1 Policy Annotations for C++

SCA provides facilities for the attachment of policy-related metadata to SCA assemblies, which influence how implementations, services and references behave at runtime. The policy facilities are described in the SCA Policy Framework specification [5].
In particular, the facilities include Intents and Policy Sets, where intents express abstract, high-level policy requirements and policy sets express low-level detailed concrete policies.

Policy metadata can be added to SCA assemblies through the means of declarative statements placed into Composite documents and into Component Type documents. These annotations are completely independent of implementation code, allowing policy to be applied during the assembly and deployment phases of application development.

However, it can be useful and more natural to attach policy metadata directly to the code of implementations. This is particularly important where the policies concerned are relied on by the code itself. An example of this from the Security domain is where the implementation code expects to run under a specific security Role and where any service operations invoked on the implementation must be authorized to ensure that the client has the correct rights to use the operations concerned. By annotating the code with appropriate policy metadata, the developer can rest assured that this metadata is not lost or forgotten during the assembly and deployment phases.

The SCA C++ policy annotations provides the capability for the developer to attach policy information to C++ implementation code. The annotations concerned first provide general facilities for attaching SCA Intents and Policy Sets to C++ code. Secondly, there are further specific annotations that deal with particular policy intents for certain policy domains such as Security.

1.1 General Intent Annotations

SCA provides the annotation @Requires for the attachment of any intent to a C++ class, to a C++ interface or to elements within classes and interfaces such as methods and members.

The @Requires annotation can attach one or multiple intents in a single statement.

Each intent is expressed as a string. Intents are XML QNames, which consist of a Namespace URI followed by the name of the Intent. The precise form used is as follows:

"{" + Namespace URI + "}" + intentname

Intents may be qualified, in which case the string consists of the base intent name, followed by a ".", followed by the name of the qualifier. There may also be multiple levels of qualification.

This representation is quite verbose, so we expect that reusable constants will be defined for the namespace part of this string, as well as for each intent that is used by C++ code. SCA defines constants for intents such as the following:

#define SCA_PREFIX “{http://www.osoa.org/xmlns/sca/1.0
}”
#define CONFIDENTIALITY SCA_PREFIX ## “confidentiality”
#define CONFIDENTIALITY_MESSAGE CONFIDENTIALITY ## “.message”

Notice that, by convention, qualified intents include the qualifier as part of the name of the constant, separated by an underscore. These intent constants are defined in the file that defines an annotation for the intent (annotations for intents, and the formal definition of these constants, are covered in a following section).

Multiple intents (qualified or not) are expressed as separate strings within an array declaration.

An example of the @Requires annotation with 2 qualified intents (from the Security domain) follows:

// @Requires({CONFIDENTIALITY_MESSAGE, INTEGRITY_MESSAGE})
This attaches the intents "confidentiality.message" and "integrity.message".

The following is an example of a reference requiring support for confidentiality:

class Foo {

 …

// @Requires(CONFIDENTIALITY)

// @Reference(interfaceHeader=”SetBar.h”)

 void setBar(Bar* bar);

 …

}
Users may also choose to only use constants for the namespace part of the QName, so that they may add new intents without having to define new constants. In that case, this definition would instead look like this:

class Foo {

 …

// @Requires(SCA_PREFIX ”confidentiality”)

// @Reference(interfaceHeader=”SetBar.h”)

 void setBar(Bar* bar);

 …

}

The formal syntax for the @Requires annotation follows:

// @Requires(“qualifiedIntent” | {“qualifiedIntent” [, “qualifiedIntent”]}

where

qualifiedIntent ::= QName | QName.qualifier | QName.qualifier1.qualifier2

1.2 Specific Intent Annotations

In addition to the general intent annotation supplied by the @Requires annotation described above, there are C++ annotations that correspond to some specific policy intents.
The general form of these specific intent annotations is an annotation with a name derived from the name of the intent itself. If the intent is a qualified intent, qualifiers are supplied as an attribute to the annotation in the form of a string or an array of strings.

For example, the SCA confidentiality intent described in the section on General Intent Annotations using the @Requires(CONFIDENTIALITY) intent can also be specified with the specific @Confidentiality intent annotation. The specific intent annotation for the "integrity" security intent is:

// @Integrity

An example of a qualified specific intent for the "authentication" intent is:

// @Authentication({“message”, “transport”})

This annotation attaches the pair of qualified intents: "authentication.message" and "authentication.transport" (the sca: namespace is assumed in this both of these cases – "http://www.osoa.org/xmlns/sca/1.0").

The general form of specific intent annotations is:

// @<Intent>[(qualifiers)]

where Intent is an NCName that denotes a particular type of intent.

Intent ::= NCName

qualifiers ::= ”qualifier” | {“qualifier” [, “qualifier”] }

qualifier ::= NCName | NCName/qualifier

1.3 Application of Intent Annotations

The SCA Intent annotations can be applied to the following C++ elements:

· Class

· Method

· Data Member
Where multiple intent annotations (general or specific) are applied to the same C++ element, they are additive in effect. An example of multiple policy annotations being used together follows:

// @Authentication
// @Requires({CONFIDENTIALITY_MESSAGE, INTEGRITY_MESSAGE})

In this case, the effective intents are "authentication", “confidentiality.message” and “integrity.message”.

If an annotation is specified at both the class/interface level and the method or field level, then the method or field level annotation completely overrides the class level annotation of the same type.

The intent annotation can be applied either to classes or to class methods when adding annotated policy on SCA services. Applying an intent to the setter method in a reference injection approach allows intents to be defined at references.

1.3.1 Inheritance And Annotation

The inheritance rules for annotations are consistent with the common annotation specification, JSR 250
.

The following example shows the inheritance relations of intents on classes, operations, and super classes.

// @Remotable

// @Integrity(“transport”)

// @Authentication

class HelloService {
public:
// @Integrity

// @Authentication(“message”)

wchar_t* hello(wchar_t* message) {...}

@Integrity

@Authentication(“transport”)

wchar_t* helloThere() {...}

}

// @Remotable

// @Confidentiality(“message”)

class HelloChildService : public HelloService {
public:
// @Confidentiality(“transport”)

wchar_t* hello(wchar_t* message) {...}

// @Authentication

wchar_t* helloWorld(){...}

}

Example 2a. Usage example of annotated policy and inheritance.

The effective intent annotation on the helloWorld method is Integrity(“transport”), @Authentication, and @Confidentiality(“message”).

The effective intent annotation on the hello method of the HelloChildService is @Integrity(“transport”), @Authentication, and @Confidentiality(“transport”),

The effective intent annotation on the helloThere method of the HelloChildService is @Integrity and @Authentication(“transport”), the same as in HelloService class.

The effective intent annotation on the hello method of the HelloService is @Integrity and @Authentication(“message”)

The listing below contains the equivalent declarative security interaction policy of the HelloService and HelloChildService implementation corresponding to the C++ interfaces and classes shown in Example 2a.

<?xml version="1.0" encoding="ASCII"?>

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"

name="HelloServiceComposite" >

<service name=”HelloService” requires=”integrity/transport

authentication”>

…

</service>

<service name=”HelloChildService” requires=”integrity/transport

authentication confidentiality/message”>

…

</service>

...

<component name="HelloServiceComponent">*

<implementation.cpp library="HelloService.dll"
 header=”HellowServiceImpl.h”/>

<operation name=”hello” requires=”integrity

authentication/message”/>

<operation name=”helloThere” requires=”integrity

authentication/transport”/>

</component>

<component name="HelloChildServiceComponent">*

<implementation.cpp library="HelloChildService.dll"
 header=”HelloChileService.h” />

<operation name=”hello” requires=”confidentiality/transport”/>

<operation name=”helloThere” requires=” integrity/transport

authentication”/>

<operation name=helloWorld” requires=”authentication”/>

</component>

...

</composite>

Example 2b. Declaratives intents equivalent to annotated intents in Example 2a.

1.4 Relationship of Declarative And Annotated Intents

Annotated intents on a C++ class cannot be overridden by declarative intents either in a composite document which uses the class as an implementation or by statements in a component Type document associated with the class. This rule follows the general rule for intents that they represent fundamental requirements of an implementation.

An unqualified version of an intent expressed through an annotation in the C++ class may be qualified by a declarative intent in a using composite document.

1.5 Policy Set Annotations

The SCA Policy Framework uses Policy Sets to capture detailed low-level concrete policies (for example, a concrete policy is the specific encryption algorithm to use when encrypting messages when using a specific communication protocol to link a reference to a service).

Policy Sets can be applied directly to C++ implementations using the @PolicySets annotation. The PolicySets annotation either takes the QName of a single policy set as a string or the name of two or more policy sets as an array of strings:

// @PolicySets(“<policy set QName>” |

 { “<policy set QName>” [, “<policy set QName>”] })

As for intents, PolicySet names are QNames – in the form of “{Namespace-URI}localPart”.

An example of the @PolicySets annotation:

// @Reference(name="helloService", interfaceHeader=”helloService.h”,

// required=true)

// @PolicySets({ MY_NS “WS_Encryption_Policy",
// MY_NS "WS_Authentication_Policy" })

 HelloService* helloService;

…
}

In this case, the Policy Sets WS_Encryption_Policy and WS_Authentication_Policy are applied, both using the namespace defined for the constant MY_NS.

PolicySets must satisfy intents expressed for the implementation when both are present, according to the rules defined in the Policy Framework specification [5].

The SCA Policy Set annotation can be applied to the following C++ elements:

· Class

· Method

· Data member
1.6 Security Policy Annotations

This section introduces annotations for SCA’s security intents, as defined in the SCA Policy Framework specification [5].

1.6.1 Security Interaction Policy

The following interaction policy Intents and qualifiers are defined for Security Policy, which apply to the operation of services and references of an implementation:

· @Integrity

· @Confidentiality

· @Authentication

All three of these intents have the same pair of Qualifiers:

· message

· transport

The following example shows an example of applying an intent to a reference. Accessing the hello operation of the referenced HelloService requires both "integrity.message” and "authentication.message” intents to be honored.

//Interface for HelloService

class HelloService {

public:

virtual wchar_t* hello(wchar_t* helloMsg);

}

// Interface for ClientService

class ClientService {

public:

virtual void clientMethod();

}

// Implementation class for ClientService

#include "ComponentContext.h"

#include “HelloService.h”
class ClientServiceImpl : public ClientService {

private:

// @Reference(name="helloService", interfaceHeader=”HelloService.h”)

// @Integrity(“message”)

// @Authentication(“message”)

HelloService* helloService;

public:

 void clientMethod() {

 ComponentContextPtr context = ComponentContext::getCurrent();

 helloService = (HelloService*)context->getService("helloService");

 wchar_t* result = helloService->hello(L"Hello World!");

}

}

Example 1. Usage of annotated intents on a reference.

1.6.2 Security Implementation Policy

SCA defines a number of security policy annotations that apply as policies to implementations themselves. These annotations mostly have to do with authorization and security identity. The following authorization and security identity annotations are supported:

· RunAs

Takes as a parameter a string which is the name of a Security role. eg. @RunAs("Manager")
Code marked with this annotation will execute with the Security permissions of the identified role.

· RolesAllowed

Takes as a parameter a single string or an array of strings which represent one or more role names. When present, the implementation can only be accessed by principals whose role corresponds to one of the role names listed in the @roles attribute. How role names are mapped to security principals is implementation dependent (SCA does not define this).
eg. @RolesAllowed({"Manager", "Employee"})
· PermitAll

No parameters. When present, grants access to all roles.

· DenyAll

No parameters. When present, denies access to all roles.

· DeclareRoles

Takes as a parameter a string or an array of strings which identify one or more role names that form the set of roles used by the implementation.
eg. @DeclareRoles({"Manager", "Employee", "Customer"})
For a full explanation of these intents, see the Policy Framework specification [5].

1.6.2.1 Annotated Implementation Policy Example

The following is an example showing annotated security implementation policy:

// @Remotable

class AccountService {

public:

 virtual AccountReport* getAccountReport(char* customerID);

}

The following is a full listing of the AccountServiceImpl class, showing the Service it implements, plus the service references it makes and the settable properties that it has, along with a set of implementation policy annotations:

#include “commonj.sdo.h”;
#include “AccountDataService.h”;

#include “CheckingAccount.h”;

#include “SavingsAccount.h”;

#include “StockAccount.h”;

#include “StockQuoteService.h”;
// @RolesAllowed(“customers”)

// @RunAs(“accountants”)

class AccountServiceImpl : public AccountService {

protected:

//
@Property

char[5] currency = "USD";

// @Reference(name="accountDataService",
// interfaceHeader=”AccountDataService.h”)

AccountDataService accountDataService;

// @Reference(name="stockQuoteService",
// interfaceHeader=”StockQuoteService.h”)

StockQuoteService stockQuoteService;

public:
//
@RolesAllowed({“customers”, “accountants”})

AccountReport getAccountReport(char* customerID) {

DataFactory dataFactory = DataFactory::getDataFactory();

AccountReport accountReport =

(AccountReport)dataFactory ->create(AccountReportType);

DataObjectList accountSummaries = accountReport->getAccountSummaries();

CheckingAccount checkingAccount =

accountDataService->getCheckingAccount(customerID);

AccountSummary checkingAccountSummary =

(AccountSummary)dataFactory ->create(AccountSummaryType);

checkingAccountSummary->setAccountNumber(

 checkingAccount->getAccountNumber());

checkingAccountSummary->setAccountType("checking");

checkingAccountSummary->setBalance(fromUSDollarToCurrency(

 checkingAccount->getBalance()));

accountSummaries->append(checkingAccountSummary);

SavingsAccount savingsAccount =

accountDataService->getSavingsAccount(customerID);

AccountSummary savingsAccountSummary =

(AccountSummary)dataFactory->create(AccountSummaryType);

savingsAccountSummary->setAccountNumber(

 savingsAccount->getAccountNumber());

savingsAccountSummary->setAccountType("savings");

savingsAccountSummary->setBalance(fromUSDollarToCurrency(
 savingsAccount->getBalance()));

accountSummaries->append(savingsAccountSummary);

StockAccount stockAccount =
 accountDataService->getStockAccount(customerID);

AccountSummary stockAccountSummary =

(AccountSummary)dataFactory->create(AccountSummaryType);

stockAccountSummary->setAccountNumber(stockAccount->getAccountNumber());

stockAccountSummary->setAccountType("stock");

float balance = (stockQuoteService->getQuote(stockAccount->getSymbol()))*

stockAccount->getQuantity();

stockAccountSummary->setBalance(fromUSDollarToCurrency(balance));

accountSummaries->append(stockAccountSummary);

 return accountReport;

}

@PermitAll

public float fromUSDollarToCurrency(float value){

 if (currency.equals("USD")) return value; else

 if (currency.equals("EURO")) return value * 0.8f; else

 return 0.0f;

}

}

Example 3. Usage of annotated security implementation policy for the C++ language.

In this example, the implementation class as a whole is marked:

· @RolesAllowed(“customers”) - indicating that customers have access to the implementation as a whole

· @RunAs(“accountants”) – indicating that the code in the implementation runs with the permissions of accountants

The getAccountReport(..) method is marked with @RolesAllowed({“customers”, “accountants”}), which indicates that this method can be called by both customers and accountants.

The fromUSDollarToCurrency() method is marked with @PermitAll, which means that this method can be called by any role.

�Fix reference (multiple instances)

�OASIS URI?

�Should the annotations be able to reference values outside of the comments? This is something we’ll need to clarify once a full description of C++ annotations is in place. (I raised this as a separate issue)

�How far to go here: No runtime support for source annotations so no need for structure to create additional. However, annotations for intents defined by policy framework are reasonable.

�Need to state the annotation rules

�Check this

