SCA Service Component Architecture

Java EE Integration Specification

SCA Version 1.00, May 13 2008

Technical Contacts:

Ron Barack
Michael Beisiegel
Henning Blohm
Dave Booz

Mike Edwards
Anish Karmarkar
Michael Keith
Ashok Malhotra
Sanjay Patil
Prasad Peddada
Peter Peshev
Matthew Peters

Michael Rowley

SAP AG

IBM Corporation
SAP AG

IBM Corporation
IBM Corporation
Oracle Corporation
Oracle Corporation
Oracle Corporation
SAP AG

BEA Systems, Inc.
SAP AG

IBM Corporation
BEA Systems, Inc.

SCA Service Component Architecture

Copyright Notice

© Copyright BEA Systems, Inc., Cape Clear Softwardnternational Business Machines Corp, Interface21,|ONA
Technologies, Oracle, Primeton Technologies, Progss Software, Red Hat, Rogue Wave Software, SAP AGSiemens
AG., Software AG., Sun Microsystems, Inc., Sybaseat., TIBCO Software Inc., 2005, 2008. All rights eserved.

License

The Service Component Architecture Specificatiobemg provided by the copyright holders under the
following license. By using and/or copying this woyou agree that you have read, understood arid wil
comply with the following terms and conditions:

Permission to copy, display and distribute the BerComponent Architecture Specification and/or
portions thereof, without modification, in any meh without fee or royalty is hereby granted, predd
that you include the following on ALL copies of tBervice Component Architecture Specification, or
portions thereof, that you make:

1. Alink or URL to the Service Component Architee Specification at this location:

* http://lwww.osoa.org/display/Main/Service+Componéxiehitecture+Specifications

2. The full text of the copyright notice as showrthe Service Component Architecture Specification.

BEA, Cape Clear, IBM, Interface21, IONA, Oracleinieton, Progress Software, Red Hat, Rogue Wave,
SAP, Siemens, Software AG., Sun, Sybase, TIBCOgalely, the “Authors”) agree to grant you a
royalty-free license, under reasonable, non-disoatory terms and conditions to patents that thessnal
necessary to implement the Service Component Axctite Specification.

THE Service Component Architecture SPECIFICATIONPBOVIDED "AS IS," AND THE
AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXERS OR IMPLIED,
REGARDING THIS SPECIFICATION AND THE IMPLEMENTATIONDF ITS CONTENTS,
INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NON-INFRINGEMENT OR TITLE.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDRECT, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATINGO ANY USE OR
DISTRIBUTION OF THE Service Components Architect@@ECIFICATION.

The name and trademarks of the Authors may NOTskd in any manner, including advertising or
publicity pertaining to the Service Component Atebiure Specification or its contents without speci

Java EE Integration Specification 1.00 ii May 2008

SCA Service Component Architecture

written prior permission. Title to copyright in tis=rvice Component Architecture Specification afll
all times remain with the Authors.

No other rights are granted by implication, estogp@therwise.

Status of this Document

This specification may change before final reless# you are cautioned against relying on the comtien
this specification. The authors are currently sfig your contributions and suggestions. Licerses
available for the purposes of feedback and (oplipnfor implementation.

IBM is a registered trademark of International Besis Machines Corporation in the United Stategroth
countries, or both.

BEA is a registered trademark of BEA Systems, Inc.

Cape Clear is a registered trademark of Cape Clettware

IONA and IONA Technologies are registered trademafkilONA Technologies plc.
Oracle is a registered trademark of Oracle USA, Inc

Progress is a registered trademark of Progressv&aftCorporation

Primeton is a registered trademark of Primeton feldgies, Ltd.

Red Hat is a registered trademark of Red Hat Inc.

Rogue Wave is a registered trademark of Quovadx, In

SAP is a registered trademark of SAP AG.

SIEMENS is a registered trademark of SIEMENS AG

Software AG is a registered trademark of Softwa@ A

Sun and Sun Microsystems are registered tradero&i&sn Microsystems, Inc.
Sybase is a registered trademark of Sybase, Inc.

TIBCO is a registered trademark of TIBCO Softwanre. |

Java and all Java-based trademarks are tradenfa®ksdviicrosystems, Inc. in the United States, othe
countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Java EE Integration Specification 1.00 iii May 2008

SCA Service Component Architecture

Table of Contents

SCA Service Component ArChiTECEUNE. ... e et r e s e e e rae e ra e e e e e e aneanees i
[Tot=T o T PP PPPP ORI ii
StatuS Of thiS DOCUMENTuuiiiitiitiiimmmmmm e e e e e e eeee e e e e e ii
1 1 o o 11 o 1
2 1S 1= 1= o o 1= 2
2.1 Consume SCA-exposed services from Java EE amenpm..............ccccvvvvvvviiiiiiiiiiiiiinnnnn 2
2.2 Use Session Beans as Service Component IMpl@iiOers..............oevvvvveeieeiieeieeieess e eee e 2
2.3 Expose Enterprise Applications into an SCA diDMa.............ccoooeiiiiiiiiiiiiiiiii e 2
2.4 Use Recursive SCA Assembly in Enterprise AiiiIS..........oooeeeeeeeiiiiiieeee e e 2
2.5 Deploy SCA Components as a Part of a Java BECAPONcoovvvivviiiiiiiiiiiiiiiae e, 2
2.6 Use Java EE Archives as Service Component mgi&ation..................cnceeeee 2
3 Overview of SCA Assembly in a Java Enterprise Edition ENvironmentccoviiiiiiiiiiiie i eeeas 3
3.1 Life-Cycle Model for Service Components froma&E COmMponentsevueviinienninnns 3.
3.2 Mapping a Java EE Component’s Environment tm@ment Type Data..........cccceeeeeeiinnnn 4...
4 Scope and Limitations of the SpeCifiCationvviiiriii i 6
Java EE Component Based Implementation Ty PeS ..o it e e e aeae e e nne e enes 7
5.1 Using Session Beans as Implementation TYPES.........ooooi e 7
5.1.1 Mapping EJB business Interfaces to SCA Semiterfaces........cccccvvvvvevvevveevievivvnnnnne. 7
5.1.2 The Component Type of an Unaltered Sessi@mBe.................ccoooiiiiiiiic e 7
5.1.3 DEPENUENCY INJECHION. ...ttt memmmes ettt e e be bbb ebeeenens s nnsnes 8
5.1.4 Providing additional Component Type dataaf@ession Bean...............ccccccoeeeeeviieennn. 9
5.1.5 Using a ComponentType Side-File.......ccoooveiiii e, 11
5.1.6 Creating SCA components that use SessionsBeEamplementation Types..........ccc....... 11
5.1.7 Limitations on the use of Session Beans aspdoent Implementation 12
5.1.8 Use of Implementation Scopes with SessiomBea................coeeeeeiiiiii e 12
5.1.9 SCA Conversational Behavior with Session Bean...............cccne 13
5.1.10 Non-Blocking Service OPEIatiONSuuuuumunaaaaaaaaaaaasaae e e e s seeessnnnenennnennnnnes 13
5.1.11 Accessing a Callback SEIVICEuuuumueeriiiiiii e 13
5.2 Using Message Driven Beans as Implementatiquedy............ooooiiiiiiiii e, 13
5.2.1 DEPENUENCY INJECHION. ... ettt cemmmesetetet e s e be bbbt aebsnssnnnne 13
5.2.2 The Component Type of an Unaltered MessageeDBeaneeveveneinninnnnnnnnns 14
5.2.3 Providing additional Component Type dataafddessage Driven Bean.............cccoeeeeennn. 14

Java EE Integration Specification 1.00 v May 2008

SCA Service Component Architecture

5.24 Creating SCA Components that use MessageBeans as Implementation Types15
5.25 Limitations on the Use of Message Driven BeasComponent Implementation............. 15
5.3 Mapping of EJB Transaction Demarcation to SCAngaction PoliCiesccceeeeeeeenneee 15
5.4 Using Web Modules as Implementation TYPES e «ceeeeeeeeeeeeieiiiieeeeeeeeeeee e eerees s 16
5.4.1 DEPENUENCY INJECTION. ... ettt memmmeeteet e s be e bbb aenensssnnne 16
5.4.2 The Component Type of an Unaltered Web Madule.................ovvvvviiiiiiiiiiiiiiienenn.. 17
5.4.3 Providing additional Component Type Datagd&eb Application.............................. 17
5.4.4 Using SCA References from JSPS ... 17
5.4.5 Creating SCA Components that Use Web Mocaddmplementation Types................... 19
5.4.6 Limitations on the Use of Web Modules as Congmt Implementationsccc.c...... 19
6 SCA-enhanced Java EE ArChiVESottt r e e e et e s e e e s e e et e e re e rn e enerneenes 20
6.1 Assembly and Deployment of SCA-enhanced JavAIERIVESc.cccccvvvvevviiiiiiiieeiinnn. 20
6.1.1 Java EE Archives as SCA CONHDULIONS .ccceeeeiiiiiieiiiiiieeecee e 21
6.1.2 Local Assembly of SCA-enhanced Java EE ARDDOS...............oovviiiiiiiiiiiiiiiiiess s 22
6.1.3 The ApPlicatioN COMPOSITEuuiuiriiuuirrr e s e serese e nnnannnnnes 23
6.1.4 Domain Level Assembly of SCA-enhanced Java\Rications.................evvvvevivinennns 6.2
6.1.5 Import and EXport of SCA ArtifactScoeeei i 29
6.1.6 Resolution of WSDL and XSD aArtifactSuueueemiemiiiii e 29
7 Java EE Archives as Service Component Implementations.......cvviiiiiiii i e e e 31
7.1 The Component Type of a non-SCA-enhanced JBVArENIVEouvuiviiiiiiiiiiiiiiiiiinnn. 31
7.1.1 The Component Type of non-SCA-enhanced EJBUMO.................ccccevvevvviiiiiieienceee 31
7.1.2 The Component Type of a non-SCA-enhanced Mahule ... 32.
7.1.3 The Component Type of a non-SCA-enhanced BBvApplication............ccccccevvvvevvennee. 33
7.2 The Component Type of an SCA-enhanced JavarERVEccoooviiiiiiiiiiiiiniieees s 34
8 R (=] =Y 0= 39
9 P oY T=T o Lo [N U EY I oF= E=] =P 40
9.1 TeChNOlOQY INtEOIAtION ... eeeee e ettt ettt ettt et e aeeeeeee e et e e e e e e e e aeeeaeaeaeaeaaaaaeaeaeeeees 40
9.2 Extensibility for Java EE APPIICALIONScoaeiiiiiiiiiiiiiiiiiiiiiiiee et e e 42
10 Appendix B — Support for SCA ANNOTatioNS . .uuiii i i e 44
B A Y oY o =T o T | b O =T o 1< o = 1P 46

Java EE Integration Specification 1.00 Y May 2008

© oO~NOO Oph~hwW N P

e e
L O

e
w N

PR R R
©Co~NoO UM

NDNNNNNDNDN
~N~Nooh~wdNPE O

SCA Service Component Architecture

1 Introduction

This document specifies the use of Service Compohehitecture (SCA) within and over the scope of
applications and modules developed, assembledyacichged according to the Java Platform Enterprise
Edition (Java EE) specification.

Java EE is the standard for Java-based entergmdieaions today. While it offers a rich set of
technologies, it does not define important conc#sare inherently required in service oriented
architectures such as

» Extensibility of component implementation technaésg
« Extensibility of transport and protocol abstraction
* anotion of cross-application assembly and conégan

The Service Component Architecture on the othedlpovides a standardized and extensible assembly
language and methodology that can be layered ooftepisting component models and runtimes.

While the Java EE client and implementation speaiion will focus on the projection of SCA’s contep

of assembly, implementation type, and deploymeid dava EE structures, it is expected that SCA
application assemblies will combine Java EE comptmeith other technologies. Examples of
technologies for which SCA integration specificagdave been completed include BPEL and the Spring
framework. It is expected that &A enabled Java EE runtime will offer a palette of technologies for
integration in an SCA assembly.

This specification defines the integration of SGA&ldava EE within the context of a Java EE apptinat
the use of Java EE components as service compongieimentations, and the deployment of Java EE
archives either within or as SCA contributionsislalso possible to use bindings to achieve s@va bf
integration between SCA and Java EE. These bisding addressed in separate specifications: TBe EJ
Session Bean Binding Specification [2] describesekposure and consumption session beans; the JMS
Binding Specification [9] describes the exposuré eonsumption of Java Message System (JMS)
destinations; and a Binding Specification for J&emnectivity Architecture (JCA) adaptors should be
published in the near future (as of this writing).

Java EE Integration Specification 1.00 1 May 2008

28

29
30
31

32
33

34

35
36
37
38

39

40
41
42
43

44

45
46

47
48

49

50
51
52
53
54
55

56

57
58
59
60

SCA Service Component Architecture

2 Scenarios

As already informally introduced above, we will use termSCA-enabled Java EE runtime to refer to a
Java EE runtime that supports deployment and execat SCA-enhanced Java EE applications as well
as SCA-enhanced Java EE modules (see also segtion 6

An SCA-enabled Java EE runtime that fully implensethis specification would support the use cases
defined in appendix A. They are demonstrating thiewing scenarios:

2.1 Consume SCA-exposed services from Java EE compo nents

For example, a web component should be able tbyeamsisume a service implemented by a service
component, either by using SCA constructs in th@lementation of a Java EE component
implementation or via an EJB reference in combamawith an EJB binding as defined in [2] over an
SCA service.

2.2 Use Session Beans as Service Component Implemen tations

The recursive assembly model of SCA provides rietans of configuration and re-use of service
components that may be implemented as SCA compasitey some other implementation type. Session
beans are the Java EE component implementationlrandeserve also as service component
implementations.

2.3 Expose Enterprise Applications into an SCA doma in

The SCA Assembly specification describes a deploymedel for SCA contributions that provides
cross-enterprise application assembly capabiltiesn layered over Java EE.

2.4 Use Recursive SCA Assembly in Enterprise Applic ations
SCA Assembly provides means to define sophisticapgdication assembly for enterprise applications.

2.5 Deploy SCA Components as a Part of a Java EE ap plication

SCA applications will typically combine Java EE qmunents with components using other
implementation technologies, such as BPEL. Thex#ijgcation enables the deployment of components
implemented in these “foreign” technologies as p&# Java EE application, taking advantage of
whatever tooling and infrastructure support eXistshe deployment and lifecycle management of Java
EE applications. Such components are treated asngim unmanaged environment and should not rely
on Java EE features (access to java:comp/env, etc.)

2.6 Use Java EE Archives as Service Component Imple mentation

This specification enables the creation of SCA i@pfibns whose components are implemented by Java
JEE archives, so that they can be wired to eaddr attd to components implemented using other
technologies. This use-case requires a high-Me@l of the Java EE application as a single SCA
component implementation, providing services antsaming references as a single component.

Java EE Integration Specification 1.00 2 May 2008

61
62

63
64
65

66
67
68
69

70
71
72

73
74
75
76

77
78
79
80

81
82
83

84
85
86
87

88
89
90

91

92
93
94

95

96
97
98

SCA Service Component Architecture

3 Overview of SCA Assembly in a Java Enterprise Edi tion
Environment

This specification defines a model of using SCAeadsly in the context of a Java EE runtime that
enables integration with Java EE technologies fimeagrained component level as well as use of Java
EE applications and modules in a coarse-graingg laystem approach.

The Java EE specifications define various programgmiodels that result in application components,
such as Enterprise Java Beans (EJB) and Web apmtisdahat are packaged in modules and that are
assembled to enterprise applications using a Janaiid) and Directory Interface (JNDI) based systém o
component level references and component naming.

Names of Java EE components are scoped to thecaipph package (including single module application
packages), while references, such as EJB refereamckgesource references, are scoped to the compone
and bound in the Environment Naming Context (ENC).

In order to reflect and extend this model with S&%embly, this specification introduces the conoépt
the Application Composite (see section 6.1.3) andraber of implementation types, such as the EJB
implementation type and the Web implementation tyipat represent the most common Java EE
component types (see section 5).

Implementation types for Java EE components adsoitiase component implementations with SCA
service components and their configuration, comgsif SCA wiring and component properties as well
as an assembly scope (i.e. a composite). Noterltbatse of these implementation types does notecrea
new component instances as far as Java EE is c@mtteBection 3.1 explains this in more detail.

In terms of packaging and deployment this spediboasupports the use of a Java EE application
package as an SCA contribution, adding SCA’s dometaphor to regular Java EE packaging and
deployment.

In addition, the JEE implementation type provideseans for larger scale assembly of contributians i
which a Java EE application forms an integrated gfeat larger assembly context and where it is @gw
as an implementation artifact that may be depl®gackral times with different component configunasio
See section 7 for more details.

Through the extended semantics of the applicationposite and by virtue of the component type
definition for the JEE implementation type, botlpagaches, local assembly within the Java EE package
as well as a coarse-grained use, can be combirtedutintroducing model friction.

3.1 Life-Cycle Model for Service Components fromJa va EE Components

The EJB implementation type and the Web implememntaype differ from other SCA implementation
types in that they refer to components whose lfdecis not completely controlled by the SCA rurgim
implementation but rather in a shared respongibilith a Java EE runtime.

This model is motivated by several considerations:

« EJB and Web components may be invoked out-of-baord &n SCA perspective: for example via
a JNDI lookup and invocation in the case of a sesbean, by receiving a JMS message in the
case of a Message-Driven bean, or by an HTTP réquédse case of a web application.

Java EE Integration Specification 1.00 3 May 2008

99
100

101

102
103
104

105
106
107
108

109

110
111

112
113
114

115
116

117
118
119

120
121

122
123

124
125
126
127

128
129
130
131
132

133

134
135

SCA Service Component Architecture

» Prior to invocation of an SCA enhanced compondetytintime must provide the Java EE context
for the Java EE components as well as the SCAegb(#.g. by injecting references)..

This specification defines the following rules te#itninate potential ambiguities:

* A Java EE component must not be used more thanasmiceplementation of an SCA service
component within the assembly of a Java EE appdicagackage (an EAR archive, or a
standalone web application module, or a standdiemodule).

» If a Java EE component that has a component tygeefide and/or is enhanced by SCA
annotations is not used as a component implementhsi an explicit service component
declaration within the assembly of a Java EE appba package, then it will not be associated
with a component context and any SCA annotation caayge an error or may be ignored.

Furthermore the following life cycle handling rulagply:

e The component life cycle of an SCA enhanced Javadfiponent (see [4]) is nested within its
Java EE component life cycle. More specifically:

o Java EE initialization of an SCA enhanced Java &&ponent will happen before any
SCA component initialization. Both occur before &mginess method invocation (or
HTTP request in the case of a web application).

o If an EJB has a PostConstruct interceptor regidfer@mponent initialization will happen
before the interceptor is called.

0 No business method invocation (or HTTP requedténcase of a web application) on the
service component will occur after scope destracfi®. while and after @Destroy life
cycle methods are called) and before the compdneastémentation instance is finalized.

* The point in time of deployment of an SCA enhangéada EE component is exactly the point in
time it is deployed as a Java EE component.

3.2 Mapping a Java EE Component’s Environmentto Co mponent Type
Data

In the absence of optional extensions, the compdgpa of a Java EE component (such as a Servlet or
Enterprise Bean) does not contain SCA referenceweMer, as an optional extension, an SCA runtime
can choose to provide the capability of re-wirintBEeferences using SCA. If an SCA runtime proyide
this optional extension, then the following rulejsplied:

Each EJB 3 remote reference of each session befim wie Java EE application is exposed as an SCA
reference. Each EJB reference has a target (whkidava EE application) that is the EJB iderdibg

the configuration metadata within the JEE appilizat it is this target which may be overriddenay

new target identified in the SCA metadata of themgonent using the JEE application. The multiplici
of the generated reference is 0..1. The generatecence must require the “ejb” intent :

<intent name="ejb" constrains="sca:binding">

<description> The EJB intent requires that allref semantics required by the Java EE specific&bioa
communication to or from an EJB must be honore@sddption>

Java EE Integration Specification 1.00 4 May 2008

SCA Service Component Architecture

136 </intent>

137 As an additional vendor extension, each environraatry with a simple type may be translated into an
138 SCA property. The name of the property is derifrech the name of the resource, according to the
139 algorithm given below. The XML simple type of th€S property is derived from the Java type of the
140 environment entry according to the following typapping:

141
Environment Entry Type XSD Type
String String
Character String
Byte Byte
Short Short
Integer Int
Long Long
Boolean Boolean
Double Double
Float Float
142

143 Note that SCA names for references are of the Xhesa type NCName, while Java EE names for
144 EJB references are of a type that allows a largaracter set than what is supported in NCNames. The
145 following escape algorithm defines how to translaenes of EJB references and into names of SCA
146 references:

147 1. Replace all “/” characters by “ " (underscore) cwaers
148 2. All remaining characters that are not supported@Name are escaped as XML entities or
149 character references.

150 These optional extensions are in no way requirdzetprovided by any given SCA runtime and thag as
151 result, it is unadvisable to rely on the capabitityewiring EJB references when porting applicasio
152 between different runtimes.

Java EE Integration Specification 1.00 5 May 2008

SCA Service Component Architecture

153 4 Scope and Limitations of the Specification
154

155 Various parts of this specification are limitedlwrespect to what version of Java EE specificatibag
156 refer and apply to.

157 * <implementation.ejb/> is only defined for EJB versB and higher.

158 * <implementation.web/> is only defined for Servi8PIspecification version 2.5 and higher.
159 * <implementation.jee/> is only defined for Java E&haves that are compliant to Java EE 5 and
160 higher

Java EE Integration Specification 1.00 6 May 2008

161

162
163
164
165

166
167
168

169

170
171
172
173

174
175
176
177
178
179

180
181
182
183

184
185
186

187
188
189

190
191
192
193

194
195
196

197
198

SCA Service Component Architecture

5 Java EE Component Based Implementation Types

The elementary building block of SCA assembly & 8ervice Component. In order to provide firstglas
capabilities for exposure of services or consunmptibservice components, we define implementation
types that represent the most prominent applicattonponent in Java EE applications: Enterprise
JavaBeans (EJB) and Web application components.

The intention is to define a convenient implemeatatmodel for developers of these components. For
example, a web component developer can use SCAatiums such a@Reference to declare service
component references in the web component impleatient

5.1 Using Session Beans as Implementation Types

Session beans are the Java EE means to encapgmugatess logic in an environment that manages
remoting, security, and transaction boundariesvi&@icomponents play a similar role in SCA and so
session beans are the most obvious candidatesriaces component implementation in a Java EE
environment.

The SCA service programming model described ingSgmbles the EJB 3.0 programming model, for
instance in its use of dependency injection. ABJB 3.0, and unlike EJB 2.x, service interfacesalo
need to extend any framework defined interfaces.S&A-enabled Java EE runtime MUST support EJB
3.0 session beans as implementation types. An &@#led Java EE runtime is not required to support
EJB 2.1 session beans as SCA component implenantgpes. Handling of other JavaEE components,
such as Message Driven Beans, is discussed insktéons.

Services and references of service componentsaoeiated with interfaces that define the set of
operations offered by a service or required byfereace when connecting (“wiring”) with other se®s
and references directly or via bindings. Interfdeénitions are hence an important part of the ragde
meta-data and we need to define the particulamti@sterfaces derived from Java EE components

5.1.1 Mapping EJB business Interfaces to SCA Servic e Interfaces

The service interface derived from the businessfate of an EJB 3 session bean is comprised of all
methods of the EJB business interface. Furthermore:

The service interface is remotable if and only i§iderived from a remote business interface. The
EJB semantics for remote and local invocations (aod the by-reference and by-value calls) as
defined in [8] must be honored .

In the case of a business interface of a stateidisn bean:
* The service interface is treated as conversational
* Methods of the interface that are implemented bye@®&ve methods are treated as
@EndsConversation methods of the interface.

5.1.2 The Component Type of an Unaltered Session Be an

The component type of a session bean that doasseainy SCA annotation and is not accompanied by a
component type side file is constructed accordmtié following algorithm:

1. Each EJB 3 business interface of the session baasldtes into a service by the unqualified
name of the interface according to section 5.1uthyenerated services require the EJB intent

Java EE Integration Specification 1.00 7 May 2008

SCA Service Component Architecture

(i.e. they are treated as if there was @requirgb=tefinition in the business interface). EJB 2.x

component interfaces are ignored.
2. Remote EJB 3 references MAY translate into an S€férences according to section 3.2.

3. Each Simple-Typed Environment Entry of the ses8idyY translate into an SCA property
according to section 3.2.

For example:

| packageservices.accountdata;
“import javax.ejb.Local;

@Remote
' public interface AccountService {

AccountReport getAccountReport(String customerld);

' packageservices.accountdata;
~import javax.ejb.Stateless;

@Stateless
' public classAccountServicelmpimplements AccountService {

public AccountReport getAccountReport(String customeflid)
...
return null;

- <?ml versiors"1.0" encoding"UTF-8"?>
. <componentTypamins="http://www.osoa.org/xmlIns/sca/1®"

<servicename="AccountService*
<nterface.javanterface="services.accountdata.AccountService"
</service

| </lcomponentType

5.1.3 Dependency Injection

Any session bean (or other Java EE construct)dredrving as the implementation type of an SCA
service component may use dependency injectiondoige handles to the services wired to the

Java EE Integration Specification 1.00 8 May 2008

240
241
242
243

244

245

246
247

248
249
250
251

252
253
254
255

256
257
258
259

260

261

262
263
264

SCA Service Component Architecture

component by the SCA assembly. Dependency injectiay also be used to obtain the value of
properties, a handle to the ComponentContext,eagrte to the callback service and attributesef th
current conversation. The following table showes dnnotations that may be used to indicate thesfiet
properties to be injected.

Annotation Purpose

@Callback Session beans only: Mark method/fielcctdiback injection

@ComponentName Injection of component name

@Context Injection of SCA context into member vialgsof service component instance

@Property Injection of configuration propertiesnr&C configuration

@Reference Injection of Service references. There is no rezquent that an SCA referen
would appear under java:comp/env.

@ConversationID Stateful Session beans only: ligeaf a conversation id

A complete description of these annotations, ardstlues associated with them, is given in the Java
Common Annotations and APIs specification [5].

When a session bean uses dependency injectioogtit@iner MUST inject these references after the

bean instance is created, and before any businetb®ds are invoked on the bean instance. If tha be
has a PostConstruct interceptor registered, depegdsjection MUST occur before the interceptor is

called.

EJB’s dependency injection occurs as part of canstn, before the instance processes the firgiceer
request. For consistency, SCA’s dependency imgeaiso occurs during this phase. Instances of
stateless session beans are typically pooled bgahi&iner. This has some consequences for the
programming model for SCA.

In general, the values returned from the injectech@onentContext must reflect the current state in
which the SCA component is being called. In patég the value of getRequestContext() MUST return
the request context of the current service calltim® request context for which the bean was ihjtia
created.

See also section 3.1 for an overview over thechide handling of SCA-enhanced Java EE components.

5.1.4 Providing additional Component Type data for a Session Bean

Several of the annotations described in [4] infeeethe implied component type of the session bean (
other Java EE construct). The following table shtlwe annotations that are relevant in a SCA-edable
Java EE runtime.

Annotation Purpose

@Property Adds a property to the implied compoigme. The type of the property is
obtained through introspection.

Java EE Integration Specification 1.00 9 May 2008

265

266
267

268
269
270
271
272

273

274
275
276

277

279
280

282

284
285

SCA Service Component Architecture

@Reference

Adds a reference to the implied compdgpa. The interface associated
with this wire source is obtained through introgpet In the case a field is
annotated with both @EJB and @Reference, SCA woirggrides the EJB
target identified by the configuration metadatéw the JEE application by,
a new target according to SCA wiring rules. B ®CA reference is not
wired, the value of the field is the target EJBlatermined by Java EE
semantics.

@Service

Session beans only: Allows the speciticadf which of the bean’s EJB
business interfaces should be exposed as SCA ssrvithe business
interface indicated in this annotation MUST BE EJBompliant business
interface. The service name of the implied composervice will be the
unqualified name of the interface. A remote irde€f is considered a
remotable SCA interface. If the @Service annoteiionot used, componen
services will be generated for each business ederéxposed by the bean,
described in the section on the component typaahootated Session Beans.

An SCA-enabled Java EE runtime MUST observe theipe annotations and use them when
generating an implied component type.

Note that the set of annotations relevant to Ja&vasEa subset of those defined in [4]. Many of the
remaining annotations duplicate functionality athgavailable using Java EE annotations. An exarsple

SCA’'s @Remotable tag, which duplicates functiogaiteady available using Java EE’s @Remote tag.

To prevent redundancies and possible inconsistgnitie annotations given in [4] but not listedhia t
above table MUST be ignored.

5.1.4.1Example of the use of annotations:

Using annotations, it is easy to create a componghta more complex component type. Continuirgy th
example from section 3.1.1, we now add propertnesraferences that can be injected based on the
components use in an SCA assembly.

' packageservices.accountdata;

278

- import javax.ejb.Stateless;

- import org.osoa.sca.annotations.*;

281

- import services.backend.BackendService;
283 |

. @Stateless

- public classAccountServicelmpimplements AccountService {
286
287
288
289
290
291
292

@Referencerotected BackendService backend;
@Propertyprotected String currency;

public AccountReport getAccountReport(String customefld)
...
return backendcustomerld, currency);

Java EE Integration Specification 1.00 10

May 2008

293 !

294
295

296
297

305

306

307
308
309

310

311
312
313
314

315
316
317

318
319
320

321
322
323
324

325

326

327
328
329
330
331
332

SCA Service Component Architecture

- <2ml versiors"1.0" encoding"UTF-8"?>

 <componentTypamlns="http://www.osoa.org/xmlns/sca/1 9"
298 !
299
300
301
302
303 |
304
i </componentType

<servicename="AccountService*
<interface.javanterface="services.accountdata.AccountService"

<[service

<propertyname="currency"s

<referencename="backent>
<nterface.javanterface="services.backend.BackendService"

<freference

5.1.5 Using a ComponentType Side-File

Using SCA annotations, a service component develogeeasily create session beans that imply a
complex component type. If further tuning of tlwerponent type is necessary, a component type side
file may be included in the contribution. The campnt type side file follows the naming pattern

META-INF/<bean name>.componentType

and is located in the ejb module containing thenbekhe rules on how a component type side filesadd
the component type information reflected from thenponent implementation are described as parteof th
SCA assembly model specification [3]. If the compointype information is in conflict with the
implementation, it is an error as defined in [3].

If the component type side file specifies a seruterface using a WSDL interface, then the bean
interface MUST be compliant with the specified WSRkcording to the rules given in section 'WSDL 2
Java and Java 2 WSDL' in the Java Annotations d?ld Specification [4].

Use of the side file is recommended in cases wiher€omponentContext API will be used instead of
dependency injection to obtain service referen&msce there is no annotation, introspection woll ne
able to see the need to insert a new referencehiatoomponent type.

5.1.6 Creating SCA components that use Session Bean s as Implementation Types

In order to declare a service component instareeishmplemented as a session bean, an
implementation.gjb declaration can be put in some composite defimifsze below). It has the following
pseudo schema:

The ejb-link-name attribute uniquely identifies B8&B that serves as the component implementation.
The format of the value is identical to the forraathegb-link tag in a Java EE deployment descriptor.
In the case that the SCA contribution containirgg¢gbmposite file is an application EAR file, it is
possible that several session beans have the same in that case the value of the ejb-link elemaunt
be composed of a path name specifying the ejbegjataining the referenced enterprise bean with jie e
name of the referenced enterprise bean appendeskpadated from the path name with a ‘#’. The path

Java EE Integration Specification 1.00 11 May 2008

333
334

335
336
337
338

339
340

348
349

350

351
352
353

354
355
356

357
358
359
360

361
362
363
364
365
366
367
368
369

370

371
372
373

SCA Service Component Architecture

name is relative to the root of the EAR. In theecthat SCA contribution is an EJB module’s JAR,fil
the path name may generally be omitted.

The following example declares a service componantedoeancomponent in the composite
beancomposite of the namespadsatp: //mwww.sample.org. Beancomponent is implemented by the bean
SimpleBean in the ejb-modulenodule.jar. Beancomponent exposes a service, named after the bean’s
business interface name, that is promoted to thgosite level:

- <?xml versiors"1.0" encoding"UTF-8"?>

. <compositename="beancompositetargetNamespasghttp://www.sample.org"
341
342 .
343 |
344
345
346
347 .
i </composite

xmlns="http://www.osoa.org/xmins/sca/1®"
<servicename="AccountReporting’promote="beancomponent/AccountServi¢e"

<componennhame="beancomponent'
<implementation.ejlejb-link="module.jar#SimpleBear*
</componer#

5.1.7 Limitations on the use of Session Beans as Co mponent Implementation

Session beans that serve as SCA implementatiomoagethe-less session beans, and may be found and
used just like any other session bean, for instathceugh dependency injection via an @EJB anratati
or though JNDI lookup.

An enterprise bean accessed through normal Javadiiods can contain SCA annotations such as
@Reference or @Property, or may look up its comégan through the API, and therefore, require
configuration from the SCA runtime.

Therefore, within the assembly of the contribugg@tkage, a session bean may be used as service
component implementation at most once. Whetheetiterprise bean is accessed through standard Java
EE means, or through an SCA reference, the samEs@omponent configuration is used (see also
section 3).

The EJB Specification defines a container contttzat defines what behavior implementations may
expect from the container, and what behavior thrgainer can expect from the implementation. For
instance, implementations are forbidden from mamgglass loaders and threads, but on the other, hand
implementations need not be programmed for thraéetys since the container guarantees that no bean
instance will be accessed concurrently. In an @8abled Java EE runtime, both parties are expéated
continue to abide by this contract. That is, sieesbean that is serving as an SCA implementayipa
must continue to be a well-behaving EJB, abstaifioigp thread and class loader management, and the
SCA-enabled Java EE runtime must also continuelaye as in accordance with the EJB container
contract.

5.1.8 Use of Implementation Scopes with Session Bea ns

The lifecycle of a stateless session bean is npaated by its use in an SCA context. The instéce
returned to the free pool as soon as it finisheg@eg the request, regardless of whether thewad
made over an SCA wire or over using an EJB proxygatb In the terminology provided in [4], a staist

Java EE Integration Specification 1.00 12 May 2008

SCA Service Component Architecture

374 session bean always has a STATELESS implementstigme. An SCA-enabled Java EE runtime is not
375 required to provide means for tuning or customizimg behavior.

376 Similarly, the lifecycle of a stateful bean is, dgfault, not impacted by its use in an SCA cont&itie

377 Dbean instance remains (modulus passivation/adativatycles) until it times out or one of its @Remove
378 methods are called. In the terminology providef#tina stateful session bean has CONVERSATIONAL
379 implementation scope.

380

381 5.1.9 SCA Conversational Behavior with Session Bean S

382 The SCA Assembly Specification [3] introduces tbaaept ofconversational interfaces for describing
383 service contracts in which the client can rely onwersational state being maintained between caifs,
384 where the conversational identifier is communicateparately from application data (possibly in

385 headers). Note that a conversational contrach@ss@association with a conversationally scoped

386 implementation instance such as stateful beaniddestl.1 defines how business interfaces are nthppe
387 to SCA service. SCA conversational interface mostie used with a stateless bean.

388 5.1.10 Non-Blocking Service Operations

389 Service operations defined by a Session Bean'sibssiinterface may use the @OneWay annotation to
390 declare that when a client invokes the serviceatpmer, the SCA runtime must honor non-blocking
391 semantics as defined by the SCA assembly Speaifiicid].

392 5.1.11 Accessing a Callback Service

393 Session Beans that provide the implementation & &@nponents and require a callback service may
394 use @Callback to have a reference to the callbakce associated with the current invocation itgéc
395 on afield or setter method.

396 5.2 Using Message Driven Beans as Implementation Ty pes

397 Message Driven Beans are the JavaEE construcbfmuming asynchronous messages. Message Driven
398 beans may participate in SCA assembly as the ingaiéation type of a component that does not offer

399 any services, but may be configured or wired frdfassage-driven beans cannot be instantiated

400 arbitrarily often due to their association with m®@A-controlled endpoints (typically JIMS). Thenefo

401 within the assembly of the application package ggsage-driven bean may be used as service component
402 implementation at most once (see also section 3).

403 5.2.1 Dependency Injection

404 A message driven bean that is the implementatipe 6f an SCA component may use dependency

405 injection to acquire references to the servicegavip the component by the SCA assembly. Deperndenc
406 injection may also be used to obtain the valueroperties or a handle to the component’'s component
407 context. The following table shows the annotatithvag may be used to indicate the fields or progetb
408 be injected.

409

Annotation Purpose

@ComponentName Injection of component name

Java EE Integration Specification 1.00 13 May 2008

410

411
412

413
414
415
416

417

418

419
420
421
422

423
424

425

426
427

428

429
430
431

432

433
434

SCA Service Component Architecture

@Context Injection of SCA context into member vialgsof service component instance
@Property Injection of configuration propertiesnfr&CA configuration
@Reference Injection of Service references

A complete description of these annotations, ardstlues associated with them, is given in the Java
Common Annotations and APIs specification [4].

When a message driven bean uses dependency injatigocontainer MUST inject these references after
the bean instance is created, and before any lmssinethods are invoked on the bean instancee If th
bean has a PostConstruct interceptor register@eéndiency injection MUST occur before the intercepto
is called.

See also section 3.1 for an overview over thecjide handling of SCA-enhanced Java EE components.

5.2.2 The Component Type of an Unaltered Message Dr iven Bean

Unlike Session Beans, Message Driven Beans doawat business interfaces. Therefore, the component
type implied from a message driven bean does ffiet ahy SCA services. The bean may, of course, be
accessed indirectly over a binding.jms call tagsociated queue, but this is not transparenetS @A
assembly.

The component type of a message driven bean tlestrtnt use any SCA annotation and is not
accompanied by a component type side file is caostd according to the following algorithm:

1. Remote EJB 3 references MAY translate into an S&€férences according to section 3.2.

2. Each Simple-Typed Environment Entry of the ses8idY translate into an SCA property
according to section 3.2.

5.2.3 Providing additional Component Type data for a Message Driven Bean

Several of the annotations described in [4] infeesthe implied component type of the session bean (
other Java EE construct). The following table shtlwe annotations that are relevant in a SCA-edable
Java EE runtime.

Annotation Purpose

@Property Adds a property to the implied compoigme. The type of the property is
obtained through introspection.

@Reference Adds a reference to the implied compdgpa. The interface associated
with this wire source is obtained through introdjmet

An SCA-enable Java EE runtime MUST observe theipeé@nnotations and use them when generating
an implied component type.

Java EE Integration Specification 1.00 14 May 2008

435
436
437
438
439
440

441
442

443
444

445

446
447

448

449
450
451
452

453
454
455

456
457

458

459
460
461

462
463

SCA Service Component Architecture

5.2.4 Creating SCA Components that use Message Driv en Beans as

Implementation Types
Since both Message Driven Beans and Session BeaEhterprise Java Beans, both can be uniquely
referenced in an ejb-link. Therefore, no new tagaeded to declare a service component instaatesth
implemented as a Message Driven Bearnngsiementation.gb (described in section 5.1.6 above) can be
used in both cases.

5.2.5 Limitations on the Use of Message Driven Bean
Implementation

A few limitations with respect to use as servicemponent implementation apply to Message Driven
Beans:

s as Component

* A Message-Driven Bean may not be given an impleat&mt scope.

* A Message Driven Bean cannot be used to providmaersational service. It may, of course,
access conversational services.

5.3 Mapping of EJB Transaction Demarcationto SCAT ransaction Policies

The EJB programming model supports a concept adbooer managed transaction handling in which the
bean provides class-level or method-level infororabin transaction demarcation that is observedidy t
EJB runtime implementation. SCA’s policy framew@kin conjunction with the transaction policies
specification [10] defines an extended transaati@marcation model using SCA policy intents.

However, since EJB transaction attributes can fieeteon the class as well as on the method-I¢kel,
EJB model more fine-granular than SCA'’s transactmael and a simple mapping to SCA policies is not
possible.

For class-level transaction demarcation, the falhgwable illustrates the mapping of EJB transarctio
attributes to SCA transaction implementation pekci

EJB Transaction SCA Transaction Policy, required SCA Transaction Policy, required
Attribute intents on services intents on implementations
NOT_SUPPORTED | suspendsTransaction

REQUIRED propagatesTransaction managedTransaghidual
SUPPORTS propagatesTransaction managedTransgtioa.
REQUIRES_NEW suspendsTransaction managedTransagtbal
MANDATORY propagatesTransaction managedTransagiobal
NEVER suspendsTransaction

Note: in the case of MANDATORY and NEVER demarcasippolicy mapping is not completely

accurate as these attributes express responsibititithe EJB container as well as the EJB impléenen
rather then expressing a requirement on the secacsumer (see [8]).

We require that EJB’s transaction model stays umgbad by SCA, and an SCA-enabled Java EE runtime
MUST adhere to the rules laid out in [8].

Java EE Integration Specification 1.00 15 May 2008

464

465
466

467

468
469
470
471

472
473
474
475
476
477
478
479
480
481
482
483
484

SCA Service Component Architecture

5.4 Using Web Modules as Implementation Types

As with Message Driven beans, web modules mayqgyaate in SCA assembly as the implementation
type of a component that does not offer servicesniay be configured or wired from.

5.4.1 Dependency Injection

A web module may use dependency injection to aeqeiierences to the services wired to the component
by the SCA assembly. Dependency injection may la¢sosed to obtain the value of properties or a
handle to the component context. The followindgathows the annotations that may be used to itedica
the fields or properties to be injected.

Annotation Purpose

@ComponentName Injection of component name

@Context Injection of SCA context into member vialgeof service component instance
@Property Injection of configuration propertiesnr&C configuration

@Reference Injection of Service references

A complete description of these annotations, ardstlues associated with them, is given in the Java
Common Annotations and APIs specification [4].

Due to the multi-threaded nature of web artifaictshe case where a Reference Proxy targeted to a
conversational interface (such as stetefull sedsg@ams) may not behave as expected. SCA-Java EE
Runtimes may treat this case as an error. The ne@mded approach to obtain such reference proxy is
via usage of ComponentContext.

Dependency injection of values configured from Sa&&urs in exactly those locations that the web
container can inject values based on the Java Bfigooation. An SCA-enabled Java EE server MUST
be able to perform dependency injection on thevalhg artifacts.

Name Interface or Class

Servlets javax.servlet.Servlet

Servlet filters javax.servlet.ServletFilter

Event listeners javax.servlet.ServletContextListene

javax.servlet.ServletContextAttributeListener
javax.servlet.ServletRequestListener
javax.servlet.ServletRequestAttributeListener
javax.servlet.http.HttpSessionListener
javax.servlet.http.HttpSessionAttributeListener
javax.servlet.http.HttpSessionBindingListener

Taglib tag handlers javax.servlet.jsp.tagext.JspTag

Java EE Integration Specification 1.00 16 May 2008

485
486

487

488
489

490
491

492

493
494

495

496
497

498

499
500
501

502
503
504

505

506
507
508

509
510

511

512 !

SCA Service Component Architecture

JavaServer Faces Plain Old Java Objects (POJOs)
technology-managed
beans

See also section 3.1 for an overview over thecjide handling of SCA-enhanced Java EE components.

5.4.2 The Component Type of an Unaltered Web Module

Since it does not offer SCA services the compotgrg of a web module does not contain any SCA
services. However, it may contain references angeties.

The component type of a web application that da¢sise any SCA annotation and is not accompanied
by a component type side file is constructed adangrtb the following algorithm:

1. Remote EJB 3 references MAY translate into an S&férences according to section 3.2.

2. Each Simple-Typed Environment Entry of the ses8iéY translate into an SCA property
according to section 3.2.

5.4.3 Providing additional Component Type Data for a Web Application

Several of the annotations described in [4] infeesthe implied component type of the Web applicatio
The following table shows the annotations thatralevant in a SCA-enabled Java EE runtime.

Annotation Purpose

@Property Adds a property to the implied compoigme. The type of the property is
obtained through introspection.

@Reference Adds a reference to the implied compdgpa. The interface associated
with this wire source is obtained through introdjmet

An SCA-enable Java EE runtime MUST observe theipeé@nnotations and use them when generating
an implied component type. All files where depamxeinjection may occur (see the table in section
5.4.1) MUST be inspected when generating the irdpgimponent type.

A web component can provide additional compongoe tyata in the side file
WEB-I NF/web.componentType
in the web module archive. Using Web Modules adémgntation Types

5.4.4 Using SCA References from JSPs

JavaServer Pages (JSP) tag libraries define déegrenodular functionality that can be reused by a
JSP page. Tag libraries reduce the necessity te@mabge amounts of Java code in JSP pages by govin
the functionality of the tags into tag implemerdatclasses ([6]).

Following this philosophy, a JSP tag library wi# lmade available to expose SCA components in JSP
pages. The following snippet illustrates the usaSCA reference using the tag library:

Java EE Integration Specification 1.00 17 May 2008

SCA Service Component Architecture

513

514 |

515 |

516

. <sca:reference name="service" type="test.MyService"

517

518
519

520
521
522
523
524
525
526

527
528
529
530

531
532
533

534
535
536
537

| <% service.sayHello(); %>

An SCA-enabled Java EE runtime MUST support the S6R tag library by providing implementations
of the tag-class and tei-class. The servlet coatdinsting the webapp will instantiate new instanafe

the tag-class whenever it comes across the SCAfispgag in a JSP page. The tag-class is respan$ibl
doing dependency injection into the JSP page basdle properties provided to the JSP page. Theesco
of the object injected is PageContext. APPLICATIG@COPE in case the the interface is not
conversational and PageContext. SESSION_SCOPE&tha interface is statefull. The SCA JSP tag
also makes available the given reference witbvalyndeclared scripting variable of the same id.

In order to access SCA configuration from JSP paiféB page authors MUST import the SCA tag
library provided by the SCA runtime and provideth# properties necessary for dependency injection.
The required properties are the name of the referembe injected, and the type of the field (SErvi
interface class name).

All tag libraries are required to provide a Taglaky Descriptor (TLD). The information provided biav
the tag library descriptors will be used by the vapplication container to handle processing of tadke
jsp page. The TLD of the SCA tag library is shomitie following code box

. <?xml version = '1.0" encoding = 'ISO-8859-1'?>

i <IDOCTYPE taglib PUBLIC "-//Sun Microsystems, IN@TD JSP Tag Library 1.2//[EN"
. "http://java.sun.com/xml/ns/javaee/web-jsptagligré 1.xsd">

' <taglib version="2.1">

538 |

539
540
541 |
542
543

<tlib-version>1.0</tlib-version>
<short-name>SCA-JSP</short-name>
<uri>http://www.o0soa.org/sca/sca_jsp.tld</uri>
<description>A tag library for integrating scangagonents with jsp
</description>

544 |

545
546
547
548

<tag>
<name>reference</name>
<tag-class><!—To be provided by the SCA runtimplementation </tag-class>
<tei-class><!—To be provided by the SCA runtimglementation I</tei-class>

549 |

550
551 |
552
553 |
554

<attribute>
<name>name</name>
<required>true</required>
<type>java.lang.String</type>
</attribute>

555

556 |

<attribute>

Java EE Integration Specification 1.00 18 May 2008

557
558 |
559
560
561 |
562
563
564
565
566
| </taglib>

567

568

569
570

571

572
573

574

575
576

577

SCA Service Component Architecture

<name>type</name>

<required>true</required>

<type>java.lang.String</type>
</attribute>

<body-content>empty</body-content>

</tag>

5.4.5 Creating SCA Components that Use Web Modules as Implementation Types

Theimplementation.web tag can be used to declare a service componédristimaplemented by the web
component. It has the following pseudo-schema.

As for message-driven beans, a web component caartfgured at most once per assembly of the
contribution package.

5.4.6 Limitations on the Use of Web Modules as Comp onent Implementations

Because each module is associated with a uniguexdawot, web modules may be used as service
component implementation at most once (see alsmee’).

Furthermore, a web module may not be given an imeigation scope.

Java EE Integration Specification 1.00 19 May 2008

SCA Service Component Architecture

578 6 SCA-enhanced Java EE Archives

579 The following sections provide a detailed descoiptof how to make use of SCA concepts within and
580 over the scope of Java EE applications and Java&ttiles.

581 We will use the termSCA-enhanced Java EE application when referring to Java EE applications that
582 are composed from a mix of Java EE artifacts abagebCA artifacts and additional implementation
583 artifacts.

584 Similarly we will use the term8CA-enhanced Java EE module for a corresponding construction
585 pertaining to a Java EE module, and we will use¢ha SCA-enhanced Java EE archive when referring
586 to either construct.

587 6.1 Assembly and Deployment of SCA-enhanced Java EE ~ Archives

588 In this section we will see how to apply SCA assmnsbncepts when assembling and deploying SCA-
589 enhanced Java EE applications. The SCA assembtyfisption [3] defines a language and model to
590 make effective use of the implementation typestandings described in this specification and other
591 specifications (as far as supported by the targgime environment).

592 The reader should be familiar with the conceptstanas of the SCA assembly specification [3].

593 In order to provide a visual representation of agdg and deployment related examples, we use the
594 following graphical notation:

some non-sca
implementation
artifact in the
contribution (a class, .
aweb component, a something non-

session bean...)

a contribution

“‘implemented by*

composite

a composite defined by
a SCDL artifact inside
the contribution

‘ Inclusion into domain

‘ Result of inclusion

domain composite

595

596 Note: Java EE archives, SCA-enhanced or not, nsayksd used as service component implementations
597 viathe Java EE implementation type. See sectimn ihore details.

Java EE Integration Specification 1.00 20 May 2008

598

599
600

601

602
603

604
605
606

607
608
609
610

611
612

613
614

615
616
617
618
619

620
621
622
623
624

625
626

627
628
629
630
631

632

633
634

SCA Service Component Architecture

6.1.1 Java EE Archives as SCA Contributions

A Java EE archive, for example a Java EE applicairca Java EE module (a Web application, an ejb
module), can be used as an SCA contribution (sge [3

We will use the terndava EE contribution for a Java EE archive that is used as an SCA iboitityn.

A Java EE archive that is being used as an SCAibatibn must still be valid according to Java EE
requirements, containing all required Java EEautH (e.g., META-INF/application.xml in an .eaejil

Many Java EE implementations place some additi@talirements on deployable archives, for instance,
requiring vendor specific deployment descriptorsla&a EE archive that is an SCA contribution should
also fulfill these additional, implementation sg@cconstraints.

As with any regular SCA contribution a Java EE dbntion may be associated with a set deployment
composites that can be deployed to the SCA domaidava EE archive that is being used as an SCA
contribution indicates its deployment compositaswall as any imported or exported SCA artifacys, b
providing an SCA Contribution Metadata Document at

META-INF/sca-contribution.xml
Section 10.1.2 of the SCA Assembly Specificatiojd@scribes the format and content of this document

A META-INF/sca-contribution-generated.xml file may also be present. An SCA-enabled Java EE
runtime MUST process these documents, if presedtdaploy the indicated composites.

Implementations that support an install step sépdram a deployment step may use the add
Deployment Composite function (SCA Assembly 1.1%).40 allow composites to be added to an
installed SCA-enhanced Java EE archive without fyiodj the archive itself. In this case, the
composites will be passedly value. Such feature is useful because it allows theayeplto complete
the SCA wiring by adding in the composite.

The deployment of a set of deployment composita® fa Java EE contribution, including the exposure
of components in the virtual domain composite ahexternal bindings, takes plaoeaddition to Java

EE deployment: every Java EE component in the egipdin’s deployment descriptors (including EJB3
implied deployment descriptors) will be deployedhether it is mentioned in a composite or not. 3se a
section 3.1.

Irrespective of how many SCA deployment composatesdeployed from a Java EE contribution, only
one Java EE deployment will occur.

For example, the composite below and the followdagtribution metadata document would lead to
exposure of a contribution of a service componamedorg.sample.Accounting to the domain
composite. This component exposes a single seAdceuntReporting that is implemented by the EJB
session beamodulejar#RemotableBean, assuming that the session b&amotableBean has one
business interface by the nas@evices.accouting.AccountReporting (see also 5.1.2).

» <?xml versiors"1.0" encoding"UTF-8"?>
. <compositename="AccountingToDomain"
635
636 !
637

targetNamespaeéhttp://www.sample.org"
xmins:sample"http://www.sample.org"
xmins="http://www.osoa.org/xmlins/sca/1%®"

Java EE Integration Specification 1.00 21 May 2008

652

653
654
655

656

657
658
659
660

SCA Service Component Architecture

<componenhame="org.sample.Accounting"
<implementation.ejejb-link="module.jar#RemotableBear"
</componerm

</composite

- <?ml versiors"1.0" encoding"UTF-8"?>
. <contributionxmins="http://www.osoa.org/xmins/sca/1.0"

xmins:sample”http://www.sample.org®

<deployablecomposite"sample:AccountingToDomair®

- </contribution>

Using the diagram notation introduced above we get

Java EE archive

module.jar

RemotableBean

sample:AccountingToDomain

org.sample.Accounting }

rg.sample.Accounting

domain

While this kind of assembly is very practical faprdly achieving domain exposure of service
components implemented in a Java EE contributtiqrovides little encapsulation and information
hiding for application level assembly that is robe exposed in the domain.

6.1.2 Local Assembly of SCA-enhanced Java EE Applic ations

On an SCA-enabled Java EE runtime SCA assemblyéstégava EE assembly by providing a framework
for additional implementation types, bindings, avidng capabilities. For instance, SCA makes it
possible to wire an EJB component to a BPEL proc&sgh application internal wiring, between
standard Java EE components and SCA component@whpkmentations may not be Java classes

Java EE Integration Specification 1.00 22 May 2008

661
662

663
664
665
666

667
668

669
670
671
672

673

674
675
676

677

678
679

680

SCA Service Component Architecture

(supported implementation and binding types willcaurse, vary from implementation to
implementation) is a major benefit of SCA.

Users should take advantage of this benefit withegquiring explicit contribution of components tet
domain and it is often advantageous to separategplkcation’s internal wiring from the componetitat
the application wishes to expose in the domaipaiticular, to encapsulate the internal wiring and
components.

Nevertheless, consistency with SCA’s assembly migatplires having a well defined URI path from the
domain to any deployed service component.

Therefore, in order to achieve a compliant contidyuon the one hand and yet reflect a Java EEwach
locally scoped assembly, an application assemhiauld introduce an intermediate composite that is i
turn used as a domain deployed component impleti@mtas shown in the following abstract
construction:

<Java EE archive>

local assembly
goes here

<intermediate composite>

establishes path
<deployable| composite> from domain

[<deployed component>

<deployed
component>

domain

In order to ease the implementation of this typaggblication assembly approach and in order toigeov
a developer-friendly, convenient local assemblyS@A-enhanced Java EE applications, SCA enabled
Java EE runtimes must support the application caitgo

6.1.3 The Application Composite

A Java EE contribution may define a distinguishechposite, thepplication composite, that supports
the use of SCA programming model within the scapth® Java EE archive.

The application composite has two particular chiaréstics:

Java EE Integration Specification 1.00 23 May 2008

681
682
683
684
685
686
687

688
689
690

691
692

693

694
695
696
697

698
699
700
701

702
703
704

705
706

718
719

720
721

SCA Service Component Architecture

1. The application composite may be directly or indieused as an composite implementation or
by inclusion into some deployment composite.
However, if that is not the case, the SCA impleragoh MUST logically insert a deployment
composite into the archive that contains a singlemonent, named after the application
composite, that uses the application compositesasplementation. In addition this deployment
composite MUST be deployed into the domain. Counsetly the services and references that
were promoted from the application composite appsgd into the domain.

2. The application composite supports automatic (lalyinclusion of SCDL definitions that
reproduce the component type of the JEE implemient&gpe into the composite’s component
type. See section 7.2 7.1.3 for a detailed desenutf the includeDefaults feature.

Application archives (.ear files) that are beingdias SCA contributions define the application cosite
by a composite definition at

META-INF/application.composite

in the enterprise application package. The Javagegification also supports deployment of single
application modules. This method of deploymentaripularly popular for web application modules but
also used for EJB modules and resource adapterlesodfe treat single modules as a simplified
application package. The application compositetiese archives is defined at

WEB-I NF/web.composite

for web modules, and in
META-INF/gb-jar.composite
for EJB modules.

For example the followingpplication.composite file configures a property of a session bean
RemotableBean and exposes its remote interface service to theadousing a default web service
binding.

1 <?xml versiors"1.0" encoding"UTF-8"?>

. <compositename="accounting_application"
707
708
709 |
710
711 .
712
713 .
714
715
716
717

targetNamespaeéhttp://www.sample.org"
xmlns="http://www.osoa.org/xmins/sca/1®"

<servicename="AccountReporting’promote="beancomponent/AccountServiceRemote"
<binding.wg>
</services

<componennhame="beancomponent'
<implementation.ejlejb-link="module.jar#RemotableBear"
<propertyname="currency’>EUR<jroperty

</componer#

. </composite

By definition the application composite implies tpeneration of a deployment composite that dephoys
single component to the domain like this:

Java EE Integration Specification 1.00 24 May 2008

SCA Service Component Architecture

module.jar

RemotableBean

accounting_application

binding.ws

implied (no scdl
artifact required)

domain

722
723

724 The EJB-implemented service componeggncomponent may be modified in a later version so that it
725 makes use of another service comporm#mer component (whose implementation technology we ignore
726 for the sake of the example). It can do so by nyalif the application composite but without changisg
727 domain exposure:

Java EE Integration Specification 1.00 25 May 2008

728

729

730
731
732
733
734

735
736

737

SCA Service Component Architecture

module.jar

RemotableBean

accounting_application

binding.ws

domain

6.1.4 Domain Level Assembly of SCA-enhanced Java EE Applications

As applications expose themselves in the SCA dontiaty make themselves available for SCA wiring.
In this way, SCA allows Java EE applications tacduss application wiring. To illustrate this, we
proceed with the example. Another enterprise apptin, can wire to the provided service by praviga
suitable deployment composite. In the example belssume the following contribution metadata
document:

- <2xml versior="1.0" encoding"UTF-8"?>
. <contributionxmIns="http://www.osoa.org/xmlns/sca/1.0"
xmins:here"http://www.acme.con®

738

739 |

740
741

742

743
744

745 |
746

. <deployablecomposite"here:LinkToAccounting/>
1 </contributior»

- <?ml versior"1.0" encoding"UTF-8"?>

i <compositename="LinkToAccounting"
targetNamespaeéhttp://www.acme.com”
xmins:here"http://www.acme.com"

Java EE Integration Specification 1.00 26 May 2008

747
748
749 |
750
751
752
753
i </composite

754
755

756

757
758

769
770

771
772
773

774
775

776

SCA Service Component Architecture

xmins="http://www.osoa.org/xmlns/sca/1®"

<componenhame="com.acme.TicketSystem"
<implementation.compositgame="here:ticketing_application*
<referencename="AccountReporting"
target"org.sample.Accounting/AccountReportig"
</componer#

1 <?xml versiors"1.0" encoding"UTF-8"?>
. <compositename="ticketing_application"
759 |
760
761 |
762
763 .
764
765
766 !
767
768
| </composite

targetNamespae&&http://www.acme.com"”
xmins="http://www.osoa.org/xmins/sca/1®"

<componennhame"web">
<implementation.welweb-ur="web.war'’>
</componer#

<referencename="AccountReporting'’promote="web/AccountReporting>

Note that the application composite is used asw@ponent implementation of a composite that is
included into the domain. This way, the applicattemposite can participate in domain assembly
explicitly (rather than implicitly as demonstrateefore).

The example above results in the wiring of a refeedccountReporting of the web componemteb.war
to the domain level serviagg.sample.Accounting/AccountReporting.

This assembly example has the following graphieptesentation:

Java EE Integration Specification 1.00 27 May 2008

SCA Service Component Architecture

web.war module.jar

% RemotableBean

here:ticketing_application accounting_application
binding.ws

(application composite)

here:LinkToAccounting

e

domain

77

778

779 Again, to justify the introduction of an intermetiacomposite in the contribution on the left hai® s
780 assume the web application was modified to usehanddcal service componeygtanother:

Java EE Integration Specification 1.00 28 May 2008

SCA Service Component Architecture

web.war module.jar

RemotableBean

here:ticketing_application
(application composite) accounting_application

binding.ws

.......

here:LinkToAccounting

781 domain

782 Note that the new component could be introduced logal change of the application composite without
783 affecting the overall assembly.

784 6.1.5 Import and Export of SCA Artifacts

785 The import and export of SCA artifacts across abations for example to be used as composite
786 definitions is described in the assembly specificat

787 For the specific case of the location attribut¢éhef import element of thiRlETA-INF/sca-
788 contribution.xml document a vendor specific resolution mechanisoalshbe provided.

789 6.1.6 Resolution of WSDL and XSD artifacts

790 Composite files and other SCA artifacts may refeeedirectly or indirectly WSDL and XML Schema
791 documents that are not hosted locally, or whicmoabe modified to suit the local the local enviraent.
792 The OASIS XML Catalogs 1.1 specification [11] defsnan entity catalog that can be used to avoid
793 costly remote calls, or to provide a mechanismughowhich customized versions of docments can be
794 provided without changing application code. Speally, the XML Catalogs specification provides a
795 mechanism through which

796

797 e« an external entity’s public identifier and/or s identifier can be mapped to a URI reference.
798 +the URI reference of a resource can be mappeaddther URI reference.

799

800 Support for the OASIS XML Catalogs 1.1 specificatis mandated by JAX-WS, and an SCA-enabled
801 Java EE runtime MUST resolve WSDL and XML Schentdiaats in a manner consistent with JAX-WS.

Java EE Integration Specification 1.00 29 May 2008

SCA Service Component Architecture

802

803 Specifically, when an SCA-enable Java EE archivdegoyed, the process of resolving any URIs that
804 point to WSDL or XML schema documents MUST takeiatcount the catalog that is constructed from
805 all META-INF/jax-ws-catalog.xml found in the arcl@yand resolve the reference as prescribed in the
806 XML Catalogs 1.1 specification.

Java EE Integration Specification 1.00 30 May 2008

807

808
809
810

811
812

813 !

814
815

816
817
818
819

820
821
822
823

824
825
826
827

828
829

830

831
832
833
834

835

836
837

838
839
840

841
842
843

844

SCA Service Component Architecture

7 Java EE Archives as Service Component Implementat ions

The previous section described how Java EE arclocaede represented in SCA where each of the Java
EE components in the archive get mapped to sep&@#ecomponents. We also allow an alternative
formulation, where the entire archive to be repmé=set as a single coarse-grained component withih. SC

The JEE implementation type supports this use. It has the following pseud@sth

. <implementation.jearchive="...">
<xs:any>*
. </implementation.jee

Thearchive attribute specifies a relative path to the JavaaEfhive that serves as implementation artifact.
The context of that relative path (the value “s’the location of the artifact that contains the
implementation.jee element. All Java EE components contained in tbleize will deployed, regardless

of any SCA enhancements present (see also secfipn 3

Every deployed SCA component using the JEE impleatiem type represents a deployment of the
referred Java EE archive. Implementers are encedremgmake use of the extensibility of the JEE
implementation type declaration to provide deplogtran meta-data as to support vendor-specific
deployment features as well as multiple deploymehtme Java EE archive.

The archive that is referred to by <implementajee® may be an artifact within a larger contribnot{ae.
an EAR inside a larger ZIP file), or the archiveynitaelf be a contribution. In the latter cases th
@archive attribute can be left unspecified, andettehive will be assumed to be the archive of the
contribution itself.

The component type derived from a Java EE archeypedds on whether it has been enhanced with SCA
artifacts and contains an application compositeat— as described in following sections.

7.1 The Component Type of a non-SCA-enhanced Java E E Archive

Java EE modules, in particular EJB modules and Wettules are frequently designed for re-use in more
than one application. In particular EJB sessiombgaovide a means to offer re-usable implementatio

of business interfaces. In addition Java EE modtdesuse EJB references as a point of variation to
integrate with the assembly of a hosting applicatio

7.1.1 The Component Type of non-SCA-enhanced EJB Mo dule

The component type of an EJB module, with respethd JEE implementation type is defined by the
following algorithm:

1. Each EJB 3 business interface with unqualified eanti of a session bedean translates into a
service by the namean_intf. The interface of the service and the requirerf@mEJB intent is
derived as in sections 5.1.1 and 5.1.2.

2. Each EJB 3 reference with nameé of a session bediean translates into an SCA reference of
namebean_ref. The interface of the reference is derived accgrdd section 3.2. The reference’s
name may require escaping as defined in sectian 3.2

For example, an EJB 3 modulkusemodulejar may contain a session bean definitigsesOthersBean

Java EE Integration Specification 1.00 31 May 2008

SCA Service Component Architecture

. packagecom.sample;

import javax.ejb.EJB;
- import javax.ejb.Stateless;

. @Statelegmame=UsesOthersBeai"
- public classUsesOthersBeamplements UsesOthersLocal {

@EJB
private IUOBRefServiceef,

...

that, by use of annotations in this case, has 8r&&rence by namsom.sample.UsesOthersBean/ref
and the business interfaddOBRefService (note that alternatively the EJB reference coaldehbeen
declared in the module’s deployment descripd&TA-I NF/gb-jar.xml).

When applingmplementation.jee this would result in a component type of the fafilog form:

- <?xml versior="1.0" encoding"UTF-8"?>
- <componentTypa&mins="http://www.osoa.org/xmins/sca/1®"

<servicename="UsesOthersBean_UsesOthersLozal"
dnterface.javanterface="com.sample.UsesOthersLocé
<kervice

<eferencename="UsesOthersBean_com.sample.UsesOthersBear ref"
dnterface.javanterface="com.sample.lUOBRefServicé>
<fkeference

</componentType

7.1.2 The Component Type of a non-SCA-enhanced Web Module
As for EJB modules, Web Modules may be re-usabite.domponent type of a Web module conforming
to the Java Servlet Specification Version 2.5 ([§lefined as follows:

1 Each EJB 3 reference with namet of translates into an SCA reference of naeieThe interface of
the reference is derived according to section 2. reference’s name may require escaping as
defined in section 3.2.

For example, a Web application with the followingr8et

: packagecom.sample;
import java.io.lOException;

import javax.ejb.EJB;

Java EE Integration Specification 1.00 32 May 2008

887
888
889

890 |

891

892
893 !
894

SCA Service Component Architecture

' import javax.servlet.ServletException;
- import javax.servlet.ServletRequest;
. import javax.servlet.ServletResponse;

. public classReusableServletxtendsjavax.servlet.http.HttpServlignplementsjavax.servlet.Servlet {

@EJB
private UsesOthersLocalobean

895 !

896
897
898 |
899 !
900

901
902

903
904

905
906 |
907 |

908
909

910

911

912
913
914

915
916
917
918
919

920
921
922
923
924
925

public void service(ServletRequest req, ServletResponse resp)
throws ServletException, IOException {

- <?ml versiors"1.0" encoding"UTF-8"?>

i <componentTypa&mlns="http://www.osoa.org/xmins/sca/1®"

<eferencename="com.sample.ReusableServlet_uobean”
dnterface.javanterface="com.sample.UsesOthersLocé

<fkeference

. </componentType

7.1.3 The Component Type of a non-SCA-enhanced Java EE Application
The component type of a non-SCA-enhanced Java Rlcaton is defined as follows:

Each EJB 3 session bean business interface witlialifigd nameantf of a session bean with mapped
namemname translates into a service by the nam@ame _intf. The interface of the service is
derived as in section 5.1.1. The service namehlfestito escaping rules as described in section 3.2

In the absence of optional extensions, the compdypa of a non-SCA-enhanced Java EE application
does not contain SCA references. However, as aongbtextension of the way in which SCA support is
provided for Java EE applications, an SCA runtirme choose to provide the capability of re-wirindd3EJ
references using SCA. If an SCA runtime provides optional extension, then the following rule is
applied:

Each EJB 3 remote reference of each session befim wie Java EE application is exposed as an SCA
reference. If the remote reference has the ma&frend the name of the session bedressiname, the

SCA reference name llanname _ref. The reference has an interface derived accotdisgction 3.2.
The reference name is subject to the escaping aslégscribed in section 3.2. Each EJB reference
has a target (within the Java EE application) ihéte EJB identified by the configuration

metadata within the JEE application - it is thigj&a which may be overridden by a new target idieoti

Java EE Integration Specification 1.00 33 May 2008

926
927

928

929
930

931

932
933
934

935

936
937

938
939
940
941

942
943

944
945

950
951

952

SCA Service Component Architecture

in the SCA metadata of the component using thealiffication. The multiplicity of the generated
reference is 0..1. The generated reference mgsiresthe “ejb” intent :

<intent name="ejb" constrains="sca:binding">

<description> The EJB intent requires that allref semantics required by the Java EE specificitioa
communication to or from an EJB must be honore@sddption>

</intent>

This optional extension is in no way required tgbavided by any given SCA runtime and that, as a
result, it is unadvisable to rely on the capabitityewiring EJB references when porting applicasio
between different runtimes.

7.2 The Component Type of an SCA-enhanced Java EE A rchive

A Java EE archive that contains an application ausite (see the section 6.1.3) has the componeat typ
of the application composite as its component typen used with the JEE implementation type.

Example: Let's assume the right hand side apptiodtiom the example in sectidmain Level
Assembly of SCA-enhanced Java EE Applicatimas packaged in an archiagplication.ear and would
be used as part of a larger non-Java EE contribtihiat declares a service component in some other
composite that uses the archamplication.ear as implementation artifact.

In that case the component type of the EAR archvweld expose one service, thecountReporting
service:

i <?xml versiors"1.0" encoding"UTF-8"?>

- <componentTypa&mins="http://www.osoa.org/xmins/sca/1:9"
946
947
948
949 !
. </componentType

<servicename"AccountReporting>
<binding.wg>
<interface.javanterface="services.accounting.AccountReportifwg"
</servicer

Or, graphically:

Java EE Integration Specification 1.00 34 May 2008

953

954
955

956
957
958

959
960
961

962
963
964

965

966
967

SCA Service Component Architecture

A non-Java EE
contribution

application.ear

module.jar

RemotableBean

accounting_application

binding.ws
? beancomponent othercomponent
o=

4

some other composite

some_component

f
S / AN Y

A component using

The promoted service from beancomponent / . L 0 e .
<implementation.jee archive="application.ear"/>

This way, the application composite provides fimahged control over what services, references, and
properties are exposed from a Java EE archive.

In cases where a given non-enhanced Java EE aiishalrieady in use as a service component
implementation and the need arises to extend 8@% assembly meta-data, it is desirable to have a
smooth and controlled transition from the exposig#ned for non-enhanced archives.

That can be achieved using tineludeDefaults attribute that can be specified on composite and
component elements. It has the default vafaks€” and is defined in the name space
http://www.osoa.org/xming/sca/1.0/jee.

Using this attribute on the application compositmposite declaration with a valueue” leads to a
(logical) inclusion of SCDL definitions into the gpcation composite that reproduce the componegue ty
of the Java EE archive as if it was not SCA-enhdnce

For a Java EE application archive, the included BE@&xonstructed by the following algorithm:

1. For every EJB or web module that has servicesferareces exposed according to seckoror!
Reference source not found.a corresponding implementation.ejb or impleméonatveb

Java EE Integration Specification 1.00 35 May 2008

968
969

970
971
972

973
974

975
976
977

978
979

980 |
981 |
982 |
983 |
984 |

SCA Service Component Architecture

component is included, if that EJB or Web moduledsused as a component implementation
elsewhere already.

2. For every service or reference that is derived iating to sectiorkError! Reference source not
found., a composite level service or reference declarasoncluded, by the same name,
promoting the corresponding EJB service or refexenc

Corresponding algorithms apply for the case obaddlone Web module (section 7.1.2) and a standalon
EJB module (section 7.1.1).

Example (continued): Assume furthermore that the Badulemodulejar additionally contains the
AccountServicel mpl session bean of section 5.1.2 and the applicatomposite is modified as shown
below (note the use afcludeDefaults).

1 <?ml versiors"1.0" encoding"UTF-8"?>

. <compositename="accounting_application”
targetNamespaeéhttp://www.sample.org"
xmlns=http://www.osoa.org/xmins/sca/1.0
xmins:scajeghttp://www.osoa.org/xmlins/sca/l.0/jee
scajee:includeDefaultstrue”

>

985 |

986 !
987
988

<servicename="AccountReporting’promote="beancomponent/AccountServiceRemote"
<binding.wg>
</servicer

989

990
991
992
993 !

994
995

996
997
998
999

1000
1001

1002

<componenhame"beancomponent'
<implementation.ejlejb-link="module.jar#RemotableBear"
<propertyname="currency’>EUR<jroperty

</componer

. </composite

That alone would not change the component typbeatchive. However, if we additionally assume the
session beaAccountServicel mpl was given a mapped narsesvices/accounting/AccountService, the
component type of the EAR archive would expose serwices AccountReporting,
services_accounting_AccountService AccountService.

The logical include to the application compositestoucted following the algorithm above is this:

| <servicename="services_accounting_AccountService_AccountSetvice
promotes"[some name]/AccountServicé*

1003

1004

1005

1006
1007

1008

1009

<componenhame="[some name}
. <implementation.ejejb-link="module.jar#AccountServicelmpi*
\ </componer

Java EE Integration Specification 1.00 36 May 2008

SCA Service Component Architecture

1010 ' <componentTypa&mins="http://www.osoa.org/xmins/sca/1®"

1011 <servicename="AccountReporting>

1012 | <binding.wg>

1013 </service>

1014 |

1015 <servicename="services_accounting_AccountService_AccountSeniice"

1016 : </componentType .
1017

1018 Or, graphically:

a non-Java EE
contribution

application.ear

module.jar

RemotableBean AccountServicelmpl

accounting_application

binding.ws

some other composite

/

Two services, one from the application
composite, one from the AccountServicelmpl
bean

A component using
<implementation.jee archive="application.ear*/>

1019

1020 The same result can be achieved by declaringhtthedeDefaults attribute on a component declaration
1021 that uses thAccountServicel mpl session bean as implementation:

1022 : <?ml versior="1.0" encoding"UTF-8"?>

1023 | <compositename="accounting_application"

1024 targetNamespaeéhttp://www.sample.org"
1025 xmins="http://www.osoa.org/xmins/sca/1.0"

Java EE Integration Specification 1.00 37 May 2008

SCA Service Component Architecture

1026 xmins:scajeg"http://www.osoa.org/xmlins/sca/1.0/jee"

1027 >

1028

1029 <servicename="AccountReporting"

1030 promote="beancomponent/AccountServiceRemote"

1031 <binding.w¢>

1032 ! </service

1033 |

1034 <componennhame-"beancomponent'

1035 <implementation.ejejb-link="module.jar#¥RemotableBear®
1036 <propertyname="currency>EUR<fproperty

1037 </componer#

1038

1039 | <componennhame"accounting'jee:includeDefaults’true”>

1040 <implementation.ejejb-link="module.jar#AccountServicelmgt
1041 </componer

1042 | </composite .
1043

Java EE Integration Specification 1.00 38 May 2008

SCA Service Component Architecture

1044 8 References

1045
1046

1047
1048

1049
1050

1051
1052

1053
1054

1055
1056

1057
1058

1059
1060

1061
1062

1063
1064

1065
1066

[1]
2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]

[11]

Java ™ Platform, Enterprise Edition Specificaticgrdion 5
http://jcp.org/en/jsr/detail?id=244, http://javanstom/javaee/5

SCA EJB Session Bean Binding V1.00
http://www.osoa.org/download/attachments/35/SCA_SeisionBeanBinding_V100.pdf

SCA Assembly Model V1.00
http://www.osoa.org/download/attachments/35/SCA eAdslyModel_V100.pdf

SCA Java Common Annotations and APIs V1.00
http://www.osoa.org/download/attachments/35/SCAadamotationsAndAPIs_V100.pdf

SCA Java Component Implementation V1.00
http://www.osoa.org/download/attachments/35/SCAaCamponentimplementation_V100.pdf

SCA Policy Framework V1.00
http://www.osoa.org/download/attachments/35/SCAidyoFramework _V100.pdf

Java Servlet Specification Version 2.5
http://jcp.org/aboutJava/communityprocess/mrelfgdfindex.html

Enterprise JavaBeans 3.0

http://jcp.org/en/jsr/detail?id=220

SCA JMS Binding V1.00
http://www.osoa.org/download/attachments/35/SCA_BM8ing_V100.pdf

SCA Transaction Policy Draft V1.00
http://www.osoa.org/download/attachments/35/SCAnsaationPolicy V1.0.pdf

Norm Walsh. XML Catalogs 1.1. OASIS Committee Speation, OASIS, July 2005.
http://www.oasis-open.org/committees/download.papatl/xml-catalogs.html

Java EE Integration Specification 1.00 39 May 2008

1067

1068

1069
1070
1071

1072
1073
1074
1075
1076
1077

1078
1079
1080
1081
1082

1083
1084
1085

1086
1087

1088

1096
1097
1098
1099

1100
1101
1102
1103
1104
1105

1106

SCA Service Component Architecture

9 Appendix A — use cases

9.1 Technology Integration

SCA can be used as the scale-out model for Javappglcations, allowing Java EE components to use,
be used by, and share a common deployment lifegyithecomponents implemented in other
technologies, for instance, BPEL.

As an example, imagine a sample shop in which taphyc Ul is implemented as a servlet or a JSF, the
persistence logic is implemented in JPA and exposety session beans, but the order process is
implemented in BPEL. Using standard technologdles JavaEE components would have to access the
BPEL process over its exposed web services. Cealglin order for the implemented persistenceclogi
to be used from the BPEL process, the session beasisbe exposed as web services, typically using
JAX-WS.

There are several drawbacks to this approach. €xunally, the BPEL process is part of the applarati
however, in the standard deployment described altbeeBPEL process is deployed separately from the
Java EE application; they do not share life cyeclanfyastructure. The use of WebServices as wire
protocol imposes other drawbacks. Transaction gemant and enforcing security policies become
much more difficult, and the overhead associatdt sgrvice invocations increases.

To make the example a bit more concrete, let ugimegthat the application’s web front-end,
implemented as a servlet, will invoke the BPEL s The BPEL process will, in turn, invoke a
session bean called “OrderService”, which usest#enology to persiste the order information.

The first step might be to prepare the servlet &karthe cross technology call. This is done sinbgly
adding a field with the appropriate business isigef and annotating it with an @Reference tag.

i public class ControllerServlet extends HttpServlet implements Servlet {
1089
1090
1091
1092
1093
1094 .
1095 |

@Reference protected IOrderProcess orderProcess;

protected void service(HttpServletRequest request,
HttpServietResponse response) throws Exception {

orderProcess.placeOrder(orderData);

Such a snippet should be familiar to anyone whousas the EJB client model. The main difference
between the @EJB and the @Reference annotatibati€aEJB tells the user which technology is being
used to implement the service, whereas @Refereases this undetermined.

The next step in creating a cross technology agipdic in SCA is to create the assembly file thaikso
together our components, and links each to an imgi¢ation. In this case, there are three SCA
components: the web front-end, the BPEL comporaerd,the EJB that offers the persistence service.
Note that there may be many more EJBs and web coemp® in our Java EE application, we do not need
to represent them all as SCA components. Onlyetdasa EE components that will be wired to or from,
or otherwise configured from SCA, need to be regme=d in the SCA assembly.

The following figure shows how the components areked together.

Java EE Integration Specification 1.00 40 May 2008

SCA Service Component Architecture

i —— O 5y —=g st |

Application composite

1107
1108 The composite file looks like this:

1109 | <sca:component name="OrderService">

1110 | <scaimplementation.ejb ejb-link="shop.ejb.jar# OrderService"/>
1111 | <sca:service name="lOrderService">

1112 <sca:interface.java

1113 interface="sample.shop.services.lOrderSe rvice"/>

1114 : </sca:service>

1115 | </sca:component>

1116 ' <sca:component name="shop.ui>

1117 : <sca:implementation.web web-uri="shop.web.war"/ >

1118 : <sca:reference name="orderProcess" target="Orde rProcess"/>
1119 | </sca:component>

1120 ' <sca:component name="OrderProcess">

1121 | <sca:implementation.bpel process="shop.bpel" ve rsion="2.0"/>

1122 <sca:reference name="orderServicePL" target="0Or derService">

1123 | <sca:service name="OrderProcessRole"/>

1124 | </sca:component>
1125

1126 There are several ways in which such a cross-téagyp@application could be deployed. If we consider
1127 the BPEL process to be part of the applicationceptually on the same level as the application areb
1128 EJB components, then it makes sense to deployrtiss technology application as &3A-enhanced
1129 Java EE archive, that is, the SCA and BPEL artifacts are packed iné EAR file. The following figure
1130 depicts the contents of this the enhanced archive.

application.ear

shop.ejb.jar
shop.web.war shop.bpel
Shoppingcartservic
2]
OrderService CatalogServic

application composite

1131

Java EE Integration Specification 1.00 41 May 2008

1132
1133

1134

1135

1136
1137
1138
1139
1140
1141
1142

1143
1144
1145
1146

1147
1148
1149
1150
1151

1152
1153

1154
1155
1156

1159
1160

1161

1162
1163
1164

1165
1166

1168

1171

SCA Service Component Architecture

The advantage of deploying an SCA-enhanced Javar&tve is that we can leverage the tooling,
monitoring and application lifecycle managementatality already present on the Java EE server.

9.2 Extensibility for Java EE Applications

SCA\ Java EE can be used for the following probleencompany (let's call it ACME) wishes to prawid
a Java EE application to its customer so that tis¢otner can integrate this application into its own
environment. Ideally the application should havesgredefined "extension points" which would allow
the customer to hook its own implementations okierdefault one. For example the customer may wish
to override some specific logic provided by the pamy acme in an EJB and instead introduce its own
existing functionality written in some proprietargn-Java programming model or via some of the
predefined SCA possibilities (another EJB, JMS, dEi etc.)

Here it is assumed, that the company ACME will pfete explicitly some extension points, another
possible use case that optionally some SCA runtmmegg support is to allow each remote ejb refereace
be reconfigured , please see section - 7.1The Component Type of a non-SCA-enhanced Java EE
Application) for more information.

The exposure of the extension point by the ACME gany can be done in several way - fine grained
approach using implementation.ejb as in sectioroblising implementation.jee as in section 7, by
explicit usage of componentType side files or bgasing extension points via the @Reference
annotation, via usage of application.composite withudeDefaults or via usage of other composite
definitions.

Here it is demonstrated just one such approach :
The EJB from ACME would look like

! package com.acme.extensibility.sample;

- import javax.ejb.Stateless;

. import org.osoa.sca.annotations.Reference;
1157

1158

. @Stateless(name=" ACMEBean ")

. public class BaseBean implements BaselLocal {

A default value for the fields would be the EJBda$ined by the Java EE specs, however by usage of
@Reference, it is indicated that it is possibleusang SCA to override that and inject a proxy tépaf
transferring the request according to the SCA rules

. private @Reference @EJB com.acme.extensibilityiSitaminterface
. extensionPoint;

1167 |

' public void businessLogic() {

1169
1170 |

extensionPoint.doSomething();

Java EE Integration Specification 1.00 42 May 2008

1172
1173

1174

1175
1176

1179
1180

1181

1182
1183

1194
1195

1196
1197
1198

1199
1200

1212

SCA Service Component Architecture

In order to contribute to the SCA domain and exgbseaeference, the ACME company has put the
following two artifacts in the META-INF directoryfdhe EAR :

1 <?xml version="1.0" encoding="UTF-8"?>

- <contribution xmins="http://www.osoa.org/xmins/st&"
1177
1178 |
. </contribution>

xmins:acme="http://www.acme.com.org">
<deployable composite="acme:AcmeContpbEime"/>

1 <?xml version="1.0" encoding="UTF-8"?>

. <composite name="AcmeCompositeName"
1184
1185
1186 !
1187
1188
1189 !
1190 !
1191
1192
1193 |
. </composite>

targetNamespace="http://www.acme.com"
xmins:acme="http://www.acme.com.org"
xmins="http://www.osoa.org/xmins/scal’s.

<component name="ACME_component ">
<implementation.ejb ejbki'fACMEJAR .jar#ACMEBean "/>
<reference name="extensmn>
<interface.java inteda"com.acme.extensibility.Extensioninterface"/>
</reference>
</component>

After exposing the extension point in such way dalivering the EAR to the customer, the customer ca
wire to it via SCA to its own non-Java technology xThe following contribution to the domain
demonstrates how this can be done...

 <?xml version="1.0" encoding="UTF-8"?>
- <composite name="CompositeName"

1201
1202
1203
1204
1205 |
1206
1207 |
1208
1209
1210
1211

targetNamespace="http://www.org.customer.foo"
xmins:customer="http://www.org.customer.foo"
xmins="http://www.osoa.org/xmlns/sca/1.0">

<component name="CustomerCode">
<implementation.xyz attribute="someDataForX{yz"
<service name="ExtensionTarget">
<interface.java interface="com.acme.extetigjtExtensioninterface"/>
</service>
</component>
<wire source="ACME_component/extensionPoint" ¢égxgCustomerCode/ExtensionTarget"/>

- </composite>

Java EE Integration Specification 1.00 43 May 2008

1213

1214
1215
1216
1217
1218
1219

1220

SCA Service Component Architecture

10 Appendix B — Support for SCA Annotations

The following table provides information whether/A&nnotations are supported in EJB classes or
session bean interfaces. Some of the annotatefirsed in [4] are redundant to Java EE annotatamts
concepts. These are labelled as "May be suppoitad'expected for SCA runtimes supporting these
annotations to detect impossible combinations\iwdéte the Java EE specifcations and reject such
deployments. Other annotations are labeled as tmeasupported” because they represent optional

features.

AllowsPassByReference

May be supported

This imtatd the runtime,
which can be disregarded

Callback Must be supported

ComponentName Must be supported

Constructor NOT supported There are no constrsigioEJB
Context Must be supported

Conversational Must be supported Each interfastatefull EJB is

treated as it has
@Conversational, so the
annotation is redundant. In case€
of stateless EJB-s the stateless
semantics still remains, please
see the comment for
conversationID

ConversationAttributes

May be supported

Providirays to control the
expiration of statefull EJBs by
maxAge, maxldleTime

ConversationlID

Must be supported for stateful
May be supported for stateless

If there is @Conversational on
the interface of stateless bean,
conversationID will be generate
by the runtime and may be
inserted, the stateless semantic
will still be in effect

Destroy

May be supported

Equivalent to @PreDestroy
EJB

Java EE Integration Specification 1.00 44

May 2008

he

1221

SCA Service Component Architecture

Eagerlnit

NOT supported

There is no composite sciip
has no meaning

EndsConversation

May be supported

Methods thaharked
@Remove should be treated as
the corresponding interface
method is marked
@EndsConversation.

Interface methods marked
@EndsConversation MUST hav
corresponding implementation
methods marked @Remove.

Init

May be supported

Equivalent to @postConstimict
EJB

Authentication , Confidentiality,
Integrity , Itent, PolicySets,
Requires

Must be supported on fields
already annotated with
@reference

May be supported on class,
session bean interface or on fie
annotated with @EJB

Intent, Qualifier

NOT supported

Not relevant, nematations
cannot be defined via EJB

OneWay Must be supported on fields | There are async call in EJB 3.1
already annotated with
@reference
Must be supported as an
annotation on interface methods.
Must not be supported on class
session bean interface or on field
annotated with @EJB
Property Must be supported
Reference Must be supported
Remotable May be supported Redundant to @Remote.
Scope May be supported @ Stateless and @ Stateful a
mappings of stateless, and
conversational scopes.
Service May be supported

Java EE Integration Specification 1.00

45

May 2008

f

e

1222

1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276

SCA Service Component Architecture

11 Appendix C — schemas

<?xml version ="1.0" encoding ="UTF-8" ?>
<xs:schema xmins ="http://www.osoa.org/xmlns/sca/1.0"
xmins:xs ="http://www.w3.0rg/2001/XMLSchema"
targetNamespace ="http://www.osoa.org/xmlns/sca/1.0"

elementFormDefault ="qualified" >
<xs:include schemalocation ="sca-core.xsd" />
<xs:element name="implementation.ejb" type ="EJBImplementation”
substitutionGroup ="implementation" />
<xs:complexType name="EJBImplementation" >
<xs:.complexContent >
<xs:.extension base ="Implementation” >
<xs:sequence >
<xs:any namespace ="##other" processContents ="lax"

minOccurs ="0" maxOccurs ="unbounded" />
</ xs:sequence >
<xs:attribute name="ejb-link" type ="xs:string"
use ="required" />
<xs:anyAttribute namespace ="##any" processContents ="lax"
</ xs:extension >
</ xs:complexContent >
</ xs:complexType >
<xs:element name="implementation.web" type ="Weblmplementation"
substitutionGroup ="implementation" />
<xs:complexType name="Weblmplementation" >
<xs:.complexContent >

<xs:.extension base ="Implementation” >
<xs:sequence >
<xs:any namespace ="##other" processContents ="lax"

minOccurs ="0" maxOccurs ="unbounded" />
</ xs:sequence >
<xs:attribute name="web-uri" type ="xs:string"
use ="required" />
<xs:anyAttribute namespace ="##any" processContents ="lax"
</ xs:extension >
</ xs:complexContent >
</ xs:complexType >

<xs:element name="implementation.jee" type ="JEEImplementation"
substitutionGroup ="implementation" />
<xs:complexType name="JEEImplementation" >
<xs:.complexContent >
<xs:.extension base ="Implementation” >
<xs:sequence >
<xs:any namespace ="##other" processContents ="lax"

minOccurs ="0" maxOccurs ="unbounded" />
</ xs:sequence >
<xs:attribute name="archive" type ="xs:string"
use ="required" />
<xs:anyAttribute namespace ="##any" processContents ="lax"
</ xs:extension >
</ xs:.complexContent >
</ xs:complexType >
</ xs:schema >

Java EE Integration Specification 1.00 46 May 2008

/>

/>

/>

