Issue 15 – Wording proposal
This proposal consists of two sections.  A new section introduces External policy attachment -- an XML element to specify External Policy Attachment and a special file to contain these XML elements.and a revised section 4.10 on how to determine the policies based on the given intents.  A subsection of the first section introduces a processed SCDL infoset that is used in the XPath to specify the location of the externally attached intents, policies and policySets.   This proposal builds upon the proposal to resolve Issue 38 that was approved earlier and may be modified by the resolution to issue 55 and 52.

New Section: External Policy Attachment

In situations where it may not be possible or desirable to modify the original SCDL, the XML element called ExternalPolicyAttachment specifies policy information associated with SCDL files within a contribution.  The XML file called ExternalPolicyAttachment.xml can contain one of more instances of this top-level element whose pseudo-schema is shown below:

The name of the file is included in the contribution.
<sca:ExternalPolicyAttachment scdlFile=”xsd:QName”>

        <sca:PolicyAttachment …/> +

</sca:ExternalPolicyAttachment>
The scdlFile attribute takes as its value a xsd:QName with some special syntactic conventions described below.

· QName – identifies a specific SCDL file

· Prefix:* -- identifies all SCDL files within the namespace associated with the prefix.

· *:* identifies all SCDL files within the contribution

The ExternalPolicyAttachment element contains one or more PolicyAttachment elements as children.  The PolicyAttachment element supports external attachment of intents, policies and policySets to SCDL elements as illustrated below.

(The PolicyAttachment element follows the model of the PolicyAttachment element defined in WS-Policy[ref].)
<sca:PolicyAttachment … >

     <sca:PolicySubject>

            <x:DomainExpression/> +  // XPath identifying one or more SCDL elements

     </sca:PolicySubject>

     <sca:requires>  List of Intent Names </sca:requires> *

     <sca:policySet>  QName </sca:policySet> *

     <wsp:Policy>  … </wsp:Policy>

     <wsp:PolicyReference/> URI </wsp:PolicyReference>

   …

</sca:PolicyAttachment>

The proposed PolicyAttachment element has a child element called PolicySubject.  This contains as its value a domain expression identifying one or more elements in a SCDL file.  The domain expression is, typically, an XPath over the processed SCDL infoset as described below but it can also take other forms to accommodate other kinds of interface description.

Following the PolicySubject element can appear one or more of the following elements in any order:

· <requires> which  takes a list of intent names as its value

· policySet: a QName identifying a policySet.

· wsp:Policy: a policy as defined by WS-Policy

· wsp:PolicyReference: a URI referring to a WS-Policy

The intents, policySets or Policies specified in these elements apply to the SCDL elements identified by the XPath.
New Subsection:  Processing the Infoset

As discussed above, intents, policies and policySets can be attached to SCDL elements using domain expressions.  Typically, these domain expressions are XPath expressions over a processed SCDL infoset that makes a few changes to the raw SCDL infoset to facilitate certain operations.  The construction of the processed, infoset along with some examples of its use are described below. 

1. The root of the infoset is a composite element that stands in for the domain.  This composite may have all the attributes of a normal composite.  The mechanism for setting the values of the attributes of the domain composite is implementation-defined.  (Detail: The constrainingType attribute should not be set)

2. The children of this domain-composite are all the domain-level 

components within the domain. Note that this loses the contribution 

where the components come from. To remedy this we add a new attribute: 

installedFrom="contribution_uri/of/the/deployment/composite"

The infoset will also contain the result of deployment time processing. 

Some detail below:

- The results of autowire processing and explicit <wire> elements will both be represented in the infoset as explicit values for the appropriate reference/@target attributes.  @autowire=’true’ will be placed on each reference to which it applies.  This is in addition to the target information.

-.

- 

- All components will have an @uri attribute which contains the URI of the component. The URI attribute reflects a particular use of the component - a component within a composite is potentially present multiple times in the Domain, where its composite is used as an implementation by more than one higher-level component. The URI is constructed by recursively concatenating the component URI of each component in the implementation hierarchy above it. (For example “ …grandparentURI/parentURI/myURI”  See section 9.2 of the SCA Assembly spec.) This makes it possible to write XPath expressions that target a single instance of a nested component.
NOTE:  There is an open issue in the Assembly TC having to do with the construction of URIs for components and bindings.  The resolution of this issue may affect the above.  The feeling in the TC was that it probably will not and we should proceed with the above.

- Explicit binding.sca elements will be present rather than just implied.

- Bindings will all have @uri attributes, whose value is the absolute URI that the runtime is using (or possibly multiple URI in the case of references).
3. For each <implementation.composite> include all of the contents of 

the named composite as child elements of <implementation.composite>. 

This is done recursively. 
See detailed usecases below.

4. The <interface> element identifies a WSDL interface file or a Java class by name.  In the SCDL, <interface> elements are siblings of <binding> elements.  Thus, if you attach a policySet to a descendant of <interface>, say, an input or output message it applies to all <binding> elements that are siblings of the ancestor <interface> element.

This arrangement does not allow a policySet to be associated with an input or output message specific to a particular binding.  To enable this usecase we copy the children of the portType element in WSDL 1.1, or the children of the <interface> element in WSDL 2.0 as children of all the sibling <binding> elements.

See detailed usecases below.

We will also have to change the @name attribute of the portType to be a QName. In WSDL, it is assumed to be a local name for the argetNamespace of the WSDL.

Usecases to Select Embedded Components:

<!-- Original SCDL -->

<?xml version="1.0" encoding="ASCII">   

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" 

targetNamespace="http:foo.com"

      name="MyComposite">


<!-- First use of a composite -->

      <component name="test1" >

            <implementation.composite name="AnotherComposite" />

      </component>


<!-- Second use of a composite -->

      <component name="test2" >

<implementation.composite name="AnotherComposite" />

      </component>


<!—Regular "top level" component -->

      <component name="test4" >

<implementation.java class="com.foo.AServiceImpl" />

<service name="AService" requires="x">


<binding.ws/>

</service>

<reference name="BService">

<binding.jms requires="y"/>



</reference>

      </component>

</composite>

<composite  name="AnotherComposite”>

      <component name="test3">

            <implementation.java class="com.foo.Service1Impl"/>

            <service name="service1" requires="x y z">

            </service>

            <reference name="reference1" requires="j k l">

            </reference>

      </component>

</composite>
<!-- Processed SCDL: implementation inlined, @uri attributes added -->

<?xml version="1.0" encoding="ASCII"?>   

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" 

targetNamespace ="http:foo.com"

      name="VirtualTopLevelComposite” uri=”top-level”>

      <component name="test1" installedFrom=".." uri="top-level/test1">

            <implementation.composite>

<composite name="AnotherComposite" 


uri="top-level/test1" >

<component name="test3" uri="top-level/test1/test3">

            

<service name="service1" requires="x y z">

            

</service>

            

<reference name="reference1" requires="j k l">

            

</reference>

      

</component>

</composite>

            </implementation.composite>

      </component>

      <component name="test2" installedFrom=".." uri="top-level/test2">

            <implementation.composite>

<composite name="AnotherComposite" 


uri="top-level/test2" >

<component name="test3" uri="top-level/test2/test3">

            

<service name="service1" requires="x y z">

            

</service>

            

<reference name="reference1" requires="j k l">

            

</reference>

      

</component>

</composite>

            </implementation.composite>

      </component>

      <component name="test4" uri="top-level/test4">

<implementation.java class="com.foo.AServiceImpl" />

<service name="AService" requires="x">


<binding.ws/>

</service>

<reference name="BService">

<binding.jms requires="y"/>



</reference>

      </component>

</composite>

Usecases 

1. Apply a policySet to all instances of the component named ‘test3’.  The XPath would be: 

//component(@name="test3")

2. Select only one instance of the component named "test3"

//component(@uri="top-level/test1/test3")

This selects the component named "test3" as instantiated by the 

top-level component named "test1".

3. Select the services of the component with 

@uri ="top-level/test1/test3" that has a ‘y’ intent applied

//component(@uri="top-level/test1/test3”)/

service(contains(@requires, ‘y’))

4. Select the web services binding of all components with a service with a web services binding

//component/binding.ws

5. Select the web services binding of all top-level components with a service having a web services binding and the intent "x" applied to the service

/composite(@name="VirtualTopLevelComposite")/component/

service(contains(@requires, "x"))/binding.ws

ISSUE:  Should we use the WSDL 1.1 and WSDL 1.2 component identification URIs to identify the interface artifacts?

Usecases to Select Messages and/or Bindings:

<!-- Original SCDL -->

<service> or <reference>

  <binding ... >

  </binding>

  <binding ... >

  </binding>    

  <interface …/>  <!—assume WSDL 1.1 (
</service> or </reference>

The WSDL 1.1 definitions file contains:

<portType>

<operation name="GetLastTradePrice">

         <input message="tns:GetLastTradePriceInput">

         </input>

       <output message="tns:GetLastTradePriceOutput">

         </output>

</operation>

</portType>

<!-- Processed SCDL: children of WSDL 1.1 portType added as children to each binding-->
<service> or <reference>

  <binding ... >

       <operation name="GetLastTradePrice">

         <input message="tns:GetLastTradePriceInput">

         </input>

       <output message="tns:GetLastTradePriceOutput">

         </output>

      </operation>

  </binding>

  <binding ... >

       <operation name="GetLastTradePrice">

         <input message="tns:GetLastTradePriceInput">

         </input>

       <output message="tns:GetLastTradePriceOutput">

         </output>

      </operation

   </binding> 

   <interface …/>

</service> or </reference>

Usecases

1. Apply a policySet to all occurrences of binding.ws.  The XPath would be //binding.ws

2. Select all output messages of all services.  The XPath would be //service//output

3. Select output messages named “xyz” where the binding is binding.ws.

//binding.ws//output[name=’xyz’]

4. Select a specific message regardless of binding

//output[name=’xyz’]

Note that this would apply the policySet at several places.  That is, it would apply the policySet to all the occurrences of the message type, for all the bindings where it appears as a descendant

4.10 Guided Selection of PolicySets using Intents

This section describes the selection of concrete policies for an element. The purpose of the algorithm is to construct the set of concrete policies that apply to an element taking into account the  policySets that may be attached to an element, either directly or using the external attachment mechanism as well as the policySets available in the SCA Domain that are selected to match a required intent.

The algorithm works on the preprocessed SCDL infoset constructed as described above [Section reference].  After this, the externally attached intents, policies and policySets are calculated and the algorithm proceeds as described below.
Note: In the following algorithm, the following rule is observed whenever an intent set is computed.

When a profile intent is encountered in either a @requires or @provides attribute, it is assumed that the profile intent is immediately replaced by the intents that it is composed by, namely by all the intents that appear in the profile intent’s @requires attribute. This rule is applied recursively until profile intents do not appear in an intent set. [This is stated generally, in order to not have to restate this processing step at multiple places in the algorithm].

Algorithm for Matching Intents and PolicySets:

A. Calculate the required intent set that applies to the target element as follows:
[Ed Note: This assumes intents can be attached using External Attachment.  I would carefully restrict the intents that can be attached in this manner, perhaps only to intents that are used to configure bindings.]
1. Start with the list of intents specified in the element's @requires attribute.  Add to this list the intents attached externally to this element.
2. Add intents found in any related interface definition, attached either directly or externally..

3. Add intents found in the inherited @requires attributes of each ancestor element  in the element's structural hierarchy as defined in Rule 1 in Section 4.2.
4. Add intents found on elements below the target element in its implementation hierarchy as defined in Rule 2 in Section 4.2 
5. Add intents externally attached to the target element.

6. If the element is a binding instance and its parent element (service, reference or callback) is wired, the required intents of the other side of the wire may be added to the intent set when they are available. This may simplify, or eliminate, the policy matching step later described in step C.

7. Remove any intents that do not include the target element's type in their @constrains attribute.

8. If the set of intents includes both a qualified version of an intent and an unqualified version of the same intent, remove the unqualified version from the set.

9. Replace any remaining qualifiable intents with the default qualified form of that intent, according to the default qualifier in the definition of the intent.
10. If the list of intents contains a mutually exclusive pair of intents, raise an error.
* The required intent set now contains all intents that must be provided for the target element.

B. Remove all directly supported intents from the required intent set. Directly supported intents are:

· For a binding instance, the intents listed in the @alwaysProvides attribute of the binding type definition as well as the intents listed in the binding type’s @mayProvides attribute that are selected when the binding instance is configured.

· For a implementation instance, the intents listed in the @alwaysProvides attribute of the implementation type definition as well as the intents listed in the implementation type’s @mayProvides attribute that are selected when the implementation instance is configured.

* The remaining required intents must be provided by policySets.

C. Calculate the list of explicitly specified policySets that apply to the target element.

In this calculation, a policySet applies to a target element if the XPath expression contained in the policySet’s @appliesTo attribute is evaluated against the parent of the target element and the result of the XPath expression includes the target element. For example, @appliesTo=”binding.ws[@impl=’axis’]” will match any binding.ws element that has an @impl attribute value of ‘axis’.

A policySet also applies to a target element if it is associated with it using external policy attachment.

The list of explicitly specified policySets is calculated as follows:

1. Start with the list of policySets specified in the element's @policySets attribute or associated with it using external policy attachment.
2.If any of these explicitly listed policySets does not apply to the target element (binding or implementation) then the composite is invalid. The point of this rule is that it must have been a mistake to have explicitly listed a policySet on a binding or implementation element that cannot apply to that element.
3.Include the values of @policySets attributes from ancestor elements as well as policySets attached to ancestor elements using external policy attchment.

4. Remove any policySet where the XPath expression in that policySet’s @appliesTo attribute does not match the target element. It is not an error for an element to inherit a policySet from an ancestor element which doesn’t apply.
The remainder of the algorithm is unchanged
.

