
[Note that the following URI construction requires that there be a new optional @uri attribute on components. The ability to specify a URI (which is usually relative) makes it possible to design the URI hierarchy independent from the structure of the domain, which I believe is valuable.]
9.2 Form of the URI of a Deployed Binding

9.2.1 Constructing Hierarchical URIs

Bindings that use hierarchical URI schemes construct the effective URI with a combination of the following parts (using a pseudo-BNF representation of its structure):

Implementation-Dependent Base URI / {Component URI /}+ Service Name {/ Binding URI}?
Each of these parts is defined as follows:

Implementation-Dependent Base Domain URI . SCA does not specify the content of the base URI that should be used for any deployed binding, except to say that it must be a hierarchical URI. Each SCA Domain has one Base Domain URI.
An example of a Base Domain URI is as follows:

http://acme.com

{Component URI /}+. This is a “/” separated sequence of the relative URIs specified by components in the composition hierarchy. The relative URI is the value of the component's @uri attribute, or the component name, if @uri is unspecified. The sequence of relative URIs starts with the URI of the domain-level component and following down each of the <implementation.composite> components until reaching a component that exposes the service that the binding is for.

This means that promoted services get a URI which is computed based on the highest promotion of that service, not based on the lowest-level component that offered the service to be promoted.
Service Name. The service name is the name of the service that the binding is for, as defined by the component type of the implementation providing the service.

Binding URI. The Binding URI is the relative URI specified in the @uri attribute of a binding element of the service. If no @uri attribute is specified, the value of binding’s @name attribute is used as a relative URI. If the binding has neither a @uri nor a @name attribute, then the last path segment of the URI will not be present (i.e. it defaults to the empty string).
The binding URI may also be absolute, in which case the absolute URI fully specifies the complete URI of the service. Some deployment environments may not support the use of absolute URIs in service bindings.

Note that t

he name of the containing composite does not contribute to the URI of any service, but the name or the relative URI of the higher-level component that uses the containing composite as an implementation does contribute to the URI.

For example, a service where the Base URI is "http://acme.com", the domain-level component is named "stocksComponent" and the service name is "getQuote", the URI would look like this:

http://acme.com/stocksComponent/getQuote
Allowing a binding’s relative URI to be specified that differs from the name of the service allows the URI hierarchy of services to be designed independently of the organization of the domain.

It is good practice to design the URI hierarchy to be independent of the domain organization, but there may be times when domains are initially created using the default URI hierarchy. When this is the case, the organization of the domain can be changed, while maintaining the form of the URI hierarchy, by giving appropriate values to the uri attribute of select bindings. Here is an example of a change that can be made to the organization while maintaining the existing URIs:

To move a subset of the services out of one component (say "foo") to a new component (say “bar”), the new component should have bindings for the moved services specify a URI “../foo/MovedService”.
9.2.1.1 Shortening URIs

The URI attribute on a binding or on a nested component may also be used in a specialized way in order to create shorter URIs for some endpoints. This is done through specifying a relative URI starting with "../", which causes removal of the relative URI of the containing component or the containing service name from the final URI. For example, if a binding has a uri attribute of "../myService" the containing service name will not be present in the final URI.
9.2.2 Effect of Promotion on URIs
Where a higher level composite has a component that uses a lower-level composite as its implementation and the component configures a service of the lower-level composite, the only aspect of the lower level composite that influences the URI for the service on the component is the name given to the service by the lower-level composite. The fact that the composite service is a promotion of a service of a component within the lower-level composite has no influence on the resulting URI.
9.2.3 Examples of URIs
The following are some examples of URIs for a service:
<!-- Domain level deployment composite which contains the
 domain-level component following deployment -->
<composite name="forDeployment">
 <component name="C1">
 <implementation.composite name="ns:composite1"/>
 </component>
</composite>
<!-- a) service exposed by a nested component (no component URIs) -->
<composite name="composite1">
 <component name="C2">
 <implementation.foo/>
 <service name="S">
 <binding.ws/>
 </service>
 </component>
</composite>
<!-- The URI of S: http://acme.com/C1/C2/S -->
<!-- b) service with a relative binding URI -->
<composite name="composite1">
 <component name="C2">
 <implementation.foo/>
 <service name="S">
 <binding.ws uri="../T"/>
 </service>
 </component>
</composite>
<!-- The URI of S: http://acme.com/C1/C2/T -->
<!-- c) service with an absolute binding URI -->
<composite name="composite1">
 <component name="C2">
 <implementation.foo/>
 <service name="S">
 <binding.ws uri="http://acme.com/frontDoor"/>
 </service>
 </component>
</composite>
<!-- The URI of S: http://acme.com/frontDoor -->
<!-- d) service exposed by a component with a component
 URI attribute specified -->
<composite name="composite1">
 <component name="C2" uri="foo">
 <implementation.foo/>
 <service name="S">
 <binding.ws/>
 </service>
 </component>
</composite>
<!-- The URI of S: http://acme.com/C1/foo/S -->
<!-- e) service exposed with a shortened URI -->
<composite name="composite1">
 <component name="C2" uri="../foo">
 <implementation.foo/>
 <service name="S">
 <binding.ws/>
 </service>
 </component>
</composite>
<!-- The URI of S: http://acme.com/foo/S -->
9.2.3.2 Example of URI involving Promotion of a Service

<!-- Domain level deployment composite which contains the
 domain-level component following deployment with a
 promoted service -->
<composite name="forDeployment">
 <component name="C1">
 <implementation.composite name="ns:composite1"/>
 <service name="PS">
 <binding.ws/>
 </service>
 </component>
</composite>
<composite name="composite1">
 <service name="PS" promote="C2/S"/>
 <component name="C2">
 <implementation.foo/>
 <service name="S"/>
 </component>
</composite>
<!-- The URI of PS: http://acme.com/C1/PS -->
9.2.4 Non-hierarchical URIs

Bindings that use non-hierarchical URI schemes (such as jms: or mailto:) may optionally make use of the “uri” attritibute, which is the complete representation of the URI for that service binding. Where the binding does not use the "uri" attribute, the binding must offer a different mechanism for specifying the service address.
9.2.4.3 Example of Non-hierarchical URI

<!-- f) a service with a non-hierarchical URI -->
<composite name="composite1">
 <component name="C2" uri="../foo">
 <implementation.foo/>
 <service name="S"/>
 <binding.jms uri="jms:StockQuoteServiceQueue"/>
 </component>
</composite>
<!-- The URI of S: jms:StockQuoteServiceQueue -->
10 Component

Components are the basic elements of business function in an SCA assembly, which are combined into complete business solutions by SCA composites.

Components are configured instances of implementations. Components provide and consume services. More than one component can use and configure the same implementation, where each component configures the implementation differently.

Components are declared as subelements of a composite in an xxx.composite file. A component is represented by a component element which is a child of the composite element. There can be zero or more component elements within a composite. The following snippet shows the composite schema with the schema for the component child element.

<?xml version="1.0" encoding="UTF-8"?>
<!-- Component schema snippet -->
<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" … >

…

<component name="xs:NCName" autowire="xs:boolean"? uri="xs:anyURI"?

requires="list of xs:QName"? policySets="list of xs:QName"?

constrainingType="xs:QName"?>*

<implementation … />?

<service … />*

<reference … />*

<property … />*

</component>

…

</composite>
The component element has the following attributes:

· name : NCName (1..1) – the name of the component. The name must be unique across all the components in the composite.

· autowire : boolean (0..1) – whether contained component references should be autowired, as described in the Autowire section. Default is false.

· uri : anyURI (0..1) – a relative URI which contributes to the URI of services provided by this component and to the URI of any nested services provided by components contained within a composite used as the implementation of the component. See the section on Constructing Hierarchical URIs for a full description of how the value of this attribute is used.
· requires : QName (0..n) – a list of policy intents. See the Policy Framework specification [10] for a description of this attribute.

· policySets : QName (0..n) – a list of policy sets. See the Policy Framework specification [10] for a description of this attribute.

· constrainingType : QName (0..1) – the name of a constrainingType. When specified, the set of services, references and properties of the component, plus related intents, is constrained to the set defined by the constrainingType. See the ConstrainingType Section for more details.

�This section is fine but needs to be moved into section/chapter 5 [Component], CD01

�This text needs to be in section 5.2 [Component services], CD01

�This text belongs with the description of component URI mentioned prevoiusly, section 5 of CD01

