
Service Component Architecture
Java CAA Specification Version 1.1

SCA-J Issue-127:
Long-Running
Request/Response Operations
Proposal

Long-Running Request-Response Operations

 Assembly-33 issue resolution
 Definition of "long-running"
 New intent "asyncInvocation"
 SCA scenarios

 Reference – JAX-WS 2.0
 Asynchronous operation mapping for client API

Definition (Long-Running)

 WSDL 1.1 request-response operation is
considered long-running if implementation
does not guarantee delivery of response
within any given time interval

 Clients invoking such request-response
operations are strongly discouraged from
making assumptions about when the
response can be expected
 i.e. don't do a synchronous wait

SCA "Long Running" Service Interaction

Client
Component

AccountData

Service

Component

Service
Provider

Component

Reference Service

1. Client Component 2. Service Component

3. Binding & Transport

Request message

Response message

Elements of Issue 127 Proposal

 Java CAA spec is concerned with:
 Client Component model
 Service Component model

 Not concerned with:
 Binding & Transport
 "asyncInvocation" intent drives this
 concern of binding implementation

Outline of this Proposal

 Client model
 use the JAX-WS async client interface

 unmodified

 Service interface
 a new async service interface
 this is new - not part of JAX-WS

Long-Running: Client component model

 Client uses JAX-WS async interface for
the reference:

// asynchronous mapping
public interface StockQuote {
 float getPrice(String ticker);
 Response<Float> getPriceAsync(String ticker);
 Future<?> getPriceAsync(String ticker, AsyncHandler<Float>);
}

// synchronous mapping
public interface StockQuote {
 float getPrice(String ticker);
}

Use either "Async" method when invoking service interface
marked with "asyncInvocation"

Client component model: comments

 Same client model for synchronous &
for long running services

 Client is "encouraged" to use
polling/callback operations for service
interface with "asyncInvocation" intent

 Binding layer takes care of asynchrony
 based on "asyncInvocation" intent in i/f

Long running: Service component model

 Service uses async method with
response handled by ResponseDispatch

// asynchronous mapping
@Requires("sca:asyncInvocation")
public interface StockQuote {
 void getPriceAsync(String ticker, ResponseDispatch<Float>);
}

// synchronous mapping
public interface StockQuote {
 float getPrice(String ticker);
}

Service component model: comment

 Use explicit async form of interface
 marked with "asyncInvocation"

 Invocation passes in ResponseDispatch
 generated by runtime/binding layer
 MUST be serializable
 used to send response message
 carries full metadata about client

Service component model: comment (2)

 service implementation may call
ResponseDispatch before or after
returning from original service method
invocation
 can only call it once

Service component model:
ResponseDispatch

 Parameterized by Response Bean to
hold response message
 also deals with exception responses

public interface ResponseDispatch<T> {
 void sendResponse(T res);
 void sendFault(Throwable e);
 Map<String, Object> getContext();
}

Long running: Bindings

 2 bindings - client side, service side
 React to "asyncInvocation" intent
 Client side:

 set up separate response message path
 return to client / send request message

 Service side:
 introspect service interface for async method
 set up response message path
 pass ResponseDispatch on service invocation
 invoke response path from ResponseDispatch

Example – WSDL Interface

 WSDL 1.1 port type with request-response operation
(nothing specific here)

<portType name="TravelAgencyInterface">
 <operation name="makeReservations">
 <input message="ta:reservationRequest"/>
 <output message="ta:reservationResponse"/>
 <fault name="noFlight" message="ta:noFlightFault"/>
 <fault name="noHotel" message="ta:noHotelFault"/>
 </operation>
</portType>

 SCA service with intent (for the service or for an operation)

<service name="TravelAgency" requires="sca:asyncInvocation">
 <interface.wsdl portType=“ta:TravelAgencyInterface"/>
<service/>

Generated Server and Client Interfaces

 Interface used by client

@Remotable
public interface TravelAgencyInterface {
 public ReservationResponse makeReservations(ReservationRequest req);
 public Response<ReservationResponse> makeReservationsAsync(ReservationRequest req);
 public Future<?> makeReservationsAsync(ReservationRequest req,
 AsyncHandler<ReservationResponse>);
}

 Callback interface provided by client

@Remotable
public interface MakeReservationsCallbackInterface
 extends AsyncHandler<ReservationResponse> {
 public void handleResponse(Response<ReservationResponse> response);
}

 Interface used by Service

@Remotable
@AsyncInvocation
public interface TravelAgencyInterface {
 public void makeReservationsAsync(ReservationRequest req,
 ResponseDispatch<ReservationResponse>);
}

Async Client Implementation

 Handwritten client with callback

public class Traveler implements AsyncHandler<ReservationResponse> {

 @Reference
 public TravelAgencyInterface travelAgency;
 private boolean finished = false;

 public void arrangeTrip() {

 ReservationRequest req = new ReservationRequest();
 ...
 travelAgency.makeReservations(req, this);
 }
 public void handleResponse(Response<ReservationResponse> response) {
 try {
 ReservationResponse resp = response.get(); ...
 }
 catch (ServiceBusinessException sbe) {
 Exception e = sbe.getFaultInfo();
 ...
 }
 catch (ServiceRuntimeException sre) { ... }
 finally {
 finished = true;
 }
 }

 public boolean isFinished() { return finished; }
}

Async Service Implementation (1/2)

 Handwritten service

public class TravelAgency implements TravelAgencyInterface {
 private boolean ok = true;
 private boolean noFlightAvailable = false;
 private boolean noHotelAvailable = false;
 // First step of long-running implementation (invoked with callback)
 public void makeReservationsAsync(ReservationRequest req,
 ResponseDispatch<ReservationResponse> dispatch) {
 // Persist callback reference
 cbKey = db.store(dispatch);
 // Do something and trigger next steps of long-running implementation
 // ...typically the Key would be something like an order ID or transaction ID
 // used in the later steps of the process
 ...
 return;
 }

 // Subsequent steps of long-running implementation ...
 // Reserve flight, reserve hotel, prepare confirmation ...
 // Perform retry and compensation logic ...
 // Perform manual intervention if required ...
 // ...

 (... continued on next page ...)

Async Service Implementation (2/2)

 Handwritten service
 (... continuation from previous page ...)

 // Last step of long-running implementation (eg kicked off by response to async request)
 private void sendResponseToRequester() {
 // Retrieve callback reference from DB
 ResponseDispatch<ReservationResponse> dispatch = db.retrieve(cbKey);
 ReservationReponse response = new ReservationsResponse();

 if (ok){
 ConfirmationData cd = new ConfirmationData();
 response.setConfirmation(cd) ;
 dispatch.sendResponse(response);
 }
 else if (noFlightAvailable){
 NoFlightFault no_flight_fault = new NoFlightFault();
 ServiceBusinessException sbe = new ServiceBusinessException(no_flight_fault);
 dispatch.sendFault(sbe);
 }
 else if (noHotelAvailable){
 NoHotelFault no_hotel_fault = new NoHotelFault();
 ServiceBusinessException sbe = new ServiceBusinessException(no_hotel_fault);
 dispatch.sendFault(sbe);
 }
 else {
 Exception internal_error = null;
 ServiceRuntimeException sre = new ServiceRuntimeException(internal_error);
 dispatch.sendFault(sre);
 }

 return;
 }
} // end class TravelAgency

JAX-WS 2.0 – Background

 Asynchronous operation mapping
 javax.xml.ws.AsyncHandler

 A generic interface that clients implement to
receive results in an asynchronous callback

 javax.xml.ws.Response
 A generic interface that is used to group the

results of a method invocation with the
response context

 Response provides asynchronous result
polling capabilities

	Service Component Architecture Assembly Model Specification Version 1.1
	Long-Running Request-Response Operations
	Definition (Long-Running)
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Example – WSDL 1.1 Interface
	Generated Server and Client Interfaces
	Async Client Implementation (1/2)
	Async Service Implementation (1/2)
	Async Service Implementation (2/2)
	Slide 19
	JAX-WS 2.0 – Background

