

SSSCCCAAA SSSeeerrrvvviiiccceee CCCooommmpppooonnneeennnttt AAArrrccchhhiiittteeeccctttuuurrreee

Java EE Integration Specification

SCA Version 1.00, May 13 2008

Technical Contacts:

 Ron Barack SAP AG

 Michael Beisiegel IBM Corporation

 Henning Blohm SAP AG

 Dave Booz IBM Corporation

 Mike Edwards IBM Corporation

 Anish Karmarkar Oracle Corporation

 Michael Keith Oracle Corporation

 Ashok Malhotra Oracle Corporation

 Sanjay Patil SAP AG

 Prasad Peddada BEA Systems, Inc.

 Peter Peshev SAP AG

 Matthew Peters IBM Corporation

 Michael Rowley BEA Systems, Inc.

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 ii

Copyright Notice

© Copyright BEA Systems, Inc., Cape Clear Software, International Business Machines Corp, Interface21, IONA
Technologies, Oracle, Primeton Technologies, Progress Software, Red Hat, Rogue Wave Software, SAP AG., Siemens
AG., Software AG., Sun Microsystems, Inc., Sybase Inc., TIBCO Software Inc., 2005, 2008. All rights reserved.

License

The Service Component Architecture Specification is being provided by the copyright holders under the
following license. By using and/or copying this work, you agree that you have read, understood and will
comply with the following terms and conditions:

Permission to copy, display and distribute the Service Component Architecture Specification and/or
portions thereof, without modification, in any medium without fee or royalty is hereby granted, provided
that you include the following on ALL copies of the Service Component Architecture Specification, or
portions thereof, that you make:

1. A link or URL to the Service Component Architecture Specification at this location:

• http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

2. The full text of the copyright notice as shown in the Service Component Architecture Specification.

BEA, Cape Clear, IBM, Interface21, IONA, Oracle, Primeton, Progress Software, Red Hat, Rogue Wave,
SAP, Siemens, Software AG., Sun, Sybase, TIBCO (collectively, the “Authors”) agree to grant you a
royalty-free license, under reasonable, non-discriminatory terms and conditions to patents that they deem
necessary to implement the Service Component Architecture Specification.

THE Service Component Architecture SPECIFICATION IS PROVIDED "AS IS," AND THE
AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
REGARDING THIS SPECIFICATION AND THE IMPLEMENTATION OF ITS CONTENTS,
INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NON-INFRINGEMENT OR TITLE.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR
DISTRIBUTION OF THE Service Components Architecture SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including advertising or
publicity pertaining to the Service Component Architecture Specification or its contents without specific,

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 iii

written prior permission. Title to copyright in the Service Component Architecture Specification will at
all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Status of this Document
This specification may change before final release and you are cautioned against relying on the content of
this specification. The authors are currently soliciting your contributions and suggestions. Licenses are
available for the purposes of feedback and (optionally) for implementation.

IBM is a registered trademark of International Business Machines Corporation in the United States, other
countries, or both.

BEA is a registered trademark of BEA Systems, Inc.

Cape Clear is a registered trademark of Cape Clear Software

IONA and IONA Technologies are registered trademarks of IONA Technologies plc.

Oracle is a registered trademark of Oracle USA, Inc.

Progress is a registered trademark of Progress Software Corporation

Primeton is a registered trademark of Primeton Technologies, Ltd.

Red Hat is a registered trademark of Red Hat Inc.

Rogue Wave is a registered trademark of Quovadx, Inc

SAP is a registered trademark of SAP AG.

SIEMENS is a registered trademark of SIEMENS AG

Software AG is a registered trademark of Software AG

Sun and Sun Microsystems are registered trademarks of Sun Microsystems, Inc.

Sybase is a registered trademark of Sybase, Inc.

TIBCO is a registered trademark of TIBCO Software Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 iv

Table of Contents
SCA Service Component Architecture...i

License .. ii

Status of this Document ... iii

1 Introduction..1

2 Scenarios ...2

2.1 Consume SCA-exposed services from Java EE components ..2

2.2 Use Session Beans as Service Component Implementations...2

2.3 Expose Enterprise Applications into an SCA domain ...2

2.4 Use Recursive SCA Assembly in Enterprise Applications..2

2.5 Deploy SCA Components as a Part of a Java EE application ...2

2.6 Use Java EE Archives as Service Component Implementation...2

3 Overview of SCA Assembly in a Java Enterprise Edition Environment ..3

3.1 Life-Cycle Model for Service Components from Java EE Components3

3.2 Mapping a Java EE Component’s Environment to Component Type Data...................................4

4 Scope and Limitations of the Specification..6

5 Java EE Component Based Implementation Types ...7

5.1 Using Session Beans as Implementation Types...7

5.1.1 Mapping EJB business Interfaces to SCA Service Interfaces..7

5.1.2 The Component Type of an Unaltered Session Bean ..7

5.1.3 Dependency Injection...8

5.1.4 Providing additional Component Type data for a Session Bean..9

5.1.5 Using a ComponentType Side-File..11

5.1.6 Creating SCA components that use Session Beans as Implementation Types11

5.1.7 Limitations on the use of Session Beans as Component Implementation12

5.1.8 Use of Implementation Scopes with Session Beans ..12

5.1.9 SCA Conversational Behavior with Session Beans ...13

5.1.10 Non-Blocking Service Operations ...13

5.1.11 Accessing a Callback Service ..13

5.2 Using Message Driven Beans as Implementation Types...13

5.2.1 Dependency Injection...13

5.2.2 The Component Type of an Unaltered Message Driven Bean ..14

5.2.3 Providing additional Component Type data for a Message Driven Bean............................14

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 v

5.2.4 Creating SCA Components that use Message Driven Beans as Implementation Types15

5.2.5 Limitations on the Use of Message Driven Beans as Component Implementation.............15

5.3 Mapping of EJB Transaction Demarcation to SCA Transaction Policies15

5.4 Using Web Modules as Implementation Types ...16

5.4.1 Dependency Injection...16

5.4.2 The Component Type of an Unaltered Web Module...17

5.4.3 Providing additional Component Type Data for a Web Application...................................17

5.4.4 Using SCA References from JSPs ...17

5.4.5 Creating SCA Components that Use Web Modules as Implementation Types...................19

5.4.6 Limitations on the Use of Web Modules as Component Implementations19

6 SCA-enhanced Java EE Archives ... 20

6.1 Assembly and Deployment of SCA-enhanced Java EE Archives ...20

6.1.1 Java EE Archives as SCA Contributions ...21

6.1.2 Local Assembly of SCA-enhanced Java EE Applications...22

6.1.3 The Application Composite ...23

6.1.4 Domain Level Assembly of SCA-enhanced Java EE Applications.....................................26

6.1.5 Import and Export of SCA Artifacts ..29

6.1.6 Resolution of WSDL and XSD artifacts ..29

7 Java EE Archives as Service Component Implementations... 31

7.1 The Component Type of a non-SCA-enhanced Java EE Archive ...31

7.1.1 The Component Type of non-SCA-enhanced EJB Module...31

7.1.2 The Component Type of a non-SCA-enhanced Web Module...32

7.1.3 The Component Type of a non-SCA-enhanced Java EE Application33

7.2 The Component Type of an SCA-enhanced Java EE Archive ..34

8 References.. 39

9 Appendix A – use cases... 40

9.1 Technology Integration ..40

9.2 Extensibility for Java EE Applications ..42

10 Appendix B – Support for SCA Annotations... 44

11 Appendix C – schemas.. 46

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 1

1 Introduction 1

 2

This document specifies the use of Service Component Architecture (SCA) within and over the scope of 3
applications and modules developed, assembled, and packaged according to the Java Platform Enterprise 4
Edition (Java EE) specification. 5

Java EE is the standard for Java-based enterprise applications today. While it offers a rich set of 6
technologies, it does not define important concepts that are inherently required in service oriented 7
architectures such as 8

• Extensibility of component implementation technologies 9

• Extensibility of transport and protocol abstractions 10

• a notion of cross-application assembly and configuration 11

The Service Component Architecture on the other hand provides a standardized and extensible assembly 12
language and methodology that can be layered on top of existing component models and runtimes. 13

While the Java EE client and implementation specification will focus on the projection of SCA’s concepts 14
of assembly, implementation type, and deployment onto Java EE structures, it is expected that SCA 15
application assemblies will combine Java EE components with other technologies. Examples of 16
technologies for which SCA integration specifications have been completed include BPEL and the Spring 17
framework. It is expected that an SCA enabled Java EE runtime will offer a palette of technologies for 18
integration in an SCA assembly. 19

This specification defines the integration of SCA and Java EE within the context of a Java EE application, 20
the use of Java EE components as service component implementations, and the deployment of Java EE 21
archives either within or as SCA contributions. It is also possible to use bindings to achieve some level of 22
integration between SCA and Java EE. These bindings are addressed in separate specifications: The EJB 23
Session Bean Binding Specification [2] describes the exposure and consumption session beans; the JMS 24
Binding Specification [9] describes the exposure and consumption of Java Message System (JMS) 25
destinations; and a Binding Specification for Java Connectivity Architecture (JCA) adaptors should be 26
published in the near future (as of this writing). 27

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 2

2 Scenarios 28

As already informally introduced above, we will use the term SCA-enabled Java EE runtime to refer to a 29
Java EE runtime that supports deployment and execution of SCA-enhanced Java EE applications as well 30
as SCA-enhanced Java EE modules (see also section 6). 31

An SCA-enabled Java EE runtime that fully implements this specification would support the use cases 32
defined in appendix A. They are demonstrating the following scenarios: 33

2.1 Consume SCA-exposed services from Java EE compo nents 34

For example, a web component should be able to easily consume a service implemented by a service 35
component, either by using SCA constructs in the implementation of a Java EE component 36
implementation or via an EJB reference in combination with an EJB binding as defined in [2] over an 37
SCA service. 38

2.2 Use Session Beans as Service Component Implemen tations 39

The recursive assembly model of SCA provides rich means of configuration and re-use of service 40
components that may be implemented as SCA composites or by some other implementation type. Session 41
beans are the Java EE component implementation model and serve also as service component 42
implementations. 43

2.3 Expose Enterprise Applications into an SCA doma in 44

The SCA Assembly specification describes a deployment model for SCA contributions that provides 45
cross-enterprise application assembly capabilities when layered over Java EE. 46

2.4 Use Recursive SCA Assembly in Enterprise Applic ations 47

SCA Assembly provides means to define sophisticated application assembly for enterprise applications. 48

2.5 Deploy SCA Components as a Part of a Java EE ap plication 49

SCA applications will typically combine Java EE components with components using other 50
implementation technologies, such as BPEL. This specification enables the deployment of components 51
implemented in these “foreign” technologies as part of a Java EE application, taking advantage of 52
whatever tooling and infrastructure support exists for the deployment and lifecycle management of Java 53
EE applications. Such components are treated as running in unmanaged environment and should not rely 54
on Java EE features (access to java:comp/env, etc.) 55

2.6 Use Java EE Archives as Service Component Imple mentation 56

This specification enables the creation of SCA applications whose components are implemented by Java 57
JEE archives, so that they can be wired to each other and to components implemented using other 58
technologies. This use-case requires a high-level view of the Java EE application as a single SCA 59
component implementation, providing services and consuming references as a single component. 60

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 3

3 Overview of SCA Assembly in a Java Enterprise Edi tion 61

Environment 62

This specification defines a model of using SCA assembly in the context of a Java EE runtime that 63
enables integration with Java EE technologies on a fine-grained component level as well as use of Java 64
EE applications and modules in a coarse-grained large system approach. 65

The Java EE specifications define various programming models that result in application components, 66
such as Enterprise Java Beans (EJB) and Web applications that are packaged in modules and that are 67
assembled to enterprise applications using a Java Naming and Directory Interface (JNDI) based system of 68
component level references and component naming. 69

Names of Java EE components are scoped to the application package (including single module application 70
packages), while references, such as EJB references and resource references, are scoped to the component 71
and bound in the Environment Naming Context (ENC). 72

In order to reflect and extend this model with SCA assembly, this specification introduces the concept of 73
the Application Composite (see section 6.1.3) and a number of implementation types, such as the EJB 74
implementation type and the Web implementation type, that represent the most common Java EE 75
component types (see section 5). 76

Implementation types for Java EE components associate those component implementations with SCA 77
service components and their configuration, consisting of SCA wiring and component properties as well 78
as an assembly scope (i.e. a composite). Note that the use of these implementation types does not create 79
new component instances as far as Java EE is concerned. Section 3.1 explains this in more detail. 80

In terms of packaging and deployment this specification supports the use of a Java EE application 81
package as an SCA contribution, adding SCA’s domain metaphor to regular Java EE packaging and 82
deployment. 83

In addition, the JEE implementation type provides a means for larger scale assembly of contributions in 84
which a Java EE application forms an integrated part of a larger assembly context and where it is viewed 85
as an implementation artifact that may be deployed several times with different component configurations. 86
See section 7 for more details. 87

Through the extended semantics of the application composite and by virtue of the component type 88
definition for the JEE implementation type, both approaches, local assembly within the Java EE package 89
as well as a coarse-grained use, can be combined without introducing model friction. 90

3.1 Life-Cycle Model for Service Components from Ja va EE Components 91

The EJB implementation type and the Web implementation type differ from other SCA implementation 92
types in that they refer to components whose life cycle is not completely controlled by the SCA runtime 93
implementation but rather in a shared responsibility with a Java EE runtime. 94

This model is motivated by several considerations: 95

• EJB and Web components may be invoked out-of-band from an SCA perspective: for example via 96
a JNDI lookup and invocation in the case of a session bean, by receiving a JMS message in the 97
case of a Message-Driven bean, or by an HTTP request in the case of a web application. 98

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 4

• Prior to invocation of an SCA enhanced component, the runtime must provide the Java EE context 99
for the Java EE components as well as the SCA context (e.g. by injecting references).. 100

This specification defines the following rules that eliminate potential ambiguities: 101

• A Java EE component must not be used more than once as implementation of an SCA service 102
component within the assembly of a Java EE application package (an EAR archive, or a 103
standalone web application module, or a standalone EJB module). 104

• If a Java EE component that has a component type side file and/or is enhanced by SCA 105
annotations is not used as a component implementation by an explicit service component 106
declaration within the assembly of a Java EE application package, then it will not be associated 107
with a component context and any SCA annotation may cause an error or may be ignored. 108

Furthermore the following life cycle handling rules apply: 109

• The component life cycle of an SCA enhanced Java EE component (see [4]) is nested within its 110
Java EE component life cycle. More specifically: 111

o Java EE initialization of an SCA enhanced Java EE component will happen before any 112
SCA component initialization. Both occur before any business method invocation (or 113
HTTP request in the case of a web application). 114

o If an EJB has a PostConstruct interceptor registered, component initialization will happen 115
before the interceptor is called. 116

o No business method invocation (or HTTP request in the case of a web application) on the 117
service component will occur after scope destruction (i.e. while and after @Destroy life 118
cycle methods are called) and before the component implementation instance is finalized. 119

• The point in time of deployment of an SCA enhanced Java EE component is exactly the point in 120
time it is deployed as a Java EE component. 121

3.2 Mapping a Java EE Component’s Environment to Co mponent Type 122
Data 123

In the absence of optional extensions, the component type of a Java EE component (such as a Servlet or 124
Enterprise Bean) does not contain SCA references. However, as an optional extension, an SCA runtime 125
can choose to provide the capability of re-wiring EJB references using SCA. If an SCA runtime provides 126
this optional extension, then the following rule is applied: 127

Each EJB 3 remote reference of each session bean within the Java EE application is exposed as an SCA 128
reference. Each EJB reference has a target (within the Java EE application) that is the EJB identified by 129
the configuration metadata within the JEE application - it is this target which may be overridden by a 130
new target identified in the SCA metadata of the component using the JEE application. The multiplicity 131
of the generated reference is 0..1. The generated reference must require the “ejb” intent : 132

<intent name="ejb" constrains="sca:binding"> 133

<description> The EJB intent requires that all of the semantics required by the Java EE specification for a 134
communication to or from an EJB must be honored </description> 135

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 5

</intent> 136

As an additional vendor extension, each environment entry with a simple type may be translated into an 137
SCA property. The name of the property is derived from the name of the resource, according to the 138
algorithm given below. The XML simple type of the SCA property is derived from the Java type of the 139
environment entry according to the following type mapping: 140

 141

Environment Entry Type XSD Type

String String

Character String

Byte Byte

Short Short

Integer Int

Long Long

Boolean Boolean

Double Double

Float Float

 142

Note that SCA names for references are of the XML Schema type NCName, while Java EE names for 143
EJB references are of a type that allows a larger character set than what is supported in NCNames. The 144
following escape algorithm defines how to translate names of EJB references and into names of SCA 145
references: 146

1. Replace all “/” characters by “_” (underscore) characters 147

2. All remaining characters that are not supported in NCName are escaped as XML entities or 148
character references. 149

These optional extensions are in no way required to be provided by any given SCA runtime and that, as a 150
result, it is unadvisable to rely on the capability of rewiring EJB references when porting applications 151
between different runtimes. 152

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 6

4 Scope and Limitations of the Specification 153

 154

Various parts of this specification are limited with respect to what version of Java EE specifications they 155
refer and apply to. 156

• <implementation.ejb/> is only defined for EJB version 3 and higher. 157

• <implementation.web/> is only defined for Servlet JSP specification version 2.5 and higher. 158

• <implementation.jee/> is only defined for Java EE archives that are compliant to Java EE 5 and 159
higher 160

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 7

5 Java EE Component Based Implementation Types 161

The elementary building block of SCA assembly is the Service Component. In order to provide first class 162
capabilities for exposure of services or consumption of service components, we define implementation 163
types that represent the most prominent application component in Java EE applications: Enterprise 164
JavaBeans (EJB) and Web application components. 165

The intention is to define a convenient implementation model for developers of these components. For 166
example, a web component developer can use SCA annotations such as @Reference to declare service 167
component references in the web component implementation. 168

5.1 Using Session Beans as Implementation Types 169

Session beans are the Java EE means to encapsulate business logic in an environment that manages 170
remoting, security, and transaction boundaries. Service components play a similar role in SCA and so 171
session beans are the most obvious candidates for service component implementation in a Java EE 172
environment. 173

The SCA service programming model described in [5] resembles the EJB 3.0 programming model, for 174
instance in its use of dependency injection. As in EJB 3.0, and unlike EJB 2.x, service interfaces do not 175
need to extend any framework defined interfaces. An SCA-enabled Java EE runtime MUST support EJB 176
3.0 session beans as implementation types. An SCA-enabled Java EE runtime is not required to support 177
EJB 2.1 session beans as SCA component implementation types. Handling of other JavaEE components, 178
such as Message Driven Beans, is discussed in later sections. 179

Services and references of service components are associated with interfaces that define the set of 180
operations offered by a service or required by a reference when connecting (“wiring”) with other services 181
and references directly or via bindings. Interface definitions are hence an important part of the assembly 182
meta-data and we need to define the particularities of interfaces derived from Java EE components 183

5.1.1 Mapping EJB business Interfaces to SCA Servic e Interfaces 184

The service interface derived from the business interface of an EJB 3 session bean is comprised of all 185
methods of the EJB business interface. Furthermore: 186

The service interface is remotable if and only if it is derived from a remote business interface. The 187
EJB semantics for remote and local invocations (and thus the by-reference and by-value calls) as 188
defined in [8] must be honored . 189

In the case of a business interface of a stateful session bean: 190

• The service interface is treated as conversational 191

• Methods of the interface that are implemented by @Remove methods are treated as 192
@EndsConversation methods of the interface. 193

5.1.2 The Component Type of an Unaltered Session Be an 194

The component type of a session bean that does not use any SCA annotation and is not accompanied by a 195
component type side file is constructed according to the following algorithm: 196

1. Each EJB 3 business interface of the session bean translates into a service by the unqualified 197
name of the interface according to section 5.1.1. Such generated services require the EJB intent 198

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 8

(i.e. they are treated as if there was @requires=”ejb” definition in the business interface). EJB 2.x 199
component interfaces are ignored. 200

2. Remote EJB 3 references MAY translate into an SCA references according to section 3.2. 201

3. Each Simple-Typed Environment Entry of the session MAY translate into an SCA property 202
according to section 3.2. 203

 204

For example: 205

package services.accountdata; 206
 207
import javax.ejb.Local; 208
 209
@Remote 210
public interface AccountService { 211
 AccountReport getAccountReport(String customerId); 212
} 213
 214

with a session bean implementation 215

package services.accountdata; 216
 217
import javax.ejb.Stateless; 218
 219
@Stateless 220
public class AccountServiceImpl implements AccountService { 221
 222
 public AccountReport getAccountReport(String customerId) { 223
 // ... 224
 return null ; 225
 } 226
} 227
 228

would result in the following component type: 229

<?xml version="1.0" encoding="UTF-8"?> 230
<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"> 231
 <service name="AccountService"> 232
 <interface.java interface="services.accountdata.AccountService"/> 233
 </service> 234
</componentType> 235
 236

5.1.3 Dependency Injection 237
Any session bean (or other Java EE construct) that is serving as the implementation type of an SCA 238
service component may use dependency injection to acquire handles to the services wired to the 239

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 9

component by the SCA assembly. Dependency injection may also be used to obtain the value of 240
properties, a handle to the ComponentContext, a reference to the callback service and attributes of the 241
current conversation. The following table shows the annotations that may be used to indicate the fields or 242
properties to be injected. 243

 244

Annotation Purpose

@Callback Session beans only: Mark method/field for callback injection

@ComponentName Injection of component name

@Context Injection of SCA context into member variable of service component instance

@Property Injection of configuration properties from SC configuration

@Reference Injection of Service references. There is no requirement that an SCA reference
would appear under java:comp/env.

@ConversationID Stateful Session beans only: Injection of a conversation id

 245

A complete description of these annotations, and the values associated with them, is given in the Java 246
Common Annotations and APIs specification [5]. 247

When a session bean uses dependency injection, the container MUST inject these references after the 248
bean instance is created, and before any business methods are invoked on the bean instance. If the bean 249
has a PostConstruct interceptor registered, dependency injection MUST occur before the interceptor is 250
called. 251

EJB’s dependency injection occurs as part of construction, before the instance processes the first service 252
request. For consistency, SCA’s dependency injection also occurs during this phase. Instances of 253
stateless session beans are typically pooled by the container. This has some consequences for the 254
programming model for SCA. 255

In general, the values returned from the injected ComponentContext must reflect the current state in 256
which the SCA component is being called. In particular, the value of getRequestContext() MUST return 257
the request context of the current service call, not the request context for which the bean was initially 258
created. 259

See also section 3.1 for an overview over the life cycle handling of SCA-enhanced Java EE components. 260

5.1.4 Providing additional Component Type data for a Session Bean 261

Several of the annotations described in [4] influence the implied component type of the session bean (or 262
other Java EE construct). The following table shows the annotations that are relevant in a SCA-enabled 263
Java EE runtime. 264

Annotation Purpose

@Property Adds a property to the implied component type. The type of the property is
obtained through introspection.

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 10

@Reference Adds a reference to the implied component type. The interface associated
with this wire source is obtained through introspection. In the case a field is
annotated with both @EJB and @Reference, SCA wiring overrides the EJB
target identified by the configuration metadata within the JEE application by
a new target according to SCA wiring rules. If the SCA reference is not
wired, the value of the field is the target EJB as determined by Java EE
semantics.

@Service Session beans only: Allows the specification of which of the bean’s EJB
business interfaces should be exposed as SCA services. The business
interface indicated in this annotation MUST BE EJB 3 compliant business
interface. The service name of the implied component service will be the
unqualified name of the interface. A remote interface is considered a
remotable SCA interface. If the @Service annotation is not used, component
services will be generated for each business interface exposed by the bean, as
described in the section on the component type of unannotated Session Beans.

 265

An SCA-enabled Java EE runtime MUST observe the specified annotations and use them when 266
generating an implied component type. 267

Note that the set of annotations relevant to Java EE is a subset of those defined in [4]. Many of the 268
remaining annotations duplicate functionality already available using Java EE annotations. An example is 269
SCA’s @Remotable tag, which duplicates functionality already available using Java EE’s @Remote tag. 270
To prevent redundancies and possible inconsistencies, the annotations given in [4] but not listed in the 271
above table MUST be ignored. 272

5.1.4.1 Example of the use of annotations: 273

Using annotations, it is easy to create a component with a more complex component type. Continuing the 274
example from section 3.1.1, we now add properties and references that can be injected based on the 275
components use in an SCA assembly. 276

package services.accountdata; 277
 278
import javax.ejb.Stateless; 279
import org.osoa.sca.annotations.*; 280
 281
import services.backend.BackendService; 282
 283
@Stateless 284
public class AccountServiceImpl implements AccountService { 285
 @Reference protected BackendService backend; 286
 @Property protected String currency; 287
 288
 public AccountReport getAccountReport(String customerId) { 289
 // ... 290
 return backend(customerId, currency); 291
 } 292

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 11

} 293
 294

would result in the following component type: 295

<?xml version="1.0" encoding="UTF-8"?> 296
<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"> 297
 <service name="AccountService"> 298
 <interface.java interface="services.accountdata.AccountService"/> 299
 </service> 300
 <property name="currency"/> 301
 <reference name=”backend”> 302
 <interface.java interface="services.backend.BackendService"/> 303
 </reference> 304
</componentType> 305

5.1.5 Using a ComponentType Side-File 306
Using SCA annotations, a service component developer can easily create session beans that imply a 307
complex component type. If further tuning of the component type is necessary, a component type side 308
file may be included in the contribution. The component type side file follows the naming pattern 309

META-INF/<bean name>.componentType 310

and is located in the ejb module containing the bean. The rules on how a component type side file adds to 311
the component type information reflected from the component implementation are described as part of the 312
SCA assembly model specification [3]. If the component type information is in conflict with the 313
implementation, it is an error as defined in [3]. 314

If the component type side file specifies a service interface using a WSDL interface, then the bean 315
interface MUST be compliant with the specified WSDL, according to the rules given in section 'WSDL 2 316
Java and Java 2 WSDL' in the Java Annotations and APIs Specification [4]. 317

Use of the side file is recommended in cases where the ComponentContext API will be used instead of 318
dependency injection to obtain service references. Since there is no annotation, introspection will not be 319
able to see the need to insert a new reference into the component type. 320

5.1.6 Creating SCA components that use Session Bean s as Implementation Types 321

In order to declare a service component instance that is implemented as a session bean, an 322
implementation.ejb declaration can be put in some composite definition (see below). It has the following 323
pseudo schema: 324

<implementation.ejb ejb-link="<ejb-link-name>”/> 325
 326

The ejb-link-name attribute uniquely identifies the EJB that serves as the component implementation. 327
The format of the value is identical to the format of the ejb-link tag in a Java EE deployment descriptor. 328
In the case that the SCA contribution containing the composite file is an application EAR file, it is 329
possible that several session beans have the same name. In that case the value of the ejb-link element must 330
be composed of a path name specifying the ejb-jar containing the referenced enterprise bean with the ejb-331
name of the referenced enterprise bean appended and separated from the path name with a ‘#’. The path 332

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 12

name is relative to the root of the EAR. In the case that SCA contribution is an EJB module’s JAR file, 333
the path name may generally be omitted. 334

The following example declares a service component named beancomponent in the composite 335
beancomposite of the namespace http://www.sample.org. Beancomponent is implemented by the bean 336
SimpleBean in the ejb-module module.jar. Beancomponent exposes a service, named after the bean’s 337
business interface name, that is promoted to the composite level: 338

<?xml version="1.0" encoding="UTF-8"?> 339
<composite name="beancomposite" targetNamespace="http://www.sample.org" 340
 xmlns="http://www.osoa.org/xmlns/sca/1.0"> 341
 342
 <service name="AccountReporting" promote="beancomponent/AccountService"/> 343
 344
 <component name="beancomponent"> 345
 <implementation.ejb ejb-link="module.jar#SimpleBean"/> 346
 </component> 347
</composite> 348
 349

5.1.7 Limitations on the use of Session Beans as Co mponent Implementation 350

Session beans that serve as SCA implementations are none-the-less session beans, and may be found and 351
used just like any other session bean, for instance, through dependency injection via an @EJB annotation, 352
or though JNDI lookup. 353

An enterprise bean accessed through normal Java EE methods can contain SCA annotations such as 354
@Reference or @Property, or may look up its configuration through the API, and therefore, require 355
configuration from the SCA runtime. 356

Therefore, within the assembly of the contribution package, a session bean may be used as service 357
component implementation at most once. Whether the enterprise bean is accessed through standard Java 358
EE means, or through an SCA reference, the same service component configuration is used (see also 359
section 3). 360

The EJB Specification defines a container contract that defines what behavior implementations may 361
expect from the container, and what behavior the container can expect from the implementation. For 362
instance, implementations are forbidden from managing class loaders and threads, but on the other hand, 363
implementations need not be programmed for thread safety, since the container guarantees that no bean 364
instance will be accessed concurrently. In an SCA-enabled Java EE runtime, both parties are expected to 365
continue to abide by this contract. That is, a session bean that is serving as an SCA implementation type 366
must continue to be a well-behaving EJB, abstaining from thread and class loader management, and the 367
SCA-enabled Java EE runtime must also continue to behave as in accordance with the EJB container 368
contract. 369

5.1.8 Use of Implementation Scopes with Session Bea ns 370

The lifecycle of a stateless session bean is not impacted by its use in an SCA context. The instance is 371
returned to the free pool as soon as it finishes servicing the request, regardless of whether the call was 372
made over an SCA wire or over using an EJB proxy object. In the terminology provided in [4], a stateless 373

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 13

session bean always has a STATELESS implementation scope. An SCA-enabled Java EE runtime is not 374
required to provide means for tuning or customizing this behavior. 375

Similarly, the lifecycle of a stateful bean is, by default, not impacted by its use in an SCA context. The 376
bean instance remains (modulus passivation/activation cycles) until it times out or one of its @Remove 377
methods are called. In the terminology provided in [4], a stateful session bean has CONVERSATIONAL 378
implementation scope. 379

 380

5.1.9 SCA Conversational Behavior with Session Bean s 381

The SCA Assembly Specification [3] introduces the concept of conversational interfaces for describing 382
service contracts in which the client can rely on conversational state being maintained between calls, and 383
where the conversational identifier is communicated separately from application data (possibly in 384
headers). Note that a conversational contract assumes association with a conversationally scoped 385
implementation instance such as stateful bean. Section 5.1.1 defines how business interfaces are mapped 386
to SCA service. SCA conversational interface must not be used with a stateless bean. 387

5.1.10 Non-Blocking Service Operations 388

Service operations defined by a Session Bean’s business interface may use the @OneWay annotation to 389
declare that when a client invokes the service operation, the SCA runtime must honor non-blocking 390
semantics as defined by the SCA assembly Specification [3]. 391

5.1.11 Accessing a Callback Service 392

Session Beans that provide the implementation of SCA components and require a callback service may 393
use @Callback to have a reference to the callback service associated with the current invocation injected 394
on a field or setter method. 395

5.2 Using Message Driven Beans as Implementation Ty pes 396

Message Driven Beans are the JavaEE construct for consuming asynchronous messages. Message Driven 397
beans may participate in SCA assembly as the implementation type of a component that does not offer 398
any services, but may be configured or wired from. Message-driven beans cannot be instantiated 399
arbitrarily often due to their association with non SCA-controlled endpoints (typically JMS). Therefore, 400
within the assembly of the application package, a message-driven bean may be used as service component 401
implementation at most once (see also section 3). 402

5.2.1 Dependency Injection 403

A message driven bean that is the implementation type of an SCA component may use dependency 404
injection to acquire references to the services wired to the component by the SCA assembly. Dependency 405
injection may also be used to obtain the value of properties or a handle to the component’s component 406
context. The following table shows the annotations that may be used to indicate the fields or properties to 407
be injected. 408

 409

Annotation Purpose

@ComponentName Injection of component name

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 14

@Context Injection of SCA context into member variable of service component instance

@Property Injection of configuration properties from SCA configuration

@Reference Injection of Service references

 410

A complete description of these annotations, and the values associated with them, is given in the Java 411
Common Annotations and APIs specification [4]. 412

When a message driven bean uses dependency injection, the container MUST inject these references after 413
the bean instance is created, and before any business methods are invoked on the bean instance. If the 414
bean has a PostConstruct interceptor registered, dependency injection MUST occur before the interceptor 415
is called. 416

See also section 3.1 for an overview over the life cycle handling of SCA-enhanced Java EE components. 417

5.2.2 The Component Type of an Unaltered Message Dr iven Bean 418
Unlike Session Beans, Message Driven Beans do not have business interfaces. Therefore, the component 419
type implied from a message driven bean does not offer any SCA services. The bean may, of course, be 420
accessed indirectly over a binding.jms call to its associated queue, but this is not transparent to the SCA 421
assembly. 422

The component type of a message driven bean that does not use any SCA annotation and is not 423
accompanied by a component type side file is constructed according to the following algorithm: 424

1. Remote EJB 3 references MAY translate into an SCA references according to section 3.2. 425

2. Each Simple-Typed Environment Entry of the session MAY translate into an SCA property 426
according to section 3.2. 427

5.2.3 Providing additional Component Type data for a Message Driven Bean 428

Several of the annotations described in [4] influence the implied component type of the session bean (or 429
other Java EE construct). The following table shows the annotations that are relevant in a SCA-enabled 430
Java EE runtime. 431

Annotation Purpose

@Property Adds a property to the implied component type. The type of the property is
obtained through introspection.

@Reference Adds a reference to the implied component type. The interface associated
with this wire source is obtained through introspection.

 432

An SCA-enable Java EE runtime MUST observe the specified annotations and use them when generating 433
an implied component type. 434

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 15

5.2.4 Creating SCA Components that use Message Driv en Beans as 435
Implementation Types 436

Since both Message Driven Beans and Session Beans are Enterprise Java Beans, both can be uniquely 437
referenced in an ejb-link. Therefore, no new tag is needed to declare a service component instance that is 438
implemented as a Message Driven Bean: an implementation.ejb (described in section 5.1.6 above) can be 439
used in both cases. 440

5.2.5 Limitations on the Use of Message Driven Bean s as Component 441
Implementation 442

A few limitations with respect to use as service component implementation apply to Message Driven 443
Beans: 444

• A Message-Driven Bean may not be given an implementation scope. 445

• A Message Driven Bean cannot be used to provide a conversational service. It may, of course, 446
access conversational services. 447

5.3 Mapping of EJB Transaction Demarcation to SCA T ransaction Policies 448

The EJB programming model supports a concept of container managed transaction handling in which the 449
bean provides class-level or method-level information on transaction demarcation that is observed by the 450
EJB runtime implementation. SCA’s policy framework [6] in conjunction with the transaction policies 451
specification [10] defines an extended transaction demarcation model using SCA policy intents. 452

However, since EJB transaction attributes can be defined on the class as well as on the method-level, the 453
EJB model more fine-granular than SCA’s transaction model and a simple mapping to SCA policies is not 454
possible. 455

For class-level transaction demarcation, the following table illustrates the mapping of EJB transaction 456
attributes to SCA transaction implementation policies: 457

EJB Transaction
Attribute

SCA Transaction Policy, required
intents on services

SCA Transaction Policy, required
intents on implementations

NOT_SUPPORTED suspendsTransaction

REQUIRED propagatesTransaction managedTransaction.global

SUPPORTS propagatesTransaction managedTransaction.global

REQUIRES_NEW suspendsTransaction managedTransaction.global

MANDATORY propagatesTransaction managedTransaction.global

NEVER suspendsTransaction

 458

Note: in the case of MANDATORY and NEVER demarcations, policy mapping is not completely 459
accurate as these attributes express responsibilities of the EJB container as well as the EJB implementer 460
rather then expressing a requirement on the service consumer (see [8]). 461

We require that EJB’s transaction model stays unchanged by SCA, and an SCA-enabled Java EE runtime 462
MUST adhere to the rules laid out in [8]. 463

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 16

5.4 Using Web Modules as Implementation Types 464

As with Message Driven beans, web modules may participate in SCA assembly as the implementation 465
type of a component that does not offer services, but may be configured or wired from. 466

5.4.1 Dependency Injection 467

A web module may use dependency injection to acquire references to the services wired to the component 468
by the SCA assembly. Dependency injection may also be used to obtain the value of properties or a 469
handle to the component context. The following table shows the annotations that may be used to indicate 470
the fields or properties to be injected. 471

Annotation Purpose

@ComponentName Injection of component name

@Context Injection of SCA context into member variable of service component instance

@Property Injection of configuration properties from SC configuration

@Reference Injection of Service references

 472
A complete description of these annotations, and the values associated with them, is given in the Java 473
Common Annotations and APIs specification [4]. 474
 475
Due to the multi-threaded nature of web artifacts, in the case where a Reference Proxy targeted to a 476
conversational interface (such as stetefull session beans) may not behave as expected. SCA-Java EE 477
Runtimes may treat this case as an error. The recommended approach to obtain such reference proxy is 478
via usage of ComponentContext. 479
 480
Dependency injection of values configured from SCA occurs in exactly those locations that the web 481
container can inject values based on the Java EE configuration. An SCA-enabled Java EE server MUST 482
be able to perform dependency injection on the following artifacts. 483
 484
Name Interface or Class

Servlets javax.servlet.Servlet

Servlet filters javax.servlet.ServletFilter

Event listeners javax.servlet.ServletContextListener
javax.servlet.ServletContextAttributeListener
javax.servlet.ServletRequestListener
javax.servlet.ServletRequestAttributeListener
javax.servlet.http.HttpSessionListener
javax.servlet.http.HttpSessionAttributeListener
javax.servlet.http.HttpSessionBindingListener

Taglib tag handlers javax.servlet.jsp.tagext.JspTag

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 17

JavaServer Faces
technology-managed
beans

Plain Old Java Objects (POJOs)

 485

See also section 3.1 for an overview over the life cycle handling of SCA-enhanced Java EE components. 486

5.4.2 The Component Type of an Unaltered Web Module 487

Since it does not offer SCA services the component type of a web module does not contain any SCA 488
services. However, it may contain references and properties. 489

The component type of a web application that does not use any SCA annotation and is not accompanied 490
by a component type side file is constructed according to the following algorithm: 491

1. Remote EJB 3 references MAY translate into an SCA references according to section 3.2. 492

2. Each Simple-Typed Environment Entry of the session MAY translate into an SCA property 493
according to section 3.2. 494

5.4.3 Providing additional Component Type Data for a Web Application 495

Several of the annotations described in [4] influence the implied component type of the Web application. 496
The following table shows the annotations that are relevant in a SCA-enabled Java EE runtime. 497

Annotation Purpose

@Property Adds a property to the implied component type. The type of the property is
obtained through introspection.

@Reference Adds a reference to the implied component type. The interface associated
with this wire source is obtained through introspection.

 498

An SCA-enable Java EE runtime MUST observe the specified annotations and use them when generating 499
an implied component type. All files where dependency injection may occur (see the table in section 500
5.4.1) MUST be inspected when generating the implied component type. 501

A web component can provide additional component type data in the side file 502

WEB-INF/web.componentType 503

in the web module archive. Using Web Modules as Implementation Types 504

5.4.4 Using SCA References from JSPs 505
JavaServer Pages (JSP) tag libraries define declarative, modular functionality that can be reused by any 506
JSP page. Tag libraries reduce the necessity to embed large amounts of Java code in JSP pages by moving 507
the functionality of the tags into tag implementation classes ([6]). 508

Following this philosophy, a JSP tag library will be made available to expose SCA components in JSP 509
pages. The following snippet illustrates the use of an SCA reference using the tag library: 510

 511

<%@ taglib uri="http://www.osog.org/sca/sca.tld" prefix="sca" %> 512

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 18

 513
...... 514
 515
<sca:reference name="service" type="test.MyService" /> 516
 517
<% service.sayHello(); %> 518
 519

An SCA-enabled Java EE runtime MUST support the SCA JSP tag library by providing implementations 520
of the tag-class and tei-class. The servlet container hosting the webapp will instantiate new instances of 521
the tag-class whenever it comes across the SCA specific tag in a JSP page. The tag-class is responsible for 522
doing dependency injection into the JSP page based on the properties provided to the JSP page. The scope 523
of the object injected is PageContext. APPLICATION_SCOPE in case the the interface is not 524
conversational and PageContext. SESSION_SCOPE in case the interface is statefull. The SCA JSP tag 525
also makes available the given reference with a newly declared scripting variable of the same id. 526

In order to access SCA configuration from JSP pages, JSP page authors MUST import the SCA tag 527
library provided by the SCA runtime and provide all the properties necessary for dependency injection. 528
The required properties are the name of the reference to be injected, and the type of the field (Service 529
interface class name). 530

All tag libraries are required to provide a TagLibrary Descriptor (TLD). The information provided by via 531
the tag library descriptors will be used by the web application container to handle processing of tags in the 532
jsp page. The TLD of the SCA tag library is show in the following code box 533

<?xml version = '1.0' encoding = 'ISO-8859-1'?> 534
<!DOCTYPE taglib PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN" 535
"http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"> 536
<taglib version="2.1"> 537
 538
 <tlib-version>1.0</tlib-version> 539
 <short-name>SCA-JSP</short-name> 540
 <uri>http://www.osoa.org/sca/sca_jsp.tld</uri> 541
 <description>A tag library for integrating sca components with jsp 542
 </description> 543
 544
 <tag> 545
 <name>reference</name> 546
 <tag-class><!—To be provided by the SCA runtime implementation �</tag-class> 547
 <tei-class><!—To be provided by the SCA runtime implementation �</tei-class> 548
 549
 <attribute> 550
 <name>name</name> 551
 <required>true</required> 552
 <type>java.lang.String</type> 553
 </attribute> 554
 555
 <attribute> 556

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 19

 <name>type</name> 557
 <required>true</required> 558
 <type>java.lang.String</type> 559
 </attribute> 560
 561
 562
 <body-content>empty</body-content> 563
 564
 </tag> 565
 566
</taglib> 567

5.4.5 Creating SCA Components that Use Web Modules as Implementation Types 568

The implementation.web tag can be used to declare a service component that is implemented by the web 569
component. It has the following pseudo-schema. 570

<implementation.web web-uri="<module name>"/> 571
As for message-driven beans, a web component can be configured at most once per assembly of the 572
contribution package. 573

5.4.6 Limitations on the Use of Web Modules as Comp onent Implementations 574

Because each module is associated with a unique context root, web modules may be used as service 575
component implementation at most once (see also section 3). 576

Furthermore, a web module may not be given an implementation scope. 577

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 20

6 SCA-enhanced Java EE Archives 578

The following sections provide a detailed description of how to make use of SCA concepts within and 579
over the scope of Java EE applications and Java EE modules. 580

We will use the terms SCA-enhanced Java EE application when referring to Java EE applications that 581
are composed from a mix of Java EE artifacts as well as SCA artifacts and additional implementation 582
artifacts. 583

Similarly we will use the term SCA-enhanced Java EE module for a corresponding construction 584
pertaining to a Java EE module, and we will use the term SCA-enhanced Java EE archive when referring 585
to either construct. 586

6.1 Assembly and Deployment of SCA-enhanced Java EE Archives 587

In this section we will see how to apply SCA assembly concepts when assembling and deploying SCA-588
enhanced Java EE applications. The SCA assembly specification [3] defines a language and model to 589
make effective use of the implementation types and bindings described in this specification and other 590
specifications (as far as supported by the target runtime environment). 591

The reader should be familiar with the concepts and terms of the SCA assembly specification [3]. 592

In order to provide a visual representation of assembly and deployment related examples, we use the 593
following graphical notation: 594

 595

Note: Java EE archives, SCA-enhanced or not, may also be used as service component implementations 596
via the Java EE implementation type. See section 7 for more details. 597

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 21

6.1.1 Java EE Archives as SCA Contributions 598

A Java EE archive, for example a Java EE application or a Java EE module (a Web application, an ejb 599
module), can be used as an SCA contribution (see [3]). 600

We will use the term Java EE contribution for a Java EE archive that is used as an SCA contribution. 601

A Java EE archive that is being used as an SCA contribution must still be valid according to Java EE 602
requirements, containing all required Java EE artifacts (e.g., META-INF/application.xml in an .ear file). 603

Many Java EE implementations place some additional requirements on deployable archives, for instance, 604
requiring vendor specific deployment descriptors. A Java EE archive that is an SCA contribution should 605
also fulfill these additional, implementation specific constraints. 606

As with any regular SCA contribution a Java EE contribution may be associated with a set deployment 607
composites that can be deployed to the SCA domain. A Java EE archive that is being used as an SCA 608
contribution indicates its deployment composites, as well as any imported or exported SCA artifacts, by 609
providing an SCA Contribution Metadata Document at 610

META-INF/sca-contribution.xml 611

Section 10.1.2 of the SCA Assembly Specification [3] describes the format and content of this document. 612

A META-INF/sca-contribution-generated.xml file may also be present. An SCA-enabled Java EE 613
runtime MUST process these documents, if present, and deploy the indicated composites. 614

Implementations that support an install step separate from a deployment step may use the add 615
Deployment Composite function (SCA Assembly 1.10.4.2) to allow composites to be added to an 616
installed SCA-enhanced Java EE archive without modifying the archive itself. In this case, the 617
composites will be passed in by value. Such feature is useful because it allows the deployer to complete 618
the SCA wiring by adding in the composite. 619

The deployment of a set of deployment composites from a Java EE contribution, including the exposure 620
of components in the virtual domain composite and of external bindings, takes place in addition to Java 621
EE deployment: every Java EE component in the application’s deployment descriptors (including EJB3 622
implied deployment descriptors) will be deployed, whether it is mentioned in a composite or not. See also 623
section 3.1. 624

Irrespective of how many SCA deployment composites are deployed from a Java EE contribution, only 625
one Java EE deployment will occur. 626

For example, the composite below and the following contribution metadata document would lead to 627
exposure of a contribution of a service component named org.sample.Accounting to the domain 628
composite. This component exposes a single service AccountReporting that is implemented by the EJB 629
session bean module.jar#RemotableBean, assuming that the session bean RemotableBean has one 630
business interface by the name services.accouting.AccountReporting (see also 5.1.2). 631

 632

<?xml version="1.0" encoding="UTF-8"?> 633
<composite name="AccountingToDomain" 634
 targetNamespace="http://www.sample.org" 635
 xmlns:sample="http://www.sample.org" 636
 xmlns="http://www.osoa.org/xmlns/sca/1.0"> 637

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 22

 638
 <component name="org.sample.Accounting"> 639
 <implementation.ejb ejb-link="module.jar#RemotableBean"/> 640
 </component> 641
</composite> 642
 643

<?xml version="1.0" encoding="UTF-8"?> 644
<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0" 645
 xmlns:sample="http://www.sample.org"> 646
 647
 <deployable composite="sample:AccountingToDomain"/> 648
</contribution> 649
 650

Using the diagram notation introduced above we get 651

 652

While this kind of assembly is very practical for rapidly achieving domain exposure of service 653
components implemented in a Java EE contribution, it provides little encapsulation and information 654
hiding for application level assembly that is not to be exposed in the domain. 655

6.1.2 Local Assembly of SCA-enhanced Java EE Applic ations 656
On an SCA-enabled Java EE runtime SCA assembly extends Java EE assembly by providing a framework 657
for additional implementation types, bindings, and wiring capabilities. For instance, SCA makes it 658
possible to wire an EJB component to a BPEL process. Such application internal wiring, between 659
standard Java EE components and SCA components whose implementations may not be Java classes 660

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 23

(supported implementation and binding types will, of course, vary from implementation to 661
implementation) is a major benefit of SCA. 662

Users should take advantage of this benefit without requiring explicit contribution of components to the 663
domain and it is often advantageous to separate the application’s internal wiring from the components that 664
the application wishes to expose in the domain, in particular, to encapsulate the internal wiring and 665
components. 666

Nevertheless, consistency with SCA’s assembly model requires having a well defined URI path from the 667
domain to any deployed service component. 668

Therefore, in order to achieve a compliant contribution on the one hand and yet reflect a Java EE archive 669
locally scoped assembly, an application assembler should introduce an intermediate composite that is in 670
turn used as a domain deployed component implementation, as shown in the following abstract 671
construction: 672

 673

In order to ease the implementation of this typical application assembly approach and in order to provide 674
a developer-friendly, convenient local assembly for SCA-enhanced Java EE applications, SCA enabled 675
Java EE runtimes must support the application composite. 676

6.1.3 The Application Composite 677

A Java EE contribution may define a distinguished composite, the application composite, that supports 678
the use of SCA programming model within the scope of the Java EE archive. 679

The application composite has two particular characteristics: 680

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 24

1. The application composite may be directly or indirectly used as an composite implementation or 681
by inclusion into some deployment composite. 682
However, if that is not the case, the SCA implementation MUST logically insert a deployment 683
composite into the archive that contains a single component, named after the application 684
composite, that uses the application composite as its implementation. In addition this deployment 685
composite MUST be deployed into the domain. Consequently the services and references that 686
were promoted from the application composite are exposed into the domain. 687

2. The application composite supports automatic (logical) inclusion of SCDL definitions that 688
reproduce the component type of the JEE implementation type into the composite’s component 689
type. See section 7.2 7.1.3 for a detailed description of the includeDefaults feature. 690

Application archives (.ear files) that are being used as SCA contributions define the application composite 691
by a composite definition at 692

META-INF/application.composite 693

in the enterprise application package. The Java EE specification also supports deployment of single 694
application modules. This method of deployment is particularly popular for web application modules but 695
also used for EJB modules and resource adapter modules. We treat single modules as a simplified 696
application package. The application composite for these archives is defined at 697

WEB-INF/web.composite 698

for web modules, and in 699

META-INF/ejb-jar.composite 700

for EJB modules. 701

For example the following application.composite file configures a property of a session bean 702
RemotableBean and exposes its remote interface service to the domain using a default web service 703
binding. 704

<?xml version="1.0" encoding="UTF-8"?> 705
<composite name="accounting_application" 706
 targetNamespace="http://www.sample.org" 707
 xmlns="http://www.osoa.org/xmlns/sca/1.0"> 708
 709
 <service name="AccountReporting" promote="beancomponent/AccountServiceRemote"> 710
 <binding.ws/> 711
 </service> 712
 713
 <component name="beancomponent"> 714
 <implementation.ejb ejb-link="module.jar#RemotableBean"/> 715
 <property name="currency">EUR</property> 716
 </component> 717
</composite> 718
 719

By definition the application composite implies the generation of a deployment composite that deploys a 720
single component to the domain like this: 721

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 25

domain

module.jar

accounting_application

beancomponent

RemotableBean

binding.ws

accounting_application

implied (no scdl

artifact required)

accounting_application

 722

 723

The EJB-implemented service component beancomponent may be modified in a later version so that it 724
makes use of another service component othercomponent (whose implementation technology we ignore 725
for the sake of the example). It can do so by modifying the application composite but without changing its 726
domain exposure: 727

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 26

 728

6.1.4 Domain Level Assembly of SCA-enhanced Java EE Applications 729

As applications expose themselves in the SCA domain, they make themselves available for SCA wiring. 730
In this way, SCA allows Java EE applications to do cross application wiring. To illustrate this, we 731
proceed with the example. Another enterprise application, can wire to the provided service by providing a 732
suitable deployment composite. In the example below assume the following contribution metadata 733
document: 734

<?xml version="1.0" encoding="UTF-8"?> 735
<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0" 736
 xmlns:here="http://www.acme.com"> 737
 738
 <deployable composite="here:LinkToAccounting"/> 739
</contribution> 740
 741

Where 742

<?xml version="1.0" encoding="UTF-8"?> 743
<composite name="LinkToAccounting" 744
 targetNamespace="http://www.acme.com" 745
 xmlns:here="http://www.acme.com" 746

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 27

 xmlns="http://www.osoa.org/xmlns/sca/1.0"> 747
 748
 <component name="com.acme.TicketSystem"> 749
 <implementation.composite name="here:ticketing_application"/> 750
 <reference name="AccountReporting" 751
 target="org.sample.Accounting/AccountReporting"/> 752
 </component> 753
</composite> 754
 755

And the application composite is defined as: 756

<?xml version="1.0" encoding="UTF-8"?> 757
<composite name="ticketing_application" 758
 targetNamespace="http://www.acme.com" 759
 xmlns="http://www.osoa.org/xmlns/sca/1.0"> 760
 761
 762
 <component name="web"> 763
 <implementation.web web-uri="web.war"/> 764
 </component> 765
 766
 <reference name="AccountReporting" promote="web/AccountReporting"/> 767
 768
</composite> 769
 770

Note that the application composite is used as a component implementation of a composite that is 771
included into the domain. This way, the application composite can participate in domain assembly 772
explicitly (rather than implicitly as demonstrated before). 773

The example above results in the wiring of a reference AccountReporting of the web component web.war 774
to the domain level service org.sample.Accounting/AccountReporting. 775

This assembly example has the following graphical representation: 776

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 28

 777

 778

Again, to justify the introduction of an intermediate composite in the contribution on the left hand side, 779
assume the web application was modified to use another local service component yetanother: 780

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 29

 781

Note that the new component could be introduced by a local change of the application composite without 782
affecting the overall assembly. 783

6.1.5 Import and Export of SCA Artifacts 784
The import and export of SCA artifacts across contributions for example to be used as composite 785
definitions is described in the assembly specification. 786

For the specific case of the location attribute of the import element of the META-INF/sca-787
contribution.xml document a vendor specific resolution mechanism should be provided. 788

6.1.6 Resolution of WSDL and XSD artifacts 789

Composite files and other SCA artifacts may reference, directly or indirectly WSDL and XML Schema 790
documents that are not hosted locally, or which cannot be modified to suit the local the local environment. 791
The OASIS XML Catalogs 1.1 specification [11] defines an entity catalog that can be used to avoid 792
costly remote calls, or to provide a mechanism through which customized versions of docments can be 793
provided without changing application code. Specifically, the XML Catalogs specification provides a 794
mechanism through which 795

 796

• an external entity’s public identifier and/or system identifier can be mapped to a URI reference. 797

• the URI reference of a resource can be mapped to another URI reference. 798

 799

Support for the OASIS XML Catalogs 1.1 specification is mandated by JAX-WS, and an SCA-enabled 800
Java EE runtime MUST resolve WSDL and XML Schema artifacts in a manner consistent with JAX-WS. 801

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 30

 802

Specifically, when an SCA-enable Java EE archive is deployed, the process of resolving any URIs that 803
point to WSDL or XML schema documents MUST take into account the catalog that is constructed from 804
all META-INF/jax-ws-catalog.xml found in the archive, and resolve the reference as prescribed in the 805
XML Catalogs 1.1 specification. 806

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 31

7 Java EE Archives as Service Component Implementat ions 807

The previous section described how Java EE archives can be represented in SCA where each of the Java 808
EE components in the archive get mapped to separate SCA components. We also allow an alternative 809
formulation, where the entire archive to be represented as a single coarse-grained component within SCA. 810

The JEE implementation type supports this use. It has the following pseudo schema: 811

<implementation.jee archive="..."> 812
 <xs:any/>* 813
</implementation.jee> 814
 815

The archive attribute specifies a relative path to the Java EE archive that serves as implementation artifact. 816
The context of that relative path (the value “.”) is the location of the artifact that contains the 817
implementation.jee element. All Java EE components contained in the archive will deployed, regardless 818
of any SCA enhancements present (see also section 3.1). 819

Every deployed SCA component using the JEE implementation type represents a deployment of the 820
referred Java EE archive. Implementers are encouraged to make use of the extensibility of the JEE 821
implementation type declaration to provide deployment plan meta-data as to support vendor-specific 822
deployment features as well as multiple deployments of one Java EE archive. 823

The archive that is referred to by <implementation.jee> may be an artifact within a larger contribution (i.e. 824
an EAR inside a larger ZIP file), or the archive may itself be a contribution. In the latter case, the 825
@archive attribute can be left unspecified, and the archive will be assumed to be the archive of the 826
contribution itself. 827

The component type derived from a Java EE archive depends on whether it has been enhanced with SCA 828
artifacts and contains an application composite or not – as described in following sections. 829

7.1 The Component Type of a non-SCA-enhanced Java E E Archive 830

Java EE modules, in particular EJB modules and Web modules are frequently designed for re-use in more 831
than one application. In particular EJB session beans provide a means to offer re-usable implementations 832
of business interfaces. In addition Java EE modules can use EJB references as a point of variation to 833
integrate with the assembly of a hosting application. 834

7.1.1 The Component Type of non-SCA-enhanced EJB Mo dule 835

The component type of an EJB module, with respect to the JEE implementation type is defined by the 836
following algorithm: 837

1. Each EJB 3 business interface with unqualified name intf of a session bean bean translates into a 838
service by the name bean_intf. The interface of the service and the requirement for EJB intent is 839
derived as in sections 5.1.1 and 5.1.2. 840

2. Each EJB 3 reference with name ref of a session bean bean translates into an SCA reference of 841
name bean_ref. The interface of the reference is derived according to section 3.2. The reference’s 842
name may require escaping as defined in section 3.2. 843

For example, an EJB 3 module reusemodule.jar may contain a session bean definition UsesOthersBean 844

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 32

package com.sample; 845
 846
import javax.ejb.EJB; 847
import javax.ejb.Stateless; 848
 849
@Stateless(name="UsesOthersBean") 850
public class UsesOthersBean implements UsesOthersLocal { 851
 852
 @EJB 853
 private IUOBRefService ref; 854
 855
 // ... 856
 857
} 858
 859

that, by use of annotations in this case, has an EJB reference by name com.sample.UsesOthersBean/ref 860
and the business interface IUOBRefService (note that alternatively the EJB reference could have been 861
declared in the module’s deployment descriptor META-INF/ejb-jar.xml). 862

When appling implementation.jee this would result in a component type of the following form: 863

<?xml version="1.0" encoding="UTF-8"?> 864
<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"> 865
 <service name="UsesOthersBean_UsesOthersLocal"> 866
 <interface.java interface="com.sample.UsesOthersLocal" /> 867
 </service> 868
 869
 <reference name="UsesOthersBean_com.sample.UsesOthersBean_ref"> 870
 <interface.java interface="com.sample.IUOBRefService" /> 871
 </reference> 872
</componentType> 873
 874

7.1.2 The Component Type of a non-SCA-enhanced Web Module 875

As for EJB modules, Web Modules may be re-usable. The component type of a Web module conforming 876
to the Java Servlet Specification Version 2.5 ([6]) is defined as follows: 877

1 Each EJB 3 reference with name ref of translates into an SCA reference of name ref. The interface of 878
the reference is derived according to section 3.2. The reference’s name may require escaping as 879
defined in section 3.2. 880

For example, a Web application with the following Servlet 881

package com.sample; 882
 883
import java.io.IOException; 884
 885
import javax.ejb.EJB; 886

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 33

import javax.servlet.ServletException; 887
import javax.servlet.ServletRequest; 888
import javax.servlet.ServletResponse; 889
 890
public class ReusableServlet extends javax.servlet.http.HttpServlet implements javax.servlet.Servlet { 891
 892
 @EJB 893
 private UsesOthersLocal uobean; 894
 895
 public void service(ServletRequest req, ServletResponse resp) 896
 throws ServletException, IOException { 897
 // ... 898
 } 899
} 900
 901

implies the following component type 902

<?xml version="1.0" encoding="UTF-8"?> 903
<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"> 904
 <reference name="com.sample.ReusableServlet_uobean"> 905
 <interface.java interface="com.sample.UsesOthersLocal" /> 906
 </reference> 907
</componentType> 908
 909

7.1.3 The Component Type of a non-SCA-enhanced Java EE Application 910

The component type of a non-SCA-enhanced Java EE application is defined as follows: 911

Each EJB 3 session bean business interface with unqualified name intf of a session bean with mapped 912
name mname translates into a service by the name mname_intf. The interface of the service is 913
derived as in section 5.1.1. The service name is subject to escaping rules as described in section 3.2. 914

In the absence of optional extensions, the component type of a non-SCA-enhanced Java EE application 915
does not contain SCA references. However, as an optional extension of the way in which SCA support is 916
provided for Java EE applications, an SCA runtime can choose to provide the capability of re-wiring EJB 917
references using SCA. If an SCA runtime provides this optional extension, then the following rule is 918
applied: 919

Each EJB 3 remote reference of each session bean within the Java EE application is exposed as an SCA 920
reference. If the remote reference has the name ref and the name of the session bean is beanname, the 921
SCA reference name is beanname_ref. The reference has an interface derived according to section 3.2. 922
The reference name is subject to the escaping rules as described in section 3.2. Each EJB reference 923
has a target (within the Java EE application) that is the EJB identified by the configuration 924
metadata within the JEE application - it is this target which may be overridden by a new target identified 925

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 34

in the SCA metadata of the component using the JEE application. The multiplicity of the generated 926
reference is 0..1. The generated reference must require the “ejb” intent : 927

<intent name="ejb" constrains="sca:binding"> 928

<description> The EJB intent requires that all of the semantics required by the Java EE specification for a 929
communication to or from an EJB must be honored </description> 930

</intent> 931

This optional extension is in no way required to be provided by any given SCA runtime and that, as a 932
result, it is unadvisable to rely on the capability of rewiring EJB references when porting applications 933
between different runtimes. 934

7.2 The Component Type of an SCA-enhanced Java EE A rchive 935

A Java EE archive that contains an application composite (see the section 6.1.3) has the component type 936
of the application composite as its component type when used with the JEE implementation type. 937

Example: Let’s assume the right hand side application from the example in section Domain Level 938
Assembly of SCA-enhanced Java EE Applications was packaged in an archive application.ear and would 939
be used as part of a larger non-Java EE contribution that declares a service component in some other 940
composite that uses the archive application.ear as implementation artifact. 941

In that case the component type of the EAR archive would expose one service, the AccountReporting 942
service: 943

<?xml version="1.0" encoding="UTF-8"?> 944
<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"> 945
 <service name="AccountReporting"> 946
 <binding.ws/> 947
 <interface.java interface="services.accounting.AccountReporting"/> 948
 </service> 949
</componentType> 950
 951

Or, graphically: 952

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 35

Contribution

some other composite

application.ear

accounting_application

beancomponent
binding.ws

othercomponent

some_component

A non-Java EE

contribution

A component using

<implementation.jee archive=“application.ear“/>
The promoted service from beancomponent

module.jar

RemotableBean

 953

This way, the application composite provides fine-grained control over what services, references, and 954
properties are exposed from a Java EE archive. 955

In cases where a given non-enhanced Java EE archive is already in use as a service component 956
implementation and the need arises to extend it by SCA assembly meta-data, it is desirable to have a 957
smooth and controlled transition from the exposure defined for non-enhanced archives. 958

That can be achieved using the includeDefaults attribute that can be specified on composite and 959
component elements. It has the default value “false” and is defined in the name space 960
http://www.osoa.org/xmlns/sca/1.0/jee. 961

Using this attribute on the application composite’s composite declaration with a value “true” leads to a 962
(logical) inclusion of SCDL definitions into the application composite that reproduce the component type 963
of the Java EE archive as if it was not SCA-enhanced. 964

For a Java EE application archive, the included SCDL is constructed by the following algorithm: 965

1. For every EJB or web module that has services or references exposed according to section Error! 966
Reference source not found., a corresponding implementation.ejb or implementation.web 967

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 36

component is included, if that EJB or Web module is not used as a component implementation 968
elsewhere already. 969

2. For every service or reference that is derived according to section Error! Reference source not 970
found., a composite level service or reference declaration is included, by the same name, 971
promoting the corresponding EJB service or reference. 972

Corresponding algorithms apply for the case of a standalone Web module (section 7.1.2) and a standalone 973
EJB module (section 7.1.1). 974

Example (continued): Assume furthermore that the EJB module module.jar additionally contains the 975
AccountServiceImpl session bean of section 5.1.2 and the application composite is modified as shown 976
below (note the use of includeDefaults). 977

<?xml version="1.0" encoding="UTF-8"?> 978
<composite name="accounting_application" 979
 targetNamespace="http://www.sample.org" 980
 xmlns=http://www.osoa.org/xmlns/sca/1.0 981

xmlns:scajee=http://www.osoa.org/xmlns/sca/1.0/jee 982
scajee:includeDefaults=”true” 983
> 984

 985
 <service name="AccountReporting" promote="beancomponent/AccountServiceRemote"> 986
 <binding.ws/> 987
 </service> 988
 989
 <component name="beancomponent"> 990
 <implementation.ejb ejb-link="module.jar#RemotableBean"/> 991
 <property name="currency">EUR</property> 992
 </component> 993
</composite> 994
 995

That alone would not change the component type of the archive. However, if we additionally assume the 996
session bean AccountServiceImpl was given a mapped name services/accounting/AccountService, the 997
component type of the EAR archive would expose two services, AccountReporting, 998
services_accounting_AccountService_AccountService. 999

The logical include to the application composite constructed following the algorithm above is this: 1000

<service name="services_accounting_AccountService_AccountService" 1001
 promotes="[some name]/AccountService" /> 1002
 1003
<component name="[some name]"> 1004
 <implementation.ejb ejb-link="module.jar#AccountServiceImpl" /> 1005
</component> 1006
 1007

As a result, we would get the following component type: 1008

<?xml version="1.0" encoding="UTF-8"?> 1009

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 37

<componentType xmlns="http://www.osoa.org/xmlns/sca/1.0"> 1010
 <service name="AccountReporting"> 1011
 <binding.ws/> 1012
 </service> 1013
 1014

<service name="services_accounting_AccountService_AccountService"/> 1015
</componentType> 1016
 1017

Or, graphically: 1018

 1019

The same result can be achieved by declaring the includeDefaults attribute on a component declaration 1020
that uses the AccountServiceImpl session bean as implementation: 1021

<?xml version="1.0" encoding="UTF-8"?> 1022
<composite name="accounting_application" 1023
 targetNamespace="http://www.sample.org" 1024
 xmlns="http://www.osoa.org/xmlns/sca/1.0" 1025

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 38

 xmlns:scajee="http://www.osoa.org/xmlns/sca/1.0/jee" 1026
> 1027
 1028
 <service name="AccountReporting" 1029
 promote="beancomponent/AccountServiceRemote"> 1030
 <binding.ws/> 1031
 </service> 1032
 1033
 <component name="beancomponent"> 1034
 <implementation.ejb ejb-link="module.jar#RemotableBean" /> 1035
 <property name="currency">EUR</property> 1036
 </component> 1037
 1038
 <component name="accounting" jee:includeDefaults=”true”> 1039
 <implementation.ejb ejb-link="module.jar#AccountServiceImpl"/> 1040
 </component> 1041
</composite> 1042
 1043

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 39

8 References 1044

[1] Java ™ Platform, Enterprise Edition Specification Version 5 1045
http://jcp.org/en/jsr/detail?id=244, http://java.sun.com/javaee/5 1046

[2] SCA EJB Session Bean Binding V1.00 1047
http://www.osoa.org/download/attachments/35/SCA_EJBSessionBeanBinding_V100.pdf 1048

[3] SCA Assembly Model V1.00 1049
http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf 1050

[4] SCA Java Common Annotations and APIs V1.00 1051
http://www.osoa.org/download/attachments/35/SCA_JavaAnnotationsAndAPIs_V100.pdf 1052

[5] SCA Java Component Implementation V1.00 1053
http://www.osoa.org/download/attachments/35/SCA_JavaComponentImplementation_V100.pdf 1054

[6] SCA Policy Framework V1.00 1055
http://www.osoa.org/download/attachments/35/SCA_Policy_Framework_V100.pdf 1056

[7] Java Servlet Specification Version 2.5 1057
http://jcp.org/aboutJava/communityprocess/mrel/jsr154/index.html 1058

[8] Enterprise JavaBeans 3.0 1059
http://jcp.org/en/jsr/detail?id=220 1060

[9] SCA JMS Binding V1.00 1061
http://www.osoa.org/download/attachments/35/SCA_JMSBinding_V100.pdf 1062

[10] SCA Transaction Policy Draft V1.00 1063
http://www.osoa.org/download/attachments/35/SCA_TransactionPolicy_V1.0.pdf 1064

[11] Norm Walsh. XML Catalogs 1.1. OASIS Committee Specification, OASIS, July 2005. 1065
http://www.oasis-open.org/committees/download.php/14041/xml-catalogs.html 1066

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 40

9 Appendix A – use cases 1067

9.1 Technology Integration 1068

SCA can be used as the scale-out model for Java EE applications, allowing Java EE components to use, 1069
be used by, and share a common deployment lifecycle with components implemented in other 1070
technologies, for instance, BPEL. 1071

As an example, imagine a sample shop in which the graphic UI is implemented as a servlet or a JSF, the 1072
persistence logic is implemented in JPA and exposed using session beans, but the order process is 1073
implemented in BPEL. Using standard technologies, the JavaEE components would have to access the 1074
BPEL process over its exposed web services. Conversely, in order for the implemented persistence logic 1075
to be used from the BPEL process, the session beans must be exposed as web services, typically using 1076
JAX-WS. 1077

There are several drawbacks to this approach. Conceptually, the BPEL process is part of the application, 1078
however, in the standard deployment described above, the BPEL process is deployed separately from the 1079
Java EE application; they do not share life cycle or infrastructure. The use of WebServices as wire 1080
protocol imposes other drawbacks. Transaction management and enforcing security policies become 1081
much more difficult, and the overhead associated with service invocations increases. 1082

To make the example a bit more concrete, let us imagine that the application’s web front-end, 1083
implemented as a servlet, will invoke the BPEL process. The BPEL process will, in turn, invoke a 1084
session bean called “OrderService”, which uses JPA technology to persiste the order information. 1085

The first step might be to prepare the servlet to make the cross technology call. This is done simply by 1086
adding a field with the appropriate business interface, and annotating it with an @Reference tag. 1087

public class ControllerServlet extends HttpServlet implements Servlet { 1088
 @Reference protected IOrderProcess orderProcess; 1089
 … 1090
 protected void service(HttpServletRequest request, 1091
 HttpServletResponse response) throws Exception { 1092

… 1093
 orderProcess.placeOrder(orderData); 1094

… 1095
} 1096
Such a snippet should be familiar to anyone who has used the EJB client model. The main difference 1097
between the @EJB and the @Reference annotation is that @EJB tells the user which technology is being 1098
used to implement the service, whereas @Reference leaves this undetermined. 1099

The next step in creating a cross technology application in SCA is to create the assembly file that hooks 1100
together our components, and links each to an implementation. In this case, there are three SCA 1101
components: the web front-end, the BPEL component, and the EJB that offers the persistence service. 1102
Note that there may be many more EJBs and web components in our Java EE application, we do not need 1103
to represent them all as SCA components. Only those Java EE components that will be wired to or from, 1104
or otherwise configured from SCA, need to be represented in the SCA assembly. 1105

The following figure shows how the components are hooked together. 1106

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 41

 1107

The composite file looks like this: 1108

<sca:component name="OrderService"> 1109
 <sca:implementation.ejb ejb-link="shop.ejb.jar# OrderService"/> 1110
 <sca:service name="IOrderService"> 1111
 <sca:interface.java 1112
 interface="sample.shop.services.IOrderSe rvice"/> 1113
 </sca:service> 1114
</sca:component> 1115
<sca:component name="shop.ui> 1116
 <sca:implementation.web web-uri="shop.web.war"/ > 1117
 <sca:reference name="orderProcess" target="Orde rProcess"/> 1118
</sca:component> 1119
<sca:component name="OrderProcess"> 1120
 <sca:implementation.bpel process="shop.bpel" ve rsion="2.0"/> 1121
 <sca:reference name="orderServicePL" target="Or derService"> 1122
 <sca:service name="OrderProcessRole"/> 1123
</sca:component> 1124
 1125

There are several ways in which such a cross-technology application could be deployed. If we consider 1126
the BPEL process to be part of the application, conceptually on the same level as the application web or 1127
EJB components, then it makes sense to deploy the cross technology application as an SCA-enhanced 1128
Java EE archive, that is, the SCA and BPEL artifacts are packed into the EAR file. The following figure 1129
depicts the contents of this the enhanced archive. 1130

 1131

Shoppingcartservic
e

shop.web.war

CatalogServic
e OrderService

application composite

 .shop.ui
orderProces

orderService

shop.bpel
shop.ejb.jar

application.ear

Application composite

shop.ui OrderProcess
org .

OrderService

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 42

The advantage of deploying an SCA-enhanced Java EE archive is that we can leverage the tooling, 1132
monitoring and application lifecycle management capability already present on the Java EE server. 1133

 1134

9.2 Extensibility for Java EE Applications 1135

SCA \ Java EE can be used for the following problem -- a company (let's call it ACME) wishes to provide 1136
a Java EE application to its customer so that the customer can integrate this application into its own 1137
environment. Ideally the application should have some predefined "extension points" which would allow 1138
the customer to hook its own implementations over the default one. For example the customer may wish 1139
to override some specific logic provided by the company acme in an EJB and instead introduce its own 1140
existing functionality written in some proprietary non-Java programming model or via some of the 1141
predefined SCA possibilities (another EJB, JMS, WS call, etc.) 1142

Here it is assumed, that the company ACME will predefine explicitly some extension points, another 1143
possible use case that optionally some SCA runtimes may support is to allow each remote ejb reference to 1144
be reconfigured , please see section - 7.1.3 (The Component Type of a non-SCA-enhanced Java EE 1145
Application) for more information. 1146

The exposure of the extension point by the ACME company can be done in several way - fine grained 1147
approach using implementation.ejb as in section 5.1 or using implementation.jee as in section 7, by 1148
explicit usage of componentType side files or by exposing extension points via the @Reference 1149
annotation, via usage of application.composite with includeDefaults or via usage of other composite 1150
definitions. 1151

Here it is demonstrated just one such approach : 1152

The EJB from ACME would look like 1153

package com.acme.extensibility.sample; 1154
import javax.ejb.Stateless; 1155
import org.osoa.sca.annotations.Reference; 1156
 1157
 1158
@Stateless(name=" ACMEBean ") 1159
public class BaseBean implements BaseLocal { 1160
 1161

A default value for the fields would be the EJB as defined by the Java EE specs, however by usage of 1162
@Reference, it is indicated that it is possible via using SCA to override that and inject a proxy capable of 1163
transferring the request according to the SCA rules. 1164

private @Reference @EJB com.acme.extensibility.ExtensionInterface 1165
extensionPoint; 1166
 1167
public void businessLogic() { 1168
 extensionPoint.doSomething(); 1169
} 1170
 1171

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 43

In order to contribute to the SCA domain and expose the reference, the ACME company has put the 1172
following two artifacts in the META-INF directory of the EAR : 1173

 1174

<?xml version="1.0" encoding="UTF-8"?> 1175
<contribution xmlns="http://www.osoa.org/xmlns/sca/1.0" 1176
 xmlns:acme="http://www.acme.com.org"> 1177
 <deployable composite="acme:AcmeCompositeName"/> 1178
</contribution> 1179
 1180

 1181

<?xml version="1.0" encoding="UTF-8"?> 1182
<composite name="AcmeCompositeName" 1183
 targetNamespace="http://www.acme.com" 1184
 xmlns:acme="http://www.acme.com.org" 1185
 xmlns="http://www.osoa.org/xmlns/sca/1.0"> 1186
 1187
 <component name="ACME_component "> 1188
 <implementation.ejb ejb-link="ACMEJAR.jar#ACMEBean "/> 1189
 <reference name="extensionPoint"> 1190
 <interface.java interface="com.acme.extensibility.ExtensionInterface"/> 1191
 </reference> 1192
 </component> 1193
</composite> 1194
 1195

After exposing the extension point in such way and delivering the EAR to the customer, the customer can 1196
wire to it via SCA to its own non-Java technology xyz. The following contribution to the domain 1197
demonstrates how this can be done... 1198

<?xml version="1.0" encoding="UTF-8"?> 1199
<composite name="CompositeName" 1200
 targetNamespace="http://www.org.customer.foo" 1201
 xmlns:customer="http://www.org.customer.foo" 1202
 xmlns="http://www.osoa.org/xmlns/sca/1.0"> 1203
 1204
 <component name="CustomerCode"> 1205
 <implementation.xyz attribute="someDataForXyz"/> 1206
 <service name="ExtensionTarget"> 1207
 <interface.java interface="com.acme.extensibility.ExtensionInterface"/> 1208
 </service> 1209
 </component> 1210
 <wire source="ACME_component/extensionPoint" target="CustomerCode/ExtensionTarget"/> 1211
</composite> 1212

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 44

10 Appendix B – Support for SCA Annotations 1213

The following table provides information whether SCA annotations are supported in EJB classes or 1214
session bean interfaces. Some of the annotations defined in [4] are redundant to Java EE annotations and 1215
concepts. These are labelled as "May be supported", it is expected for SCA runtimes supporting these 1216
annotations to detect impossible combinations that violate the Java EE specifcations and reject such 1217
deployments. Other annotations are labeled as “may be supported” because they represent optional 1218
features. 1219

 1220

AllowsPassByReference May be supported This is a hint to the runtime,
which can be disregarded

Callback Must be supported

ComponentName Must be supported

Constructor NOT supported There are no constructors in EJB

Context Must be supported

Conversational Must be supported Each interface of statefull EJB is
treated as it has
@Conversational, so the
annotation is redundant. In case
of stateless EJB-s the stateless
semantics still remains, please
see the comment for
conversationID

ConversationAttributes May be supported Providing ways to control the
expiration of statefull EJBs by
maxAge, maxIdleTime

ConversationID Must be supported for stateful

May be supported for stateless

If there is @Conversational on
the interface of stateless bean, the
conversationID will be generated
by the runtime and may be
inserted, the stateless semantic
will still be in effect

Destroy May be supported Equivalent to @PreDestroy in
EJB

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 45

EagerInit NOT supported There is no composite scope, it
has no meaning

EndsConversation May be supported Methods that are marked
@Remove should be treated as if
the corresponding interface
method is marked
@EndsConversation.

Interface methods marked
@EndsConversation MUST have
corresponding implementation
methods marked @Remove.

Init May be supported Equivalent to @postConstruct in
EJB

Authentication , Confidentiality,
Integrity , Itent, PolicySets,
Requires

Must be supported on fields
already annotated with
@reference

May be supported on class,
session bean interface or on field
annotated with @EJB

Intent, Qualifier NOT supported Not relevant, new annotations
cannot be defined via EJB

OneWay Must be supported on fields
already annotated with
@reference

Must be supported as an
annotation on interface methods.

Must not be supported on class,
session bean interface or on field
annotated with @EJB

There are async call in EJB 3.1

Property Must be supported

Reference Must be supported

Remotable May be supported Redundant to @Remote.

Scope May be supported @Stateless and @Stateful are
mappings of stateless, and
conversational scopes.

Service May be supported

 1221

SCA Service Component Architecture

Java EE Integration Specification 1.00 May 2008 46

11 Appendix C – schemas 1222
<?xml version ="1.0" encoding ="UTF-8" ?> 1223
<xs:schema xmlns ="http://www.osoa.org/xmlns/sca/1.0" 1224
 xmlns:xs ="http://www.w3.org/2001/XMLSchema" 1225
 targetNamespace ="http://www.osoa.org/xmlns/sca/1.0" 1226
 elementFormDefault ="qualified" > 1227
 1228
 <xs:include schemaLocation ="sca-core.xsd" /> 1229
 1230
 <xs:element name="implementation.ejb" type ="EJBImplementation" 1231
substitutionGroup ="implementation" /> 1232
 <xs:complexType name="EJBImplementation" > 1233
 <xs:complexContent > 1234
 <xs:extension base ="Implementation" > 1235
 <xs:sequence > 1236
 <xs:any namespace ="##other" processContents ="lax" 1237
minOccurs ="0" maxOccurs ="unbounded" /> 1238
 </ xs:sequence > 1239
 <xs:attribute name="ejb-link" type ="xs:string" 1240
use ="required" /> 1241
 <xs:anyAttribute namespace ="##any" processContents ="lax" /> 1242
 </ xs:extension > 1243
 </ xs:complexContent > 1244
 </ xs:complexType > 1245
 <xs:element name="implementation.web" type ="WebImplementation" 1246
substitutionGroup ="implementation" /> 1247
 <xs:complexType name="WebImplementation" > 1248
 <xs:complexContent > 1249
 <xs:extension base ="Implementation" > 1250
 <xs:sequence > 1251
 <xs:any namespace ="##other" processContents ="lax" 1252
minOccurs ="0" maxOccurs ="unbounded" /> 1253
 </ xs:sequence > 1254
 <xs:attribute name="web-uri" type ="xs:string" 1255
use ="required" /> 1256
 <xs:anyAttribute namespace ="##any" processContents ="lax" /> 1257
 </ xs:extension > 1258
 </ xs:complexContent > 1259
 </ xs:complexType > 1260
 <xs:element name="implementation.jee" type ="JEEImplementation" 1261
substitutionGroup ="implementation" /> 1262
 <xs:complexType name="JEEImplementation" > 1263
 <xs:complexContent > 1264
 <xs:extension base ="Implementation" > 1265
 <xs:sequence > 1266
 <xs:any namespace ="##other" processContents ="lax" 1267
minOccurs ="0" maxOccurs ="unbounded" /> 1268
 </ xs:sequence > 1269
 <xs:attribute name="archive" type ="xs:string" 1270
use ="required" /> 1271
 <xs:anyAttribute namespace ="##any" processContents ="lax" /> 1272
 </ xs:extension > 1273
 </ xs:complexContent > 1274
 </ xs:complexType > 1275
</ xs:schema > 1276

