The following is a description of how the virtual, logical infoset would

be constructed for a domain. If we can agree on this, then we can

specify how External Policy Attachment works over this infoset.

1. The root of the infoset is a composite element that stands in for the

domain. This composite can have all the attributes of a normal

composite. The values of the attributes are domain-specific and

implementation dependent.

(Detail: The constraintingType attribute should not be set)

2. The children of this domain-composite are all the domain-level

components within the domain. Note that this loses the contribution

where the components come from. To remedy this we add a new attribute:

installedFrom="contribution_uri/of/the/deployment/composite"

The infoset will also contain the result of deployment time processing.

Some detail below:

- The results of autowire processing and explicit <wire> elements will

both be represented in the infoset as explicit values for the

appropriate reference/@target attributes.

- Inherited required intents and policySets will be explicitly

represented on any element that inherits
 them.

- PolicySets that that are chosen by the policySet selection algorithm

will be represented as values of @policySet attributes.

- All components will have @uri
attributes (not just domain-level

components), which contain the URI of the component. The URI will

contain path elements from all of the composites
 that the component is

embedded under. This makes it possible to write XPath expressions that

target a single buried component.

* The following binding processing happens _/after/_ the bindings have

been moved, as described in (4), (5) and (6) below.

- Explicit binding.sca elements will be present rather than just implied.

- Bindings will all have @uri attributes, whose value is the absolute

URI that the runtime is using (or possibly multiple URI in the case of

references).

3. For each <implementation.composite> include all of the contents of

the named composite as child elements of <implementation.composite>.

This is done recursively.

This gets us all SCDL elements within the domain. There is, however, a

requirement to attach policies to interface elements such as "operation"

and "message". Since the interface is identified in the SCDL by a URI,

we can use the Document function in XPath to open the file and then

navigate down it starting from the root element. This is certainly

possible, but some find it awkward. It also doesn’t allow us to do

post-processing on the port-type, for things such as inserting policySet

attributes.

So, we propose an alternate method by which the interface elements are

included directly within the virtual, logical infoset. This requires a

bit of work.

4. Remove the <binding> elements from the infoset.

5. Include the contents of the interface file below the appropriate

<service> or <reference> elements. Note that the WSDL port type that is

included may need to be generated, based on whatever interface language

is actually used for the service or reference.

6. Reinstate the <binding> elements that were removed as child elements

of each <input>, <output> or <error> element of the interface.

The result of the above 3 steps may look like:

<service> or <reference>

 <portType name="StockQuotePortType">

 <operation name="GetLastTradePrice">

 <input message="tns:GetLastTradePriceInput">

 <binding ... />

 </input>

 <output message="tns:GetLastTradePriceOutput">

 <binding ... />

 </output>

 </operation>

 </portType>

</service> or </reference>

We will also have to change the @name attribute of the port type to be a

QName. In WSDL, it is assumed to be a local name for the targetNamespace

of the WSDL.

�Does this description ultimately end up in the assembly spec? You’re gonna need tools to work with this thing. That’s not good.

�This is true of any component, not just Domain components?

�Do you mean inherits or @constrains? I would have thought it would be the latter. Intents/policySets from componentTypes would be merged in also?

�I can’t remember where we are with service names. Should we spell them out also so that they can uniquely be addressed by an XPath?

�Is the composite name included in the path? I hope not.

�Do promoted services and references disappear? Is there a componentType notion in the infoset?

