[image: image1.png]OASIS)

Symptoms Automation Framework (SAF) Cloud Profile

Working Draft 08
12 Mar 2012
Specification URIs:
This Version:

-

Previous Version:

[NA]

Latest Version:

-
Technical Committee:

OASIS Symptoms Automation Framework (SAF) TC
Chair(s):

Jeffrey Vaught, CA Inc

Stavros Isaiadis, Fujitsu Limited

Editor(s):

?

Declared XML Namespace(s):

http://docs.oasis-open.org/saf/ns/symptoms/2009/10

Abstract:

The Symptoms Automation Framework (SAF) is a generic framework for the analysis, diagnosis, and prevention or treatment of conditions that can arise within a system. Due to the generic nature of the framework, certain communities will want to further standardize/ constraint the framework to suit the specific needs of the domain. This document specifies such constraints and guidelines for the application of SAF to the domain of cloud management and business alignment between cloud consumers and providers.

Status:

This document was last revised or approved by the SAF TC on the above date. The level of approval is also listed above. Check the “Latest Version” or “Latest Approved Version” location noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send A Comment” button on the Technical Committee’s web page at http://www.oasis-open.org/committees/saf/.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-open.org/committees/saf/ipr.php.

The non-normative errata page for this specification is located at http://www.oasis-open.org/committees/saf/.

Notices

Copyright © OASIS® 2008. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS' procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.

The names "OASIS", MACROBUTTON NoMacro [insert specific trademarked names and abbreviations here] are trademarks of OASIS, the owner and developer of this specification, and should be used only to refer to the organization and its official outputs. OASIS welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above guidance.
1. Introduction
1.1 Purpose
This document specifies guidelines for the application of the Symptoms Automation Framework (SAF) to the domain of cloud management and specifically utilizing the Distributed Management Task Force (DMTF) Cloud Management Working Group (CMWG) Interface [CMWG]. It serves as a primer for anyone wishing to use SAF to facilitate collaboration between cloud consumers and cloud providers, and automate cloud management operations. As a primer, it has been kept intentionally simple in terms of the use cases demonstrated.
Similar profiles may be developed to serve different domains/communities wishing to utilize SAF for management, diagnosis and/or treatment purposes. In such cases, it is expected that the profiles follow the same format and outline for consistency and readability purposes.
1.2 Notations and Terminology
The key words must, must not, required, shall, shall not, should, should not, recommended, may, and optional in this document are to be interpreted as described in [RFC2119]
[Maybe we define the most important SAF terms here as well or reference the spec definitions]
1.3 Namespaces

The following namespaces are used in this document:

	Prefix
	Namespace

	xsd
	http://www.w3.org/2001/XMLSchema

	sym
	http://docs.oasis-open.org/symptoms/symptoms_v1

	sycl
	http://docs.oasis-open.org/symptoms/cloud_profile_v1

2. Definitions
There are two main roles in this profile: the Cloud consumer and the Cloud provider. A Cloud provider is an Infrastructure as a Service (IaaS) solution provider that further exposes management interfaces adhering to the DMTF CMWG standard.
A Cloud consumer is any individual or company wishing to host one or more applications into a cloud solution provided by a Cloud provider. The consumer will use the CMWG interface to manage the virtual instances allocated to his application(s), e.g. add more storage, request a new or update an existing machine, etc.

In addition, both the Cloud consumer and provider will adopt the SAF role of Catalogue Author for the purposes of this profile, i.e. they will both contribute Syndrome and Protocol definitions to a common Catalogue instance, typically to be provided by the Cloud Provider, e.g. as part of a more complete Cloud solution (although systems with more than one Catalogues are certainly an option).

Both of them will also adopt the roles of Symptom Sources, since Symptoms originating from both the Provider’s infrastructure monitoring components, and in response to the Consumer’s business indicators, will typically flow through the system. This flow of Symptoms from different sources is what enables SAF to act as a collaboration facilitator between the consumer and provider.
3. Use Cases
The significant migration to the Cloud that has taken place for a large number of businesses over the last few years, has resulted in a disconnect between providers and consumers. Where these would typically have a strong relationship and a good understanding of business requirements and technical challenges, in the Cloud this is no longer the case, owing to the on demand and contract-less patterns of usage and billing. Providers do not know their customer’s businesses, and consumers do not necessarily know the technicalities of how providers operate and manage their services.It has therefore become imperative to provide a means for allowing the mutual understanding and collaboration between consumers and providers towards a much improved level of collaboration and the extension of the Cloud delivery model to domains and business functions that do not lend themselves very well to the current model. SAF can be used to better align the high level business requirements to lower-level provider operations, in a collaborative environment.
We envision Cloud providers supplying Protocols that can be used by the consumers in order to link their requirements to cloud operations such as the provisioning/deprovisioning of cloud resources via CIMI [CIMI]. In addition, both providers and consumers would typically contribute syndromes that define the criteria for invoking such protocols: consumers providing the syndromes related to their specific business activities, and providers supplying the syndromes related to the systems they manage. Together, these contributions will form the basis for cooperative decision making within the SAF framework
In the sections below, we outline two use cases for consumer driven decision support. The first is almost exclusively provider supplied, with the SAF elements of syndrome and protocol being contributed by the cloud provider. The second use case expands on the first, including a syndrome contributed by the consumer.

3.1 Consumer driven decision support for Elasticity
Abstract: Today, Cloud providers supply rules & actions for elastically provisioning/deprovisioning machines. Our first use case mimics those rules/actions but allows the Consumer to pick the most appropriate combination of rules/actions for their business. SAF, as an ecosystem where Consumer and Provider knowledge contributions are combined into a single decision support system, facilitates those Consumer choices.
Description: An online store hosts its application on Cloud provided, load-balanced machines. SAF uses a combination of Syndromes (supplied by Provider) to detect high/low cpu load, invoking Protocols (also supplied by the Provider) to provision machines accordingly.
 The provider will contribute two Syndromes which detect symptoms reporting cpu load of greater than 90% and 95% respectively. The provider will also contribute two preventative Protocols which will provision additional hardware in an attempt to lessen the cpu burden on existing machines. The two Protocols will provision an additional 10% and 5% respectively.

 The provider will leave it to the consumer to determine how these Syndromes and Protocols are linked together. For example, the consumer may decide to associate a more conservative protocol, provisioning only 5% additional resources, with a more sensitive syndrome, detecting when cpu load exceedes 90%. Another possibility, not fully explored in this document, is to associate both protocols to each syndrome, allowing the diagnostician to sort out the best choice of protocol based upon guidance provided in the syndrome and protocol definitions.

3.1.1 Provider Contributed Protocol: Provision-10-Percent
Protocol represents the “action definition” portion of the rule/action equation. In our scenario, the Provision-10-Percent protocol is a definition describing the process by which an additional 10 percent of machines are provisioned (or deprovisioned) and which elements of the triggering symptoms are passed as parameters. In addition, the protocol provides guidance to the diagnostician about the risk/reward of invoking such an action, such that it can choose one protocol over another.
<Protocol>

The first four elements uniquely identify the protocol and its constituent prescription instances.

ProtocolType uniquely identifies the type of protocol
<ProtocolType>

<Uri>http://saf.com/types/protocols/compute_provision_10</Uri>

</ProtocolType>
PrescriptionType uniquely identifies the type of the prescription instances generated, typically by the Diagnostician, baring the ProtocolType
<PrescriptionType>

<Uri>http://saf.com/types/prescriptions/compute_provision_10</Uri>

</PrescriptionType>

ProtocolName is a descriptive name for the protocol
<ProtocolName>Provision-10-Percent</ProtocolName>

Description provides a more verbose explanation for the protocol
<Description>Provision or DeProvision virtual machines</Description>

The next four elements relate to guidance that can be used by the diagnostician to best choose the most appropriate protocol. For example, if the diagnostician understands the triggering conditions to be of high urgency, it can select a protocol with the appropriate duration such that the situation is attended to sooner rather than later.
Effectiveness is a measure of the expected success of the protocol.
<Effectiveness>Effective</Effectiveness>

Risk is a measure of the expected or unexpected side effects of invoking this protocol.
<Risk>Moderate</Risk>

Duration is a measure of the length of time to complete the protocol.
<Duration>Moderate</Duration>

Function describes whether the protocol is diagnostic, preventative, or remedial in nature.
<Function>Preventative</Function>

The final two elements in this example define the process instructions and a means to extract parameters to that process from the set of triggering symptoms.

Directive is an xquery expression used to set/derive/extract parameters from the set of triggering symptoms. The triggering symptoms are the set which match our syndrome signature (see section 3.1.3).
In our scenario, we do all three – set, derive, and extract. We directly set the change percentage parameter to 10. We derive a “provision” parameter by asserting to true if cpu load is greater than 50 percent, and asserting to false if cpu load is less/equal than 50 percent. And finally, we extract the client id parameter from the subject element of the triggering symptom(s).
The expression ultimately returns an xml document containing the parameters within a single enclosing element. The diagnostician will extract these parameters from the resulting xml document and provide them as parameters to the process of the prescription.
<Directive>

let $client_id := /Symptoms/Symptom/Subject

let $change_percentage := 10

let $provision := true

if (/Symptoms/Symptom/Content/AggregateCpu/AverageLoad > 50) then (

 $provision := true

)

else (

 $provision := false

)

return

<Details>

 <ClientID>$client_id</ClientID>

 <ChangePercentage>$change_percentage</ChangePercentage>

 <Provision>$provision</Provision>

</Details>
</Directive>
Process is an implementation specific set of workflow instructions that are executed by the prescriptive instance of the protocol. The values extracted via the directive are supplied as parameters to the process.
In our scenario we use the Ruby language as the means for defining process instructions that leverage the CIMI standard. The arguments for ClientID, ChangePercentage, and Provision are passed as parameters to the Ruby script.

<Process>

Using Ruby scripting language below, and passing arguments for:

$ClientID, $ChangePercentage, and $Provision
First, we get the list of current machines by calling CIMI “get” against clientid/machines url.
get_response = RestClient.get(“http://saf.com/cimi/” + $ClientID + “/machines”)
	The http response resembles the xml below:

<MachineCollection>

 <uri>http://saf.com/cimi/12345/machines</uri>

 <name>mymachines</name>

 <description>my machines</description>

 <created>2011-10-04T11:28:00</created>

 <machine href=”http://saf.com/cimi/12345/machine/mymachine1” />

 <machine href=”http://saf.com/cimi/12345/machine/mymachine2” />

 <machine href=”http://saf.com/cimi/12345/machine/mymachine3” />

 <machine href=”http://saf.com/cimi/12345/machine/mymachine4” />

 <operation rel=”add” href=”http://saf.com/cimi/12345/machines” />

</MachineCollection>

Next, we get a count of those current machines by running an xpath “count” function against the response. The count is then increased by the $ChangePercentage parameter.
$client_uri = “http://saf.com/cimi/” + $ClientID + “/machines”

$machine_count = XPath(count($get_response/MachineCollection[$client_uri]/machine

$new_machine_count = $machine_count * (1 + $ChangePercentage)

For each new machine…
do

 begin
 We form the CIMI request for MachineCreate, using a template.
 body = {

 <MachineCreate>

 <name>mymachineXXXXXX</name>
 <machineTemplate href=”http://saf.com/cimi/” + $ClientID + “/machineTemplates/LinuxTemplate” />

 </MachineCreate>

 }

 And then invoke the CIMI MachineCollection “add” operation to provision the machine.
 if ($Provision == true)

 RestClient.post(get_response/MachineCollection/operation[@rel=’add’]/@href, body)

 else

 (
 Deprovisioning is beyond the scope of this document.
)

 end

 $new_machine_count = $new_machine_count - 1

while $new_machine_count >= 0

 </Process>
</Protocol>

3.1.2 Provider Contributed Protocol: Provision-5-Percent

This protocol is very similar to the former, except we will provision an additional 5 percent rather than 10 percent.

<Protocol>

The first four elements uniquely identify the protocol and its constituent prescription instances.

ProtocolType uniquely identifies the type of protocol
<ProtocolType>

<Uri>http://saf.com/types/protocols/compute_provision_5</Uri>

</ProtocolType>
PrescriptionType uniquely identifies the type of the prescription instances generated, typically by the Diagnostician, baring the ProtocolType
<PrescriptionType>

<Uri>http://saf.com/types/prescriptions/compute_provision_5</Uri>

</PrescriptionType>

ProtocolName is a descriptive name for the protocol
<ProtocolName>Provision-5-Percent</ProtocolName>

Description provides a more verbose explanation for the protocol
<Description>Provision or DeProvision virtual machines</Description>

The next four elements relate to guidance that can be used by the diagnostician to best choose the most appropriate protocol. For example, if the diagnostician understands the triggering conditions to be of high urgency, it can select a protocol with the appropriate duration such that the situation is attended to sooner rather than later.

Effectiveness is a measure of the expected success of the protocol.
<Effectiveness>Effective</Effectiveness>

Risk is a measure of the expected or unexpected side effects of invoking this protocol.
<Risk>Moderate</Risk>

Duration is a measure of the length of time to complete the protocol.
<Duration>Moderate</Duration>

Function describes whether the protocol is diagnostic, preventative, or remedial in nature.
<Function>Preventative</Function>

The final two elements in this example define the process instructions and a means to extract parameters to that process from the set of triggering symptoms.

Directive is an xquery expression used to set/derive/extract parameters from the set of triggering symptoms. The triggering symptoms are the set which match our syndrome signature (see section x.x.x.x).

In our scenario, we do all three – set, derive, and extract. We directly set the change percentage parameter to 5. We derive a “provision” parameter by asserting to true if cpu load is greater than 50 percent, and asserting to false if cpu load is less/equal than 50 percent. And finally, we extract the client id parameter from the subject element of the triggering symptom(s).

The expression ultimately returns an xml document containing the parameters within a single enclosing element. The diagnostician will extract these parameters from the resulting xml document and provide them as parameters to the process of the prescription.

<Directive>

let $client_id := /Symptoms/Symptom/Subject

let $change_percentage := 5
let $provision := true

if (/Symptoms/Symptom/Content/AggregateCpu/AverageLoad > 50) then (

 $provision := true

)

else (

 $provision := false

)

return

<Details>

 <ClientID>$client_id</ClientID>

 <ChangePercentage>$change_percentage</ChangePercentage>

 <Provision>$provision</Provision>

</Details>
</Directive>
Process is an implementation specific set of workflow instructions that are executed by the prescriptive instance of the protocol. The values extracted via the directive are supplied as parameters to the process.

In our scenario we use the Ruby language as the means for defining process instructions that leverage the CIMI standard. The arguments for ClientID, ChangePercentage, and Provision are passed as parameters to the Ruby script.

<Process>

This element is identical to the prior protocol’s process element and is not repeated here.

</Process>

</Protocol>

3.1.3 Provider contributed Syndrome: CPUExtremes-LowSensitivity

Syndrome represents the “rule definition” portion of the rule/action equation. In our scenario, the CPUExtremes-LowSensitivity syndrome describes the pattern of symptoms where cpu load exceeds 95 percent of maximum.

<Syndrome>

The first three elements uniquely identify the syndrome.

SyndromeType uniquely identifies the type of syndrome.

<SyndromeType>

 <Uri>http://saf.com/types/syndrome/cpuload</Uri>

</SyndromeType>

SyndromeName is a descriptive name for the syndrome.
<SyndromeName>CPUExtremes-LowSensitivity</SyndromeName>

Description is a verbose explanation of the syndrome.
<Description>

 Detect when cpu load has exceeded a threshold and provision additional servers

</Description>

The next three elements relate to guidance that can be used by the diagnostician to best choose the most appropriate protocol. For example, the diagnostician could favor less “risky” protocols when the syndrome Impact is VeryLow. Similarly, a syndrome Likelihood of Rare may not illicit enough confidence to invoke a “risky” protocol.

Likelihood is a measure of typicality of the syndrome.

<Likelihood>Common</Likelihood>

Impact is a measure of the consequences of this syndrome if not treated.
<Impact>Moderate</Impact>
Urgency is a measure of the speed and tenacity with which this syndrome should receive attention.
<Urgency>Moderate</Urgency>

Signature is an xquery expression specifying the criteria for recognizing a pattern of symptoms defined by this syndrome. The resulting document is the set of matching symptoms.
In our scenario, the xquery enumerates through all of the symptoms in the store, matching those with a particular symptom type (eg. aggregate_cpu) and an average cpu load of greater/equal than 95 percent.

<Signature>

 for $x in /Symptoms/Symptom

 where

 $x[SymptomType=” http://saf.com/types/symptom/aggregate_cpu”

 and

 $x/Content/AggregateCPU/AverageLoad >= 95]

</Signature>
AssociatedProtocols references a list of protocols that can potentially be invoked as a result of this syndrome being activated. The diagnostician will choose the most appropriate protocol from this list based upon the guidance included in both the syndrome and protocol definitions. In our scenario, the provider has purposely left this element blank, leaving it up to the consumer to identify the protocols that could be potentially invoked.
<AssociatedProtocols />
</Syndrome>

3.1.4 Provider contributed Syndrome: CPUExtremes-HighSensitivity
This HighSensitivity syndrome is quite similar to the prior LowSensitivity syndrome, only it adjusts the signature to detect symptoms where the cpu load exceeds 90% of maximum rather than 95% of maximum. In this way, the syndrome is more sensitive to the changes in cpu.

<Syndrome>

The first three elements uniquely identify the syndrome.

SyndromeType uniquely identifies the type of syndrome.

<SyndromeType>

 <Uri>http://saf.com/types/syndrome/cpuload</Uri>

</SyndromeType>

SyndromeName is a descriptive name for the syndrome.
<SyndromeName>CPUExtremes-HighSensitivity</SyndromeName>

Description is a verbose explanation of the syndrome.
<Description>

 Detect when cpu load has exceeded a threshold and provision additional servers

</Description>

The next three elements relate to guidance that can be used by the diagnostician to best choose the most appropriate protocol. For example, the diagnostician could favor less “risky” protocols when the syndrome Impact is VeryLow. Similarly, a syndrome Likelihood of Rare may not illicit enough confidence to invoke a “risky” protocol.

Likelihood is a measure of typicality of the syndrome.

<Likelihood>Common</Likelihood>

Impact is a measure of the consequences of this syndrome if not treated.
<Impact>Moderate</Impact>
Urgency is a measure of the speed and tenacity with which this syndrome should receive attention.
<Urgency>Moderate</Urgency>

Signature is an xquery expression specifying the criteria for recognizing a pattern of symptoms defined by this syndrome. The resulting document is the set of matching symptoms.

In our scenario, the xquery enumerates through all of the symptoms in the store, matching those with a particular symptom type (eg. aggregate_cpu) and an average cpu load of greater/equal than 90 percent.

<Signature>

 for $x in /Symptoms/Symptom

 where

 $x[SymptomType=” http://saf.com/types/symptom/aggregate_cpu”

 and

 $x/Content/AggregateCPU/AverageLoad >= 90]

</Signature>
AssociatedProtocols references a list of protocols that can potentially be invoked as a result of this syndrome being activated. The diagnostician will choose the most appropriate protocol from this list based upon the guidance included in both the syndrome and protocol definitions. In our scenario, the provider has purposely left this element blank, leaving it up to the consumer to identify the protocols that could be potentially invoked.
<AssociatedProtocols />
</Syndrome>

3.1.5 Consumer Contributed Syndrome: AssociatedProtocols
In our case, the consumer won’t actually contribute a new syndrome, but rather modify one of the provider supplied syndromes – the CPUExtremes-LowSensitivity syndrome. We won’t replicate the entire syndrome again, only displaying the relevant changes to the AssociatedProtocols element.

<Syndrome>

This syndrome has already been defined above -- the CPUExtremes-LowSensitivity syndrome contributed by the provider.
…

AssociatedProtocols references a list of protocols that can potentially be invoked as a result of this syndrome being activated. The diagnostician will choose the most appropriate protocol from this list based upon the guidance included in both the syndrome and protocol definitions. In our scenario, the consumer will populate this element with a single protocol, admittedly making the decision trivial for the diagnostician.

<AssociatedProtocols>

 <ProtocolReference>

 <Uri>http://saf.com/types/protocols/compute_provision_10</Uri>

 </ProtocolReference>

</AssociatedProtocols>
</Syndrome>

3.1.6 Runtime Elements: Symptom
Symptoms are typically emitted by some domain manager such as system, network, application, or other. In our scenario, the symptoms originate from a systems manager which detects cpu utilization on servers. The xml below is one such example of a symptom.
<Symptom>
SymptomId uniquely defines the symptom in time.

.<SymptomId>http://saf.com/symptoms/aggregate_cpu/12345/machines/1</SymptomId>

SymptomType defines the semantics of the symptom. In our scenario, the systems manager symptom emitter could emit several symptoms related to cpu utilization, each with a different SymptomId and variations in the AggregateCpu numbers. All would still maintain the same SymptomType.
<SymptomType>

 <Uri>http://saf.com/types/symptom/aggregate_cpu</Uri>

</SymptomType>
CreationDate is the date/time in xml schema xs:dateTime format when the symptom was created.
<CreationDate>2011-10-24T13:10:05</CreationDate>

Confidence is a measure of how assured the symptom emitter is with respect to the accuracy of this symptom.
<Confidence>High</Confidence>

Reported is the identity of the symptom emitter.
<Reporter>http://saf.com/reporters/systems_monitor-123</Reporter>

Subject is the identity of resource exhibiting the symptom. In our scenario, this is the reference to the IT service supporting our online sales.
<Subject>http://saf.com/subjects/ service-12345</Subject>

Content contains any embedded xml specific to the symptom type. In our scenario, the Content contains information about the aggregate cpu utilization at a point in time. Note that our syndrome signature and protocol directive both consider the AverageLoad value embedded within the Content of these symptom types.
<Content>

 <AggregateCpu >

 <MachineCollectionID>12345/machines</MachineCollectionID>

 <AverageLoad>85</AverageLoad>

 <MaxLoad>98</MaxLoad>

 <MinLoad>05</MinLoad>

 <InstantaneousLoad>72</InstantaneousLoad>

 </AggregateCpu>

</Content>

</Symptom>

3.1.7 Runtime Elements: Prescription
Prescriptions are runtime elements which define the instructions and workflow necessary for the Practitioner to remediate, prevent, or diagnose a condition. Prescriptions are usually derived from Protocols. The xml below is one such example of a prescription.
<Prescription>
PrescriptionId uniquely defines the prescription in time.
<PrescriptionId>http://saf.com/prescriptions/001</PrescriptionId>
PrescriptionType defines the semantics of the prescription, and is usually defined in a corresponding Protocol. In our scenario, multiple prescriptions, each with a unique PrescriptionId, to provision additional resources could be instantiated by the diagnostician in cases where the demand for compute resources massively spiked. All would still maintain the same PrescriptionType.
<PrescriptionType>

 http://saf.com/types/prescriptions/ compute_provision_10

</PrescriptionType>
ExpirationDate is the date beyond which the prescription is obsolete. The diagnostician could derive this value from some of the protocol guidance, such as “duration”.
<ExpirationDate>2010-03-25T13:45</ExpirationDate>
Arguments consist of embedded xml which defines the parameters required by the Process script. The diagnostician derives the arguments by applying the protocol directive against matching symptoms (which, in turn, are the result of the syndrome signature applied against all possible symptoms in the symptom store).
<Arguments>

 <Details>

 <ClientID>http://saf.com/subjects/service-12345</ClientID>

 <ChangePercentage>10</ChangePercentage>

 <Provision>true</Provision>

 </Details>
</Arguments>
Process is a direct copy of the process in the corresponding protocol, and supplies the execution instructions/workflow necessary to remediate, prevent, or diagnose a condition.
<Process>
 Same as defined in our corresponding Protocol.
</Process>
</Prescription>
…

3.2 Consumer driven decision support for Elasticity, with consideration of Consumer Business Activity
Abstract: Extending our first use case, we extend support to include more complex rules which adjust capacity based upon consumer leading indicators for sales trends. SAF allows the Consumer to contribute their decision nuances and combine with knowledge from the Provider into a single catalog.

Description: An online store hosts its application on Cloud provided, load-balanced machines. SAF uses a combination of Syndromes supplied by both Consumer and Provider to detect combinations of high/low cpu load and sales trends, invoking Protocols to provision or deprovision machines accordingly.
 The provider contributions are identical to the first use case. The consumer additionally contributes a modified copy of the provider “CPUExtremes-LowSensitivity” syndrome which, in addition to detecting cpu load on machines, will also detect leading online sales indicators.
3.2.1 Consumer contributed Syndrome: CPUExtremes-SalesIncrease
Syndrome represents the “rule definition” portion of the rule/action equation. In our scenario, the CPUExtremes-SalesIncrease syndrome describes the pattern of symptoms where cpu load equals or exceeds 95 percent of maximum and sales projections equal or exceed 10 percent.
 This syndrome is nearly identical to the provider contributed CPUExtremes-LowSensitivity, but with a few minor modifications to account for sales increases. We’ve highlighted those modifications.

<Syndrome>

The first three elements uniquely identify the syndrome.

SyndromeType uniquely identifies the type of syndrome.

<SyndromeType>

 <Uri>http://saf.com/types/syndrome/combination/cpuload-salesincrease</Uri>

</SyndromeType>

SyndromeName is a descriptive name for the syndrome.
<SyndromeName>CPUExtremes-SalesIncrease</SyndromeName>

Description is a verbose explanation of the syndrome.
<Description>

 Detect when cpu load has exceeded a threshold and sales projections have increased beyond a threshold, and provision additional servers

</Description>

The next three elements relate to guidance that can be used by the diagnostician to best choose the most appropriate protocol. For example, the diagnostician could favor less “risky” protocols when the syndrome Impact is VeryLow. Similarly, a syndrome Likelihood of Rare may not illicit enough confidence to invoke a “risky” protocol.

Likelihood is a measure of typicality of the syndrome.

<Likelihood>Common</Likelihood>

Impact is a measure of the consequences of this syndrome if not treated.
<Impact>Moderate</Impact>
Urgency is a measure of the speed and tenacity with which this syndrome should receive attention.
<Urgency>Moderate</Urgency>

Signature is an xquery expression specifying the criteria for recognizing a pattern of symptoms defined by this syndrome. The resulting document is the set of matching symptoms.

In our scenario, the xquery enumerates through all “pair combinations” of symptoms in the store, matching those combinations consisting of high cpu load symptom and an increased sales projection symptom. Typically, a time proximity between the pairs of symptoms would also be defined, but for the purposes of xquery simplification we have left that out.

<Signature>
for $x in /Symptoms/Symptom
for $y in /Symptoms/Symptom
where

$x[SymptomType=” http://saf.com/types/symptom/aggregate_cpu”

and

$x/Content/AggregateCPU/AverageLoad >= 90]
 and

$y[SymptomType=http://saf.com/types/symptom/salesprojection
and

$y/Content/SalesProjection/PercentIncrease >= 10]
</Signature>
AssociatedProtocols references a list of protocols that can potentially be invoked as a result of this syndrome being activated. The diagnostician will choose the most appropriate protocol from this list based upon the guidance included in both the syndrome and protocol definitions. In our scenario, the consumer will populate this element with a single protocol, admittedly making the decision trivial for the diagnostician.

<AssociatedProtocols>

 <ProtocolReference>

 <Uri>http://saf.com/types/protocols/compute_provision_5</Uri>

 </ProtocolReference>

</AssociatedProtocols>
</Syndrome>

3.2.2 Runtime Elements: Symptom for High Cpu Utilization
Symptoms are typically emitted by some domain manager such as system, network, application, or other. In our scenario, oneo of the symptoms originate from a systems manager which detects cpu utilization on servers and sales projection increases. The xml below is one such example of a symptom.
<Symptom>
SymptomId uniquely defines the symptom in time.

.<SymptomId>http://saf.com/symptoms/aggregate_cpu/12345/machines/1</SymptomId>

SymptomType defines the semantics of the symptom. In our scenario, the systems manager symptom emitter could emit several symptoms related to cpu utilization, each with a different SymptomId and variations in the AggregateCpu numbers. All would still maintain the same SymptomType.
<SymptomType>

 <Uri>http://saf.com/types/symptom/aggregate_cpu</Uri>

</SymptomType>
CreationDate is the date/time in xml schema xs:dateTime format when the symptom was created.
<CreationDate>2011-10-24T13:10:05</CreationDate>

Confidence is a measure of how assured the symptom emitter is with respect to the accuracy of this symptom.
<Confidence>High</Confidence>

Reported is the identity of the symptom emitter.
<Reporter>http://saf.com/reporters/systems_monitor-123</Reporter>

Subject is the identity of resource exhibiting the symptom. In our scenario, this is the reference to the IT service supporting our online sales.
<Subject>http://saf.com/subjects/ service-12345</Subject>

Content contains any embedded xml specific to the symptom type. In our scenario, the Content contains information about the aggregate cpu utilization at a point in time. Note that our syndrome signature and protocol directive both consider the AverageLoad value embedded within the Content of these symptom types.
<Content>

 <AggregateCpu >

 <MachineCollectionID>12345/machines</MachineCollectionID>

 <AverageLoad>85</AverageLoad>

 <MaxLoad>98</MaxLoad>

 <MinLoad>05</MinLoad>

 <InstantaneousLoad>72</InstantaneousLoad>

 </AggregateCpu>

</Content>

</Symptom>

3.2.3 Runtime Elements: Symptom for High Projected Sales Increase
Symptoms are typically emitted by some domain manager such as system, network, application, or other. In our scenario, one of the symptoms originate from a sales and marketing application which alerts on high projected sales increases. The xml below is one such example of a symptom.
<Symptom>
SymptomId uniquely defines the symptom in time.

.<SymptomId>http://saf.com/symptoms/salesprojection/1</SymptomId>

SymptomType defines the semantics of the symptom. In our scenario, the sales/marketing application symptom emitter could emit several symptoms related to sales projections, each with a different SymptomId and variations in the projection numbers. All would still maintain the same SymptomType.
<SymptomType>

 <Uri>http://saf.com/types/symptom/salesprojection</Uri>

</SymptomType>
CreationDate is the date/time in xml schema xs:dateTime format when the symptom was created.
<CreationDate>2011-10-24T13:10:05</CreationDate>

Confidence is a measure of how assured the symptom emitter is with respect to the accuracy of this symptom.
<Confidence>High</Confidence>

Reported is the identity of the symptom emitter.
<Reporter>http://saf.com/reporters/sales-sensor-123 </Reporter>

Subject is the identity of resource exhibiting the symptom. In our scenario, this is the reference to the IT service supporting our online sales.
<Subject>http://saf.com/subjects/ service-12345</Subject>

Content contains any embedded xml specific to the symptom type. In our scenario, the Content contains information about the aggregate cpu utilization at a point in time. Note that our syndrome signature and protocol directive both consider the AverageLoad value embedded within the Content of these symptom types.
<Content>

 <SalesProjection>

 <Region>Global</Region>

 <PercentageIncrease>10</PercentageIncrease>

 </SalesProjection>

</Content>

</Symptom>
3.2.4 Runtime Elements: Prescription
Prescriptions are runtime elements which define the instructions and workflow necessary for the Practitioner to remediate, prevent, or diagnose a condition. Prescriptions are usually derived from Protocols. The xml below is one such example of a prescription.
<Prescription>
PrescriptionId uniquely defines the prescription in time.
<PrescriptionId>http://saf.com/prescriptions/002</PrescriptionId>
PrescriptionType defines the semantics of the prescription, and is usually defined in a corresponding Protocol. In our scenario, multiple prescriptions, each with a unique PrescriptionId, to provision additional resources could be instantiated by the diagnostician in cases where the demand for compute resources massively spiked. All would still maintain the same PrescriptionType.
<PrescriptionType>

 http://saf.com/types/prescriptions/ compute_provision_5
</PrescriptionType>
ExpirationDate is the date beyond which the prescription is obsolete. The diagnostician could derive this value from some of the protocol guidance, such as “duration”.
<ExpirationDate>2010-03-25T13:45</ExpirationDate>
Arguments consist of embedded xml which defines the parameters required by the Process script. The diagnostician derives the arguments by applying the protocol directive against matching symptoms (which, in turn, are the result of the syndrome signature applied against all possible symptoms in the symptom store).
<Arguments>

 <Details>

 <ClientID>http://saf.com/subjects/service-12345</ClientID>

 <ChangePercentage>5</ChangePercentage>

 <Provision>true</Provision>

 </Details>
</Arguments>
Process is a direct copy of the process in the corresponding protocol, and supplies the execution instructions/workflow necessary to remediate, prevent, or diagnose a condition.
<Process>
 Same as defined in our corresponding Protocol.
</Process>
</Prescription>
…

4. References

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997
[CMWG]
Cloud Management Working Group, http://dmtf.org/standards/cloud
[CIMI]
Cloud Infrastructure Management Interface, http://dmtf.org/sites/default/files/standards/documents/DSP0263_1.0.0a.pdf
A. Revision History

	Revision
	Date
	Editor
	Changes

	01
	11/01/2010
	Stavros Isaiadis
	Initial draft, outline, abstract text, some initial text

	02
	08/05/2010
	Stavros Isaiadis
	Added the introductory OASIS stuff and disclaimer.

Modifications to the text (and comments) to reflect the focus towards business alignment, the new use cases we have, and the new structure.
Added text in Section 4 and an OCCi Prescription!

	03
	06/05/2010
	Stavros Isaiadis
	Added more protocols and sanitized / refined text throughout the document

	04
	11/28/2011
	Jeff Vaught
	Added a single DMTF CIMI protocol (and associated elements).

	05
	12/15/2011
	Stavros Isaiadis
	Cleaned up a bit and re-structured as per our latest discussions. Added some text in the definitions sections.

	06
	12/20/2011
	Jeff Vaught
	Modified two use cases extensively for simplification and clarity.

	07
	02/06/2012
	Jeff Vaught
	Comments on Section 3 for review by TC.

	08
	03/12/2012
	Stavros Isaiadis
	Added references; small improvements to the main text

�Don’t think this is right, ie: the date.

�A visual here that shows the result of applying SAF.

A sequence diagram with pictures???

�What’s with the yellow highlights?

�A visual here that shows the result of applying SAF.

A sequence diagram with pictures???

This document is a working draft. It has not been approved by the OASIS SAF TC and does not represent the views of OASIS or the OASIS SAF TC.

