Domain Infoset – take 3; March 26, 2008

The following is a description of how the virtual, logical infoset would be constructed for a domain. If we can agree on this, then we can

specify how External Policy Attachment can be specified by using XPath over this infoset.

1. The root of the infoset is a composite element that stands in for the domain. This composite may have all the attributes of a normal composite. The mechanism for setting the values of the attributes of the domain composite is implementation-defined. (Detail: The constrainingType attribute should not be set)

2. The children of this domain-composite are all the domain-level

components within the domain. Note that this loses the contribution

where the components come from. To remedy this we add a new attribute:

installedFrom="contribution_uri/of/the/deployment/composite"

The infoset will also contain the result of deployment time processing.

Some detail below:

- The results of autowire processing and explicit <wire> elements will both be represented in the infoset as explicit values for the appropriate reference/@target attributes
.

- Required intents and policySets inherited from ancestor elements and the component type will be explicitly

represented on any element that inherits them.

- PolicySets that that are chosen by the policySet selection algorithm will be represented as values of @policySet attributes.

- All components will have @uri
attributes (not just domain-level components), which contain the URI of the component. The URI will contain path elements from all of the composites
 that the component is embedded under. This makes it possible to write XPath expressions that target a single buried component.

- Explicit binding.sca elements will be present rather than just implied.

- Bindings will all have @uri attributes, whose value is the absolute URI that the runtime is using (or possibly multiple URI in the case of references).

3. For each <implementation.composite> include all of the contents of

the named composite as child elements of <implementation.composite>.

This is done recursively.

4. The <interface> element identifies a WSDL interface file or a Java class by name. In the SCDL, <interface> elements are siblings of <binding> elements. Thus, if you attach a policySet to a descendant of <interface>, say, an input or output message it applies to all <binding> elements that are siblings of the ancestor <interface> element.

This arrangement does not allow a policySet to be associated with an input or output message specific to a particular binding. To enable this usecase we copy the children of the portType element in WSDL 1.1, or the children of the <interface> element in WSDL 2.0 as children of all the sibling <binding> elements.

The result of the above, for a WSDL 1.1 interface may look like:

<service> or <reference>

 <binding ... >

 <operation name="GetLastTradePrice">

 <input message="tns:GetLastTradePriceInput">

 </input>

 <output message="tns:GetLastTradePriceOutput">

 </output>

 </operation>

 </binding>

 <binding ... >

 <operation name="GetLastTradePrice">

 <input message="tns:GetLastTradePriceInput">

 </input>

 <output message="tns:GetLastTradePriceOutput">

 </output>

 </operation

 </binding>

 <interface …/>

</service> or </reference>

We will also have to change the @name attribute of the port type to be a QName. In WSDL, it is assumed to be a local name for the targetNamespace of the WSDL.

Usecases:

The primary use of the infoset defined above is to use XPath on it to define attachment points for policySets. Other uses are also possible.

1. Apply a policySet to all occurrences of binding.ws. The XPath would be //binding.ws

2. Apply a policySet to all output messages of all services. The XPath would be //service//output

3. Apply a policySet to output messages named “xyz” where the binding is binding.ws.

//binding.ws//output[name=’xyz’]

4. Apply a policySet to a specific message regardless of binding

//output[name=’xyz’]

Note that this would apply the policySet at several places. That is, it would apply the policySet to all the occurrences of the message type, for all the bindings where it appears as a descendant

�I don't think this is a good idea – it does not handle the process of changes very well. Change has a very different impact depending on the way in which the wire was originally specifiec.

�I can’t remember where we are with service names. Should we spell them out also so that they can uniquely be addressed by an XPath?

�Is the composite name included in the path? I hope not.

�How does having the URI help with the XPath expression – surely I can write the XPath without the URI?

�Do promoted services and references disappear? Is there a componentType notion in the infoset?

