and A wants to delegate that r(t to B, perhaps in exchange for some consideration. A needs to be able to convince B that A has r(t to delegate and that the delegation would be within A’s authority. In order to do that A must convince B that A has r(t delegable, and the only way to do that (absent some ZK protocol we don’t have) is for A to show B the license containing the grant A received of r(t from CH. B needs to see that license to confirm that A has r(t, A can delegate r(t, and that the license B receives from A chains properly with the license A received in the first place. Furthermore, when B wants to use the delegated right B will have to reveal to the relying party both the license A(B of r(t (grant from A to B of r(t) as well as CH(A of r(t (grant from CH to A of r(t).
Third, whether A can delegate/transfer rights to B without CH’s knowledge is a contract/license issue between CH and A, not something that can be universally precluded. Depending on their relationship I could certainly believe that mandatory notice could be required, no notice could be required, or notice might be required only if some other threshold was met. In any case, it seems OK to me to say that some of the examples should demonstrate the various types of anonymity-preserving protocols that are possible, but different business scenarios & different protocols will have different anonymity-preserving (or non-preserving) properties.

A fourth point, which doesn’t come through in the examples and which I’ve tried to make explicit in these comments, is that most of the examples will need secure state in order to implement the exercise-count-limited (“at-most-once”) delegation restrictions. The use of state, potentially provided by a third party in pseudonymous fashion, is an important aspect of XrML licenses (it’s how exercise limits like play counts are recorded & enforced, for example). In delegation cases where communication with CH is not desired, some use of secure state is going to be necessary to implement the transfer. Essentially, the “activation” of the transferred license will depend on the transfer of shared state to grant to B from the grant to A (otherwise A could delegate an infinite number of times in parallel). The use of shared state may be anonymous, pseudonymous, or identity-revealing, depending on who provides the state service and what those protocols look like. If it’s desired, some of the examples could show how a trusted third party could maintain the state in a privacy-preserving fashion, or how the use of other types of protocols might achieve similar results.
� At-most-once delegation has to be used because as the example is stated no communication with the issuer was allowed. This meant we had to use the delegation mechanism. If communication with CH was permitted, then CH could issue a new license to B when A requests it. Something would have to change to denote that A no longer had access to the originally grant, but that could be done with some state CH has access to (and was referenced in the original server).

� This is what separates this example from two cascaded instances of Example 1 above (A transferring the rights to B, and subsequently B transferring them back to A).

� One possible solution would be to pre-divide the license along “likely” lending period lines. I suspect this isn’t practical because (a) you’d get a large increase in the number of licenses relative to the number of “lends”; (b) subdivision of licenses would still not be possible outside of the original boundaries, (c) there would be no way to “give change” or return an item early. Similar problems arose in the e-cash/digital money space, but there it was OK for a user to go back to the bank that issued the currency and ask to have the currency subdivided.

� For the sake of simplicity, and without loss of generality, we assume that the right to convert to format Fi permits conversion from any format F1,…,Fn to format Fi. We could alternatively model this example using explicit pairwise grants allowing conversion from Fj to Fi.

� See, e.g., Step 2 of Example 1: “In a step that does not involve the License at all, A agrees to surrender its permissions to B.”

8

