
sca-policy-1.1-spec-WD-06 07-07-2008
Copyright © OASIS® 2005, 2008. All Rights Reserved. Page 1 of 74

SCA Policy Framework Version 1.1
Working Draft 07 + Issue 15 Proposal

08 September 2008
Specification URIs:
This Version:

http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd-01.html

http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd-01.doc

http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd-01.pdf

Previous Version:
N/A

Latest Version:
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.html

http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.doc

http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.pdf (Authoritative)

Technical Committee:
OASIS SCA Policy TC

Chair(s):
David Booz, IBM <booz@us.ibm.com>

Ashok Malhotra, Oracle <ashok.malhotra@oracle.com>

Editor(s):

David Booz, IBM <booz@us.ibm.com>

Michael J. Edwards, IBM <mike.edwards@uk.ibm.com>

Ashok Malhotra, Oracle <ashok.malhotra@oracle.com>

Michael Rowley, BEA <mrowley@bea.com>

Related work:
This specification replaces or supercedes:

• SCA Policy Framework

SCA Policy Framework SCA Version 1.00 March 07, 2007

This specification is related to:

• SCA Assembly Specification

sca-assembly-1.1-spec-WD-02.doc

 sca-assembly-1.1-spec-WD-02.pdf

Deleted: Committee

Deleted: 4

Deleted: 1

Deleted: 5

Deleted: 6

Deleted: 1528 Apri

Deleted: 7

Deleted: August

Deleted: July

Deleted: l0

Deleted: 2

Deleted:

Deleted: November

Deleted: 7

Deleted: Jeff T. Anderson,
Deloitte
<jeffanderson@deloitte.ca>

sca-policy-1.1-spec-WD-06 07-07-2008
Copyright © OASIS® 2005, 2008. All Rights Reserved. Page 2 of 74

Declared XML Namespace(s):
In this document, the namespace designated by the prefix “sca” is associated with the namespace URL
docs.oasis-open.org/ns/opencsa/sca/200712 . This is also the default namespace for this document.

Abstract:
TBD

Status:
This document was last revised or approved by the SCA Policy TC on the above date. The level
of approval is also listed above. Check the “Latest Version” or “Latest Approved Version” location
noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/sca-policy/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/sca-policy/ipr.php.

.

sca-policy-1.1-spec-WD-06 07-07-2008
Copyright © OASIS® 2005, 2008. All Rights Reserved. Page 3 of 74

Notices
Copyright © OASIS® 2007, 2008. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The names "OASIS"and “SCA-Policy” are trademarks of OASIS, the owner and developer of this
specification, and should be used only to refer to the organization and its official outputs. OASIS
welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce
its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above
guidance.

sca-policy-1.1-spec-WD-06 07-07-2008
Copyright © OASIS® 2005, 2008. All Rights Reserved. Page 4 of 74

Table of Contents

1 Introduction... 7
1.1 Terminology ... 7
1.2 XML Namespaces ... 7
1.3 Normative References ... 7

2 Overview... 9
2.1 Policies and PolicySets.. 9
2.2 Intents describe the requirements of Components, Services and References 9
2.3 Determining which policies apply to a particular wire.. 10

3 Framework Model... 12
3.1 Intents .. 12
3.2 Profile Intents ... 15
3.3 PolicySets .. 15

3.3.1 IntentMaps... 17
3.3.2 Direct Inclusion of Policies within PolicySets .. 19
3.3.3 Policy Set References ... 20

4 Attaching Intents and PolicySets to SCA Constructs ... 23
4.1 Attachment Rules - Intents .. 23
4.2 Attachment Rules - PolicySets .. 23
4.3 External Attachment of PolicySets Mechanism... 24

4.3.1 The Form of the @attachTo Attribute.. 25
4.3.2 Cases Where Multiple PolicySets are attached to a Single Artifact...................................... 26
4.3.3 XPath Functions for the @attachTo Attribute.. 26

4.3.3.1 Interface Related Functions ..27
4.3.3.2 Intent Based Functions ...27
4.3.3.3 URI Based Function..28

4.4 Usage of @requires attribute for specifying intents... 28
4.5 Usage of @requires and @policySet attributes together .. 30
4.6 Operation-Level Intents and PolicySets on Services & References.. 31
4.7 Operation-Level Intents and PolicySets on Bindings .. 31
4.8 Intents and PolicySets on Implementations and Component Types... 31
4.9 BindingTypes and Related Intents... 32
4.10 Treatment of Components with Internal Wiring ... 33

4.10.1 Determining Wire Validity and Configuration .. 34
4.11 Preparing Services and References for External Connection ... 35
4.12 Guided Selection of PolicySets using Intents .. 36

5 Implementation Policies ... 39
5.1 Natively Supported Intents... 40
5.2 Operation-Level Intents and PolicySets on Implementations.. 40
5.3 Writing PolicySets for Implementation Policies ... 41

5.3.1 Non WS-Policy Examples ... 41
6 Roles and Responsibilities ... 43

sca-policy-1.1-spec-WD-06 07-07-2008
Copyright © OASIS® 2005, 2008. All Rights Reserved. Page 5 of 74

6.1 Policy Administrator ... 43
6.2 Developer... 43
6.3 Assembler.. 43
6.4 Deployer... 44

7 Security Policy .. 45
7.1 SCA Security Intents.. 45
7.2 Interaction Security Policy ... 46

7.2.1 Qualifiers ... 46
7.2.2 Operation Level Intents ... 46
7.2.3 References to Concrete Policies ... 47

7.3 Implementation Security Policy.. 47
7.3.1 Authorization and Security Identity Policy ... 47
7.3.2 Implementation Policy Example .. 48
7.3.3 SCA Component Container Requirements ... 49
7.3.4 Security Identity Propagation .. 49
7.3.5 Security Identity Of Async Callback .. 49
7.3.6 Default Authorization Policy .. 50
7.3.7 Default RunAs Policy... 50

8 Reliability Policy.. 51
8.1 Policy Intents ... 51
8.2 End to end Reliable Messaging... 53
8.3 Intent definitions... 53

9 Miscellaneous Intents ... 55
10 Transactions ... 56

10.1 Out of Scope.. 56
10.2 Common Transaction Patterns .. 56
10.3 Summary of SCA transaction policies ... 57
10.4 Global and local transactions... 57

10.4.1 Global transactions ... 57
10.4.2 Local transactions ... 58

10.5 Transaction implementation policy .. 58
10.5.1 Managed and non-managed transactions .. 58
10.5.2 OneWay Invocations ... 59

10.6 Transaction interaction policies ... 61
10.6.1 Handling Inbound Transaction Context... 61
10.6.2 Handling Outbound Transaction Context.. 62
10.6.3 Web services binding for propagatesTransaction policy .. 64

10.7 Example ... 64
10.8 Intent Definitions .. 65

10.8.1 Intent.xml snippet .. 65
11 Conformance .. 68
A. Schemas... 69

A.1 XML Schemas ... 69
B. Acknowledgements .. 72
C. Non-Normative Text ... 73

sca-policy-1.1-spec-WD-06 07-07-2008
Copyright © OASIS® 2005, 2008. All Rights Reserved. Page 6 of 74

D. Revision History.. 74

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 7 of 74

1 Introduction 1

The capture and expression of non-functional requirements is an important aspect of service 2
definition and has an impact on SCA throughout the lifecycle of components and 3
compositions. SCA provides a framework to support specification of constraints, capabilities 4
and QoS expectations from component design through to concrete deployment. This 5
specification describes the framework and its usage. 6
 7
Specifically, this section describes the SCA policy association framework that allows policies 8
and policy subjects specified using WS-Policy [WS-Policy] and WS-PolicyAttachment [WS-9
PolicyAttach], as well as with other policy languages, to be associated with SCA 10
components. 11
 12
This document should be read in conjunction with the SCA Assembly Specification [SCA-13
Assembly]. Details of policies for specific policy domains can be found in sections 7, 8 and 9. 14

 15

1.1 Terminology 16

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD 17
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described 18
in [RFC2119]. 19

 20

1.2 XML Namespaces 21

Prefixes and Namespaces used in this Specification

Prefix XML Namespace Specification

sca

docs.oasis-open.org/ns/opencsa/sca/200712

This is assumed to be the default namespace in this
specification. xs:QNames that appear without a pre fix
are from the SCA namespace.

[SCA]

acme Some namespace; a generic prefix

wsp http://www.w3.org/2006/07/ws-policy [WS-Policy]

xs http://www.w3.org/2001/XMLSchema
[XML Schema
Datatypes]

 22

1.3 Normative References 23

 24

[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, 25
http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997. 26

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 8 of 74

[SCA] Service Component Architecture (SCA) 27
http://www.osoa.org/display/Main/Service+Component+Architecture+28
Specifications 29

[SCA-Assembly] Service Component Architecture Assembly Model Specification 30
http://www.osoa.org/display/Main/Service+Component+Architecture+31
Specifications 32

[SCA-Java-Annotations] 33
SCA Java Common Annotations and APIs 34
http://www.osoa.org/download/attachments/35/SCA_JavaAnnotationsAndAPIs_V35
100.pdf 36

 [WSDL] Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language 37
– Appendix http://www.w3.org/TR/2006/CR-wsdl20-20060327/ 38

[WS-AtomicTransaction] 39
Web Services Atomic Transaction (WS-AtomicTransaction) 40
http://docs.oasis-open.org/ws-tx/wsat/2006/06. 41

 42
[WSDL-Ids] SCA WSDL 1.1 Element Identifiers – forthcoming W3C Note 43

http://dev.w3.org/cvsweb/~checkout~/2006/ws/policy/wsdl11elementidentifiers.ht44
ml 45

[WS-Policy] Web Services Policy (WS-Policy) 46
http://www.w3.org/TR/ws-policy 47

[WS-PolicyAttach] Web Services Policy Attachment (WS-PolicyAttachment) 48
http://www.w3.org/TR/ws-policy-attachment 49

[XML-Schema2] XML Schema Part 2: Datatypes Second Edition XML Schema Part 2: Datatypes 50
Second Edition, Oct. 28 2004. 51
http://www.w3.org/TR/xmlschema-2/ 52
 53

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

Field Code Changed

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 9 of 74

2 Overview 54

2.1 Policies and PolicySets 55

The term Policy is used to describe some capability or constraint that can be applied to 56
service components or to the interactions between service components represented by 57
services and references. An example of a policy is that messages exchanged between a 58
service client and a service provider must be encrypted, so that the exchange is confidential 59
and cannot be read by someone who intercepts the messages. 60
 61
In SCA, services and references can have policies applied to them that affect the form of the 62
interaction that takes place at runtime. These are called interaction policies. 63
 64
Service components can also have other policies applied to them which affect how the 65
components themselves behave within their runtime container. These are called 66
implementation policies. 67
 68
How particular policies are provided varies depending on the type of runtime container for 69
implementation policies and on the binding type for interaction policies. Some policies may 70
be provided as an inherent part of the container or of the binding – for example a binding 71
using the https protocol will always provide encryption of the messages flowing between a 72
reference and a service. Other policies can optionally be provided by a container or by a 73
binding. It is also possible that some kinds of container or kinds of binding are incapable of 74
providing a particular policy at all. 75
 76
In SCA, policies are held in policySets, which may contain one or many policies, expressed 77
in some concrete form, such as WS-Policy assertions. Each policySet targets a specific 78
binding type or a specific implementation type. PolicySets are used to apply particular 79
policies to a component or to the binding of a service or reference, through configuration 80
information attached to a component or attached to a composite. 81
 82
For example, a service can have a policy applied that requires all interactions (messages) 83
with the service to be encrypted. A reference which is wired to that service needs to support 84
sending and receiving messages using the specified encryption technology if it is going to 85
use the service successfully. 86
 87
In summary, a service presents a set of interaction policies which it requires the references 88
to use. In turn, each reference has a set of policies which define how it is capable of 89
interacting with any service to which it is wired. An implementation or component can 90
describe its requirements through a set of attached implementation policies. 91
 92

2.2 Intents describe the requirements of Components, Services and 93

References 94

SCA intents are used to describe the abstract policy requirements of a component or the 95
requirements of interactions between components represented by services and references. 96
Intents provide a means for the developer and the assembler to state these requirements in 97
a high-level abstract form, independent of the detailed configuration of the runtime and 98
bindings, which involve the role of application deployer. Intents support the late binding of 99

Deleted: 21

Deleted: conversation

Deleted: may

Deleted: may

Deleted: be

Deleted: ¶
¶

Deleted: must

Deleted: be able

Deleted: is

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 10 of 74

services and references to particular SCA bindings, since they assist the deployer in 100
choosing appropriate bindings and concrete policies which satisfy the abstract requirements 101
expressed by the intents. 102
 103
It is possible in SCA to attach policies to a service, to a reference or to a component at any 104
time during the creation of an assembly, through the configuration of bindings and the 105
attachment of policy sets. Attachment may be done by the developer of a component at the 106
time when the component is written or it may be done later by the deployer at deployment 107
time. SCA recommends a late binding model where the bindings and the concrete policies 108
for a particular assembly are decided at deployment time. 109
 110
SCA favors the late binding approach since it promotes re-use of components. It allows the 111
use of components in new application contexts which may require the use of different 112
bindings and different concrete policies. Forcing early decisions on which bindings and 113
policies to use is likely to limit re-use and limit the ability to use a component in a new 114
context. 115
 116
For example, in the case of authentication, a service which requires its messages to be 117
authenticated can be marked with an intent "authentication". This intent marks the 118
service as requiring message authentication capability without being prescriptive about how 119
it is achieved. At deployment time, when the binding is chosen for the service (say SOAP 120
over HTTP), the deployer can apply suitable policies to the service which provide aspects of 121
WS-Security and which supply a group of one or more authentication technologies. 122
 123
In many ways, intents can be seen as restricting choices at deployment time. If a service is 124
marked with the confidentiality intent, then the deployer must use a binding and a 125
policySet that provides for the encryption of the messages. 126
 127
The set of intents available to developers and assemblers can be extended by policy 128
administrators. The SCA Policy Framework specification does define a set of intents which 129
address the infrastructure capabilities relating to security, transactions and reliable 130
messaging. 131
 132

2.3 Determining which policies apply to a particular wire 133

In order for a reference to connect to a particular service, the policies of the reference must 134
intersect with the policies of the service. 135
 136
Multiple policies may be attached to both services and to references. Where there are 137
multiple policies, they may be organized into policy domains, where each domain deals with 138
some particular aspect of the interaction. An example of a policy domain is confidentiality, 139
which covers the encryption of messages sent between a reference and a service. Each 140
policy domain may have one or more policy. Where multiple policies are present for a 141
particular domain, they represent alternative ways of meeting the requirements for that 142
domain. For example, in the case of message integrity, there could be a set of policies, 143
where each one deals with a particular security token to be used: e.g. X509, SAML, 144
Kerberos. Any one of the tokens may be used - they will all ensure that the overall goal of 145
message integrity is achieved. 146
 147
In order for a service to be accessed by a wide range of clients, it is good practice for the 148
service to support multiple alternative policies within a particular domain. So, if a service 149
requires message confidentiality, instead of insisting on one specific encryption technology, 150

Deleted: directly

Deleted: arbitrarily

Deleted: ¶

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 11 of 74

the service can have a policySet which has a host of alternative encryption technologies, 151
any of which are acceptable to the service. Equally, a reference can have a policySet 152
attached which defines the range of encryption technologies which it is capable of using. 153
Typically, the set of policies used for a given domain will reflect the capabilities of the 154
binding and of the runtime being used for the service and for the reference. 155
 156
When a service and a reference are wired together, the policies declared by the policySets 157
at each end of the wire are matched to each other. SCA does not define how policy 158
matching is done, but instead delegates this to the policy language (e.g. WS-Policy) used 159
for the binding. For example, where WS-Policy is used as the policy language, the matching 160
procedure looks at each domain in turn within the policy sets and looks for 1 or more 161
policies which are in common between the service and the reference. When only one match 162
is found, the matching policy is used. Where multiple matches are found, then the SCA 163
runtime can choose to use any one of the matching policies. No match implies that the wire 164
cannot be used - it is an error. 165

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 12 of 74

3 Framework Model 166

The SCA Policy Framework model is comprised of intents and policySets. Intents 167
represent abstract assertions and Policy Sets contain concrete policies that may be applied 168
to SCA bindings and implementations. The framework describes how intents are related to 169
PolicySets. It also describes how intents and policySets are utilized to express the 170
constraints that govern the behavior of SCA bindings and implementations. Both intents and 171
policySets may be used to specify QoS requirements on services and references. 172
 173
The following section describes the Framework Model and illustrates it using Interaction 174
Policies. Implementation Policies follow the same basic model and are discussed later in 175
section 1.5. 176
 177

3.1 Intents 178

As discussed earlier, an intent is an abstract assertion about a specific Quality of Service 179
(QoS) characteristic that is expressed independently of any particular implementation 180
technology. An intent is thus used to describe the desired runtime characteristics of an SCA 181
construct. Intents are typically defined by a policy administrator. See section [Policy 182
Administrator] for a more detailed description of SCA roles with respect to Policy concepts, 183
their definition and their use. The semantics of an intent may not always be available 184
normatively, but could be expressed with documentation that is available and accessible. 185
 186
For example, an intent named integrity may be specified to signify that communications 187
should be protected from possible tampering. This specific intent may be declared as a 188
requirement by some SCA artifacts, e.g. a reference. Note that this intent can be satisfied 189
by a variety of bindings and with many different ways of configuring those bindings. Thus, 190
the reference where the intent is expressed as a requirement could eventually be wired 191
using either a web service binding (SOAP over HTTP) or with an EJB binding that 192
communicates with an EJB via RMI/IIOP. 193
 194
Intents can be used to express requirements for interaction policies or implementation 195
policies. The integrity intent in the above example is used to express a requirement for 196
an interaction policy. Interaction policies are typically applied to a service or reference. 197
They are meant to govern the communication between a client and a service provider. 198
Intents may also be applied to SCA component implementations as requirements for 199
implementation policies. These intents specify the qualities of service that should be 200
provided by a container as it runs the component. An example of such an intent could be a 201
requirement that the component must run in a transaction. 202
 203
For convenience and conciseness, it is often desirable to declare a single, higher-level intent 204
to denote a requirement that could be satisfied by one of a number of lower-level intents. 205
For example, the confidentiality intent requires either message-level encryption or 206
transport-level encryption. 207
 208
Both of these are abstract intents because the representation of the configuration necessary 209
to realize these two kinds of encryption could vary from binding to binding, and each would 210
also require additional parameters for configuration. 211
 212

Formatted: English (U.S.)

Deleted: the

Deleted: always

Deleted:

Deleted: i.e.

Deleted: intents that are

Deleted: An intent is
defined using the following
pseudo-schema:¶

¶
<intent name="NCName"¶

constrains ="listOfQName
s"
requires ="listOfQNames"
? >¶
<description >¶
<!-- description of the
intent -->¶
</ description >¶
</ intent >

Deleted: ¶
¶

Deleted: Where:¶
¶

<#>@name attribute
defines the name of the
intent¶
¶

<#>@constrains attribute
(optional) specifies the SCA
constructs (SCA binding or¶

implementation) that this
intent is meant to
configure. If a value is not

specified, it is¶
assumed that this intent is
a qualified intent and

inherits its constraint list
from the qualifiable intent it
is qualifying (see below).
This attribute does not

define the valid attach
points of the intent. ¶
¶

Note that the “constrains”
attribute may name an

Deleted: ¶

¶

Deleted: <#>@requires
attribute (optional) defines
the set of all intents that

Deleted: ¶

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

... [1]

... [2]

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 13 of 74

An intent that can be completely satisfied by one of a choice of lower-level intents is 213
referred to as a qualifiable intent. In order to express such intents, the intent name may 214
contain a qualifier: a “.” followed by a xs:string name. An intent name that includes a 215
qualifier in its name is referred to as a qualified intent, because it is “qualifying” how the 216
qualifiable intent is satisfied. A qualified intent can only qualify one qualifiable intent, so the 217
name of the qualified intent includes the name of the qualifiable intent as a prefix for 218
example, authentication.message. 219
 220
In general, SCA allows the developer or assembler to attach multiple qualifiers for a single 221
qualifiable intent to the same SCA construct. However, domain-specific constraints may 222
prevent the use of some combinations of qualifiers (from the same qualifiable intent). 223
 224

Intents, their qualifiers and their defaults are defined using the following pseudo schema: 225

 226

<intent name="xs:string" constrains ="list of QName s" 227
requires="list of QNames" excludes=”list of QNames” ? 228
mutuallyExclusive=”boolean”? > 229
<description> xs:string.</description>? 230
<qualifier name = "xs:string" default = “xs:boolea n” ?>* 231

<description> xs:string.</description>? 232
</qualifier> 233

</intent> 234

 235

Where: 236

• @name is a required attribute that defines the name of the intent 237

 238

• @constrains attribute (optional) specifies the SCA constructs that this intent is 239
meant to configure. If a value is not specified for this attribute then it can apply to any 240
SCA element. 241

 242

Note that the “constrains” attribute may name an abstract element type, such as 243
sca:binding in our running example. This means that it will match against any binding 244
used within a SCDL file. A SCDL element may match @constrains if its type is in a 245
substitution group. 246

 247

• @requires attribute (optional) defines the set of all intents that the referring intent 248
requires. In essence, the referring intent requires all the intents named to be satisfied. 249
This attribute is used to compose an intent from a set of other intents. This use is 250
further described in Section 3.2 below. 251

 252

• @excludes attribute (optional) contains a list of the excluded intents as a set of QNames. 253

Note that if one intent declares itself to be exclusive of some other intent, it is not required that the 254
other intent also names the original intent in its exclude list, although it is good practice to do this. 255

Where one intent is applied to a given artifact in a composition and another intent is applied to one of 256
its parents, which intents apply to the artifact differs depending on whether the two intents are 257
Additive or Mutually Exclusive. 258
 259
 - Where the intents are Additive, both intents apply to the artifact and its child artifacts. 260
 261

Formatted: Bullets and

Numbering

Formatted

Formatted: Body Text

Formatted

Formatted

Formatted: Bullets and

Numbering

Formatted

Formatted: Bullets and

Numbering

Formatted

Deleted: an

Deleted: ,

Deleted: the name of a
qualifiable intent

Deleted: ¶

Deleted: (separated by “.”),

Deleted: See Usage of
@requires attribute for
specifying intents.

Deleted: Because qualified

intents include the name of
the qualifiable intent, the
qualifiable intent definition

does not need to list its
valid qualifiers. The set of
all qualified intents defined
for that qualifiable intent

determines the list of valid
qualifiers. This is illustrated

Deleted: Further, the

Deleted: ¶

Deleted: <intent

Deleted: ¶

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted: ¶

Deleted: m

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

... [5]

... [4]

... [3]

... [12]

... [6]

... [8]

... [10]

... [11]

... [13]

... [7]

... [9]

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 14 of 74

 - Where the intents are mutually exclusive, only the intent attached directly to the artifact 262
 applies to the artifact and to its child artifacts. 263

 264

• @mutuallyExclusive attribute (optional) with a default of “false”. If this attribute is 265
present and has a value of “true” is indicates that the qualified intents defined for 266
this intent are mutually exclusive. 267

One or more <qualifier> child elements MAY be used to define qualifiers for the intent. The 268
attributes of <qualifier> are: 269

• @name is a required attribute that defines the name of the intent 270

 271

• @default is an optional attribute that declares the particular qualifier to be the 272
default qualifier for the intent. If an intent has more than one qualifier, one and only 273
one of them MUST be declared as the default. Further, the names of the qualifiers must 274
be unique within the intent definition. 275

 276

• The <qualifier> element may have an optional child element called “description” 277
whose value is a xs:string. 278

 279

For example, the confidentiality intent which has qualified intents called 280
confidentiality.transport and confidentiality.message may be defined as: 281

 282

 <intent name="confidentiality" constrains="sca:bind ing"> 283

<description> 284

Communication through this binding must prevent 285

unauthorized users from reading the messages. 286

</description> 287

<qualifier name=”transport”> 288

 <description>Automatic encryption by transport 289

 </description> 290

</qualifier> 291

<qualifier name=”message” default=’true’> 292

 <description>Encryption applied to each message 293

 </description> 294

</qualifier> 295

 </intent> 296

 297
 298
All the intents in a SCA Domain are defined in a global, domain-wide file named 299
definitions.xml. Details of this file are described in the SCA Assembly Model [SCA-300
Assembly]. 301
 302
SCA normatively defines a set of core intents that all SCA implementations are expected to 303
support, to ensure a minimum level of portability. Users of SCA may define new intents, or 304
extend the qualifier set of existing intents. 305
 306

Formatted: Bulleted + Level:

1 + Aligned at: 0.63 cm + Tab

after: 1.27 cm + Indent at:

1.27 cm

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Deleted: ¶

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 15 of 74

3.2 Profile Intents 307

An intent that is satisfied only by satisfying all of a set of other intents is called a profile 308
intent. It can be used in the same way as any other intent. 309
 310
The presence of @requires attribute in the intent definition signifies that this is a profile 311
intent. The @requires attribute may include all kinds of intents, including qualified intents 312
and other profile intents. However, while a profile intent can include qualified intents, it 313
cannot BE a qualified intent (so its name must not have “.” in it). 314
 315
Requiring a profile intent is always semantically identical to requiring the list of intents that 316
are listed in its @requires attribute. 317
 318
An example of a profile intent could be an intent called messageProtection which is a 319
shortcut for specifying both confidentiality and integrity, where integrity means to 320
protect against modification, usually by signing. The intent definition may look like the 321
following: 322
 323
<intent name="messageProtection" 324

 constrains ="sca:binding" 325
 requires ="confidentiality integrity" > 326
<description > 327

Protect messages from unauthorized reading or modif ication. 328
</ description > 329

</ intent > 330
 331

3.3 PolicySets 332

 333
A policySet element is used to define a set of concrete policies that apply to some binding 334
type or implementation type, and which correspond to a set of intents provided by the 335
policySet. 336
 337
The pseudo schema for policySet is shown below: 338
 339
<policySet name="NCName" 340

provides="listOfQNames" 341
appliesTo="xs:string" 342
attachTo="xs:string" 343
xmlns=http://www.osoa.org/xmlns/sca/1.0 344
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/po licy"> 345

<policySetReference name="xs:QName"/>* 346
<intentMap/>* 347
<xs:any>* 348

</policySet> 349
 350
PolicySet has the following attributes: 351

• The @name attribute declares a name for the policySet. The value of the @name 352
attribute is a xs:QName. 353
• The @appliesTo attribute is used to determine which SCA constructs this policySet 354
can configure. The contents of the attribute must match the XPath 1.0 production Expr. 355
• The @attachTo attribute is a string which is an XPath 1.0 expression identifying one 356
or more elements in the SCDL within the Domain. It is used to declare which set of 357

Formatted: Bullets and

Numbering

Deleted: I

Deleted: The structure of

the PolicySet element is as
follows:

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 16 of 74

elements the policySet is actually attached to. See the section on "Attaching Intents and 358
PolicySets to SCA Constructs" for more details on how this attribute is used. 359
• The @provides attribute, whose value is a list of intent names (that may or may not 360
be qualified), designates the intents the PolicySet provides. Members of the list are 361
xs:string values separated by a space character “ “. 362

 363
PolicySet contains one or more of the following element children 364
 365

• intentMap element 366
• policySetReference element 367
• xs:any extensibility element 368

 369
Any mix of the above types of elements, in any number, can be included as children of the 370
policySet element including extensibility elements. There are likely to be many different 371
policy languages for specific binding technologies and domains. In order to allow the 372
inclusion of any policy language within a policySet, the extensibility elements may be from 373
any namespace and may be intermixed. However, the SCA policy framework expects that 374
WS-Policy will be a common policy language for expressing interaction policies, especially 375
for Web Service bindings. 376
 377
It is often desirable to attach WS-Policies directly as children of <policySet> elements; 378
either directly as <wsp:Policy> elements, or as <wsp:PolicyReference> elements or using 379
<wsp:PolicyAttachment>. These three elements, and others, can be attached using the 380
extensibility point provided by the <xs:any> in the pseudo schema above. See example 381
below. 382
 383
For example, the policySet element below declares that it provides 384
authentication.message and reliability for the “binding.ws” SCA binding. 385
 386
<policySet name="SecureReliablePolicy" 387

provides ="authentication.message exactlyOne" 388
appliesTo ="sca:binding.ws" 389
xmlns ="http://www.osoa.org/xmlns/sca/1.0" 390
xmlns:wsp ="http://schemas.xmlsoap.org/ws/2004/09/policy" > 391

<wsp:PolicyAttachment > 392
<!-- policy expression and policy subject for 393

"basic authentication" --> 394
 … 395

</ wsp:PolicyAttachment > 396
<wsp:PolicyAttachment > 397
 <!-- policy expression and policy subject for 398

"reliability" --> 399
 … 400

</ wsp:PolicyAttachment > 401
</ policySet > 402
 403
PolicySet authors should be aware of the evaluation of the @appliesTo attribute in order to 404
designate meaningful values for this attribute. Although policySets may be attached to any 405
element in the SCA design, the applicability of a policySet is not scoped by where it is 406
attached in the SCA framework. Rather, policySets always apply to either binding instances 407
or implementation elements regardless of where they are attached to. In this regard, the 408
SCA policy framework does not scope the applicability of the policySet to a specific 409
attachment point in contrast to other frameworks, such as WS-Policy. Attachment is a 410
shorthand. 411

Formatted: Body Text, Adjust

space between Latin and Asian

text

Formatted: Body Text

Deleted: It

Deleted: <#>wsp:PolicyAtt
achment element¶
<#>wsp:Policy element¶

<#>wsp:PolicyReference
element¶

Deleted: For this reason,
wsp:PolicyAttachment is
explicitly included in the

schema for clarity.

Deleted: The pseudo
schema for policySet is
shown below:¶

¶
<policySet
name="NCName"¶
provides ="listOfQNames" ¶
appliesTo ="xs:string"¶
xmlns =http://www.osoa.o
rg/xmlns/sca/1.0 ¶
xmlns:wsp ="http://schem
as.xmlsoap.org/ws/2004/
09/policy" >¶
<policySetReference
name="xs:QName" /> *¶
<intentMap /> *¶

Deleted: <wsp:PolicyAttac
hment >*¶
<wsp:Policy>*¶
<wsp:PolicyReference>*¶

Deleted: <xs:any >*¶
</ policySet >¶
¶

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 17 of 74

 412
With this design principle in mind, an XPath expression that is the value of an @appliesTo 413
attribute designates what a policySet applies to. Note that the XPath expression will always 414
be evaluated within the context of an attachment considering elements where binding 415
instances or implementations are allowed to be present. The expression is evaluated against 416
the parent element of any binding or implementation element. The policySet will apply to 417
any child binding or implementation elements returned from the expression. So, for 418
example, appliesTo=”binding.ws” will match any web service binding. If 419
appliesTo=”binding.ws[@impl=’axis’]” then the policySet would apply only to web service 420
bindings that have an @impl attribute with a value of ‘axis’. 421
 422
For further discussion on attachment of policySets and the computation of applicable 423
policySets, please refer to Section 4. 424
 425
All the policySets in a SCA Domain are defined in a global, domain-wide file named 426
definitions.xml. Details of this file are described in the SCA Assembly Model [SCA-427
Assembly]. 428
 429
SCA may normatively define a set of core policySets that all SCA implementations are 430
expected to support, to ensure a minimum level of portability. Users of SCA may define new 431
policySets as needed. 432
 433

3.3.1 IntentMaps 434

Intent maps contain the concrete policies and policy subjects that are used to realize a 435
specific intent that is provided by the policySet. 436
 437
The pseudo-schema for intentMaps is given below: 438
 439
<intentMap provides ="xs:QName" 440

 > 441
<qualifier name="xs:string" >? 442

<xs:any >* 443
<intentMap /> ? 444

</ qualifier > 445
</ intentMap > 446
 447
It is often desirable to attach WS-Policies directly as children of <qualifier> elements; either directly as 448
<wsp:Policy> elements, or as <wsp:PolicyReference> elements or using <wsp:PolicyAttachment>. 449
These three elements, and others, can be attached using the extensibility point provided by the <xs:any> 450
in the pseudo schema above. 451
 452
When a policySet element contains a set of intentMap elements, the value of the @provides 453
attribute of each intentMap corresponds to an unqualified intent that is listed within the 454
@provides attribute value of the parent policySet element. 455
 456
If a policySet specifies a qualifiable intent in the @provides attribute, then it MUST include 457
an intentMap element that specifies all possible qualifiers for that intent. If a qualified intent 458
can be further qualified, then the qualifier element must also contain an intentMap. 459
 460
For each intent (qualified or unqualified) listed as a member of the @provides attribute list 461
of a policySet element, there may be at most one corresponding intentMap element that 462

Deleted: default ="xs:stri
ng"

Deleted: <wsp:PolicyAttac
hment >*¶
 …¶
</ wsp:PolicyAttachment >¶

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 18 of 74

declares the unqualified form of that intent in its @provides attribute. In other words, each 463
intentMap within a given policySet must uniquely provide for a specific intent. 464
 465
The @provides attribute value of each intentMap that is an immediate child of a policySet 466
must be included in the @provides attribute of the parent policySet. 467
 468

An intentMap element must contain qualifier element children. Each qualifier 469
element corresponds to a qualified intent where the unqualified form of that 470
intent is the value of the @provides attribute value of the parent intentMap. 471
The qualified intent is either included explicitly in the value of the enclosing 472
policySet’s @provides attribute or implicitly by that @provides attribute 473
including the unqualified form of the intent. One of the qualifiers referenced 474
in the intentMap MUST be the default qualifier defined for the qualifiable 475
intent. 476

 477
 478
A qualifier element designates a set of concrete policy attachments that correspond to a 479
qualified intent. The concrete policy attachments may be specified using 480
wsp:PolicyAttachment element children or using extensibility elements specific to an 481
environment. 482
 483
As an example, the policySet element below declares that it provides confidentiality using 484
the @provides attribute. The alternatives (transport and message) it contains each specify 485
the policy and policy subject they provide. The default is “transport”. 486
 487
<policySet name="SecureMessagingPolicies" 488

provides ="confidentiality" 489
appliesTo ="binding.ws" 490
xmlns ="http://www.osoa.org/xmlns/sca/1.0" 491
xmlns:wsp ="http://schemas.xmlsoap.org/ws/2004/09/policy" > 492

<intentMap provides ="confidentiality" > 493
<qualifier name="transport" > 494

<wsp:PolicyAttachment > 495
<!-- policy expression and policy subject for 496
"transport" alternative --> 497

... 498
</ wsp:PolicyAttachment > 499
<wsp:PolicyAttachment > 500

... 501
</ wsp:PolicyAttachment > 502

</ qualifier > 503
<qualifier name="message" > 504

<wsp:PolicyAttachment > 505
<!-- policy expression and policy subject for 506
"message" alternative” --> 507

... 508
</ wsp:PolicyAttachment > 509

</ qualifier > 510
</ intentMap > 511

</ policySet > 512
 513
PolicySets can embed policies that are defined in any policy language. Although WS-Policy is 514
the most common language for expressing interaction policies, it is possible to use other 515
policy languages. The following is an example of a policySet that embeds a policy defined in 516
a proprietary language. This policy provides “authentication” for binding.ws. 517

Deleted: The default
attribute of an intentMap

must correspond to a
qualified intent that is
named on one of the child

qualifier elements. This is
used when the unqualified
form of the intent has been

specified as a requirement.
The relationship between
intents and policySets, and

their use within SCDL is
explained in more detail in
section 1.5.

Deleted: ¶

¶

Deleted: default ="transpo
rt"

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 19 of 74

 518
<policySet name="AuthenticationPolicy" 519

provides ="authentication" 520
appliesTo ="binding.ws" 521
xmlns ="http://www.osoa.org/xmlns/sca/1.0" > 522

<e:policyConfiguration xmlns:e =”http://example.com” > 523
<e:authentication type = “X509” /> 524

<e:trustedCAStore type =”JKS” /> 525
<e:keyStoreFile >Foo.jks </ e:keyStoreFile > 526
<e:keyStorePassword >123</ e:keyStorePassword > 527

</ e:authentication > 528
</ e:policyConfiguration > 529

</ policySet > 530
 531
The following example illustrates an intent map that defines policies for an intent with more 532
than one level of qualification. 533
 534
<policySet name=”SecurityPolicy” provides =”confidentiality” > 535

<intentMap provides =”confidentiality” > 536
<qualifier name=”message” > 537

<intentMap provides =”message” > 538
<qualifier name=”body” > 539

<! --- policy attachment for body encryption � 540
</ qualifier > 541
<qualifier name=”whole” > 542

<! --- policy attachment for whole message 543
�encryption 544

</ qualifier > 545
</ intentMap > 546

</ qualifier > 547
<qualifier name=”transport” > 548

<! --- policy attachment for transport 549
encryption � 550

</ qualifier > 551
</ intentMap > 552

</ policySet > 553
 554
 555

3.3.2 Direct Inclusion of Policies within PolicySets 556

 557
In cases where there is no need for defaults or overriding for an intent included in the 558
@provides of a policySet, the policySet element may contain policies or policy attachment 559
elements directly without the use of intentMaps or policy set references. There are two ways 560
of including policies directly within a policySet. Either the policySet contains one or more 561
wsp:policyAttachment elements directly as children or it contains extension elements (using 562
xs:any) that contain concrete policies. 563
 564
When a policySet element directly contains wsp:policyAttachment children or policies using 565
extension elements, it is assumed that the set of policies specified as children satisfy the 566
intents expressed using the @provides attribute value of the policySet element. The intent 567
names in the @provides attribute of the policySet may include names of profile intents. 568
 569

Deleted: default=”message
”

Deleted: default=”whole”

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 20 of 74

3.3.3 Policy Set References 570

 571
A policySet may refer to other policySets by using sca:PolicySetReference element. This 572
provides a recursive inclusion capability for intentMaps, policy attachments or other specific 573
mappings from different domains. 574
 575
When a policySet element contains policySetReference element children, the @name 576
attribute of a policySetReference element designates a policySet defined with the same 577
value for its @name attribute. Therefore, the @name attribute must be a QName. 578
 579
The @appliesTo attribute of a referenced policySet must be compatible with that of the 580
policySet referring to it. Compatibility, in the simplest case, is string equivalence of the 581
binding names. 582
 583
The @provides attribute of a referenced policySet must include intent values that are 584
compatible with one of the values of the @provides attribute of the referencing policySet. A 585
compatible intent either is a value in the referencing policySet's @provides attribute values 586
or is a qualified value of one of the intents of the referencing policySet's @provides attribute 587
value. 588
 589
The usage of a policySetReference element indicates a copy of the element content children 590
of the policySet that is being referred is included within the referring policySet. If the result 591
of inclusion results in a reference to another policySet, the inclusion step is repeated until 592
the contents of a policySet does not contain any references to other policySets. 593
 594
When a policySet is applied to a particular element, the policies in the policy set 595
include any standalone polices plus the policies from each intent map contained in the 596
PolicySet as described below. 597
 598
Note that, since the attributes of a referenced policySet are effectively removed/ignored by 599
this process, it is the responsibility of the author of the referring policySet to include any 600
necessary intents in the @provides attribute if the policySet is to correctly advertise its 601
aggregate capabilities. 602
 603
The default values when using this aggregate policySet come from the defaults in the 604
included policySets. A single intent (or all qualified intents that comprise an intent) in a 605
referencing policySet must only be included once by using references to other policySets. 606
 607
Here is an example to illustrate the inclusion of two other policySets in a policySet element: 608
 609
<policySet name="BasicAuthMsgProtSecurity" 610

provides ="authentication confidentiality" 611
appliesTo ="binding.ws" 612
xmlns ="http://www.osoa.org/xmlns/sca/1.0" > 613

<policySetReference name="acme:AuthenticationPolicies" /> 614
<policySetReference name="acme:ConfidentialityPolicies" /> 615

</ policySet > 616
 617
The above policySet refers to policySets for authentication and confidentiality and, by 618
reference, provides policies and policy subject alternatives in these domains. 619
 620
If the policySets referred to have the following content: 621
 622

Deleted: ¶

Deleted: ¶

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 21 of 74

<policySet name="AuthenticationPolicies" 623
provides ="authentication" 624
appliesTo ="binding.ws" 625
xmlns ="http://www.osoa.org/xmlns/sca/1.0" > 626

<wsp:PolicyAttachment > 627
<!-- policy expression and policy subject for "basi c 628
authentication" --> 629

… 630
</ wsp:PolicyAttachment > 631

</ policySet > 632
 633
<policySet name="acme:ConfidentialityPolicies" 634

provides ="confidentiality" 635
bindings ="binding.ws" 636
xmlns ="http://www.osoa.org/xmlns/sca/1.0" > 637

<intentMap provides ="confidentiality" > 638
<qualifier name="transport" > 639

<wsp:PolicyAttachment > 640
<!-- policy expression and policy subject for "tran sport" 641
alternative --> 642
... 643
</ wsp:PolicyAttachment > 644
<wsp:PolicyAttachment > 645
... 646
</ wsp:PolicyAttachment > 647

</ qualifier > 648
<qualifier name="message" > 649

<wsp:PolicyAttachment > 650
<!-- policy expression and policy subject for "mess age" 651
alternative” --> 652
... 653
</ wsp:PolicyAttachment > 654

</ qualifier > 655
</ intentMap > 656

</ policySet > 657
 658
The result of the inclusion of policySets via policySetReferences would be semantically 659
equivalent to the following: 660
 661
<policySet name="BasicAuthMsgProtSecurity" 662

provides ="authentication confidentiality" 663
appliesTo ="binding.ws" 664
 xmlns ="http://www.osoa.org/xmlns/sca/1.0" > 665

<wsp:PolicyAttachment > 666
<!-- policy expression and policy subject for "basi c 667
authentication" --> 668

... 669
</ wsp:PolicyAttachment > 670
<intentMap provides ="confidentiality" > 671

 <qualifier name="transport" > 672
<wsp:PolicyAttachment > 673
<!-- policy expression and policy subject for "tran sport" 674
alternative --> 675
... 676
</ wsp:PolicyAttachment > 677
<wsp:PolicyAttachment > 678
... 679

Deleted: default ="transpo
rt"

Deleted: default ="transpo
rt"

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 22 of 74

</ wsp:PolicyAttachment > 680
</ qualifier > 681
<qualifier name="message" > 682

<wsp:PolicyAttachment > 683
<!-- policy expression and policy subject for "mess age" 684
alternative --> 685
... 686
</ wsp:PolicyAttachment > 687

</ qualifier > 688
</ intentMap > 689

</ policySet > 690
 691
 692
 693

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 23 of 74

4 Attaching Intents and PolicySets to SCA Constructs 694

 695
This section describes how intents and policySets are associated with SCA constructs. It 696
describes the various attachment points and semantics for intents and policySets and their 697
relationship to other SCA elements and how intents relate to policySets in these contexts. 698
 699

4.1 Attachment Rules - Intents 700

Intents can be attached to any SCA element used in the definition of components and 701
composites since an intent specifies an abstract requirement. The attachment is specified by 702
using the optional @requires attribute. This attribute takes as its value a list of intent 703
names. Intents can optionally be applied to interface definitions. For WSDL Port Type 704
elements (WSDL 1.1) and for WSDL Interface elements (WSDL 2.0), the @requires attribute 705
can be applied that holds a list of intent names that are required for the interface. Other 706
interface languages may define their own mechanism for specifying a list of required 707
intents. Any service or reference that uses an interface with required intents implicitly adds 708
those intents to its own @requires list. 709
 710
Because intents specified on interfaces can be seen by both the provider and the client of a 711
service, it is appropriate to use them to specify characteristics of the service that both the 712
developers of provider and the client need to know. For example, the fact that an interface 713
is conversational is such a characteristic, since both the client and the service provider need 714
to know about the conversational semantics. 715
 716
For example: 717
 718
<service > or <reference >… 719

<binding.binding-type requires ="listOfQNames" 720
</ binding.binding-type >… 721

</ service > or </ reference > 722
 723

4.2 Attachment Rules - PolicySets 724

One or more policySets can be attached to any SCA element used in the definition of 725
components and composites. The attachment is specified by using one of two mechanisms: 726

• Direct Attachment using the optional @policySets attribute of the SCA element 727
• the External Attachment mechanism 728

 729
The policySets attribute takes as its value a list of policySet names. 730
 731
For example: 732
 733
<service > or <reference >… 734

<binding.binding-type policySets ="listOfQNames" 735
</ binding.binding-type >… 736

</ service > or </ reference > 737
 738
The SCA Policy framework enables two distinct cases for utilizing intents and PolicySets: 739
 740

Formatted: Heading 2, Adjust

space between Latin and Asian

text

Formatted: Font color: Black

Formatted: Body Text, Adjust

space between Latin and Asian

text

Formatted: Body Text, Adjust

space between Latin and Asian

text

Formatted: Font: Bold, Italic

Formatted: Font: Bold, Italic

Formatted: Font: Bold, Italic

Formatted: Font: Bold, Italic

Formatted: Bullets and

Numbering

Deleted: Similarly, one

Deleted: .

Deleted: is

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 24 of 74

• It is possible to specify QoS requirements by specifying abstract intents utilizing the 741
@requires element on an element at the time of development. In this case, it is 742
implied that the concrete bindings and policies that satisfy the abstract intents are 743
not assigned at development time but the intents are used to select the concrete 744
Bindings and Policies at deployment time. Concrete policies are encapsulated 745
within policySets that are applied during deployment using the external attachment 746
mechanism. The intents associated with a SCA element is the union of intents 747
specified for it and its parent elements subject to the detailed rules below. 748

 749
• It is also possible to specify QoS requirements for an element by using both intents 750

and concrete policies contained in directly attached policySets at development time. 751
In this case, it is possible to configure the policySets, by overriding the default 752
settings in the specified policySets using intents. The policySets associated 753
with a SCA element is the union of policySets specified for it and its parent elements 754
subject to the detailed rules below. 755
 756
When computing the policySets that apply to a particular element, the @appliesTo 757
attribute of each relevant policySet is checked against the element. If the policySet 758
is attached directly to the element and does not apply to that element an error is 759
raised. If a policySet that is attached to an ancestor element does not apply to the 760
element in question, it is simply discarded. 761

 762
These two different approaches of specifying policies are illustrated in detail below. Also 763
discuss is how intents are used to guide the selection and application of specific policySets. 764
 765

4.3 External Attachment of PolicySets Mechanism 766

The External Attachment mechanism for policySets is used for deployment-time application 767
of policySets to SCA elements. It is called "external attachment" because the principle of 768
the mechanism is that the place that declares the attachment is separate from the 769
composite files which hold the elements. This separation provides the deployer with a way 770
to attach policySets without having to modify the artifacts where they apply. 771
 772
A PolicySet is attached to one or more elements in one of two ways: 773
a) through the use of a <PolicyAttachment/> element which is a child of a <definitions/> 774
element in a definitions file 775
b) through the @attachTo attribute of the PolicySet 776
 777
The pseudo-schema for the Policy Attachment element is: 778
<sca:definitions> 779
 ... 780
 <sca:PolicyAttachment policySet="QName" attac hTo="xs:string"/> + 781
 ... 782
</sca:definitions> 783
 784
The PolicyAttachment element attaches a single PolicySet to a set of locations in the SCDL. 785
It has 2 attributes: 786

• policySet (required) – QName of the PolicySet to attach 787
• attachTo (required) – string which is an XPath 1.0 expression identifying one or more 788

elements in the SCDL to which the policySet is attached (See below for details) 789
 790

Formatted: Body Text,

Bulleted + Level: 1 + Aligned

at: 0.63 cm + Tab after: 1.27

cm + Indent at: 1.27 cm,

Adjust space between Latin

and Asian text

Formatted: Body Text,

Bulleted + Level: 1 + Aligned

at: 0.63 cm + Tab after: 1.27

cm + Indent at: 1.27 cm,

Adjust space between Latin

and Asian text, Tabs: Not at

0.63 cm

Formatted: Font: Courier New

Formatted: Font: Courier New

Formatted: Font: Courier New

Formatted: Bullets and

Numbering

Formatted: Heading 2, Adjust

space between Latin and Asian

text

Formatted: Font: Courier New

Formatted: Font: Courier New

Formatted: Font: Courier New

Deleted: will not be

Deleted: will be

Deleted: will be available in
a deployment environment

Deleted: ¶
<#>¶

Deleted: will be

Deleted: We a

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 25 of 74

The meaning of the @attachTo attribute of the PolicyAttachment element is identical to the 791
meaning of the @attachTo attribute of the PolicySet element. This is described in the next 792
subsection. 793

4.3.1 The Form of the @attachTo Attribute 794

The @attachTo attribute of a PolicySet or of a PolicyAttachment is an XPath1.0 expression 795
identifying a SCA element to which the PolicySet is attached. 796
 797
The XPath applies to the Infoset for External Attachment – ie to SCA composite files, 798
with the following special characteristics: 799
 800

1. The Domain is treated as a special composite, with a blank name - "" 801
 802

2. Where one composite includes one or more other composites, it is the including 803
composite which is addressed by the XPath and its contents are the result of 804
preprocessing all of the include elements 805

 806
3. Where the PolicySet is intended to be specific to a particular use of a composite 807

file (rather than to all uses), each (nested) component is given a unique URI for 808
each use of the component, based on a concatenation of all the names of the 809
components involved, starting with the name of the component at the Domain 810
level. 811
 812
The XPath expression can make use of the unique URI to indicate specific use 813
instances, where different policySets need to be used for those different 814
instances. 815

 816
Special case. Where the @attachTo attribute of a PolicySet is absent or is blank, the 817
PolicySet cannot be used on its own for external attachment. It can be used: 818
 819

1. For direct attachment 820
 821

2. By reference from another PolicySet or from a <PolicyAttachment/> element 822
 823
Such a policySet can in principle be applied to any element through these means. 824
 825
The XPath expression for the @attachTo attribute can make use of a series of XPath 826
functions which enable the expression to easily identify elements with specific 827
characteristics that are not easily expressed with pure XPath. These functions enable: 828
 829

• the identification of elements to which specific intents apply. 830
This permits the attachment of a PolicySet to be linked to specific intents on the 831
target element - for example, a PolicySet relating to encryption of messages can be 832
targeted to services and references which have the confidentiality intent applied. 833
 834

• the targeting of subelements of an interface, including operations and messages. 835
This permits the attachment of a PolicySet to an individual operation or to an 836
individual message within an interface, separately from the Policies that apply to 837
other operations or messages in the interface. 838
 839

• the targeting of a specific use of a component, through its unique URI. 840
This permits the attachment of a PolicySet to a specific use of a component in one 841

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

Formatted: Heading 3, Adjust

space between Latin and Asian

text

Formatted: Font: Bold, Italic

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Formatted: Font: Bold, Italic

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 26 of 74

context, that can be different from the PolicySet(s) that are applied to other uses of 842
the same component. 843

 844
Detail of the available XPath functions is given in a following section. 845
 846
Examples of @attachTo attribute: 847
 848
1. //component(@name="test3") 849
 850
attach to all instances of a component named "test3" 851
 852
2. //component/URIRef("top_level/test1/test3") 853
 854
attach to the unique instance of component "test3" when used by component "test1" when 855
used by component "top_level" (top_level is a component at the Domain level) 856
 857
3. //component(@name="test3")/service(IntentRefs("intent1")) 858
 859
selects the services of component "test3" which have the intent "intent1" applied 860
 861
4. //component/binding.ws 862
 863
selects the web services binding of all components with a service or reference with a Web 864
services binding 865
 866
5. /composite(@name="")/component(@name="fred") 867
 868
selects a component with the name "fred" at the Domain level 869
 870

4.3.2 Cases Where Multiple PolicySets are attached to a Single Artifact 871

Multiple PolicySets can be attached to a single artifact. This can happen either as the result 872
of one or more direct attachments using the @policySets attribute plus one or more 873
external attachments which target the particular artifact. 874
 875
Where multiple PolicySets are attached to a single artifact, all of the PolicySets attached 876
apply to the artifact. 877

4.3.3 XPath Functions for the @attachTo Attribute 878

Utility functions are useful in XPath expressions where otherwise it would be complex to 879
write the XPath expression to identify the required elements. 880
 881
This particularly applies in SCA to Interfaces and the child parts of interfaces (operations 882
and messages). XPath Functions are proposed for the following: 883
 884
• Picking out a specific interface 885
• Picking out a specific operation in an interface 886
• Picking out a specific message in an operation in an interface 887
• Picking out artifacts with specific intents 888
 889

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

Formatted: Heading 3, Adjust

space between Latin and Asian

text

Formatted: French (France)

Formatted: Heading 3, Adjust

space between Latin and Asian

text

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 27 of 74

4.3.3.1 Interface Related Functions 890

 891
InterfaceRef(InterfaceName) 892
picks out an interface identified by InterfaceName 893
 894
OperationRef(InterfaceName/OperationName) 895
picks out the operation OperationName in the interface InterfaceName 896
 897
MessageRef(InterfaceName/OperationName/MessageName) 898
picks out the message MessageName in the operation OperationName in the interface 899
InterfaceName. 900
 901
"*" can be used for wildcarding of any of the names. 902
 903
The interface is treated as if it is a WSDL interface (for other interface types, they are 904
treated as if mapped to WSDL using their regular mapping rules). 905
 906
Examples of the Interface functions: 907
 908
InterfaceRef("MyInterface") 909
 910
picks out an interface with the name "MyInterface" 911
 912
OperationRef("MyInterface/MyOperation") 913
 914
picks out the operation named "MyOperation" within the interface named "MyInterface" 915
 916
OperationRef("*/MyOperation") 917
 918
picks out the operation named "MyOperation" from any interface 919
 920
MessageRef("MyInterface/MyOperation/MyMessage") 921
 922
picks out the message named "MyMessage" from the operation named "MyOperation" within 923
the interface named "MyInterface" 924
 925
MessageRef("*/*/MyMessage") 926
 927
picks out the message named "MyMessage" from any operation in any interface 928
 929

4.3.3.2 Intent Based Functions 930

For the following intent-based functions, it is the total set of intents which apply to the 931
artifact which are examined by the function, including directly attached intents plus intents 932
acquired from the structural hierarchy and from the implementation hierarchy. 933
 934
IntentRefs(IntentList) 935
picks out an element where the intents applied match the intents specified in the IntentList: 936
 937
IntentRefs("intent1") 938
 939
picks out an artifact to which intent named "intent1" is attached 940

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

Formatted: Heading 4, Adjust

space between Latin and Asian

text

Formatted: Font: Bold

Formatted: Font: Not Bold

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Heading 4, Adjust

space between Latin and Asian

text

Formatted: Font: Bold

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 28 of 74

 941
IntentRefs("intent1 intent2") 942
picks out an artifact to which intents named "intent1" AND "intent2" are attached 943
 944
IntentRefs("intent1 !intent2") 945
 946
picks out an artifact to which intent named "intent1" is attached but NOT the intent named 947
"intent2" 948
 949

4.3.3.3 URI Based Function 950

The following function is used to pick out a particular use of a nested components – ie 951
where some Domain level component is implemented using a composite implementation 952
which in turn may have one or more components implemented with a composite (and so on 953
to an arbitrary level of nesting): 954
 955
URIRef(URI) 956
 957
picks out the particular use of a component identified by the URI string URI. 958
 959
Example: 960
 961
URIRef("top_comp_name/middle_comp_name/lowest_comp_name") 962
 963
picks out the particular use of a component – where component lowest_comp_name is used 964
within the implementation of middle_comp_name within the implementation of the top-level 965
(Domain level) component top_comp_name. 966
 967

4.4 Usage of @requires attribute for specifying intents 968

A list of intents can be specified for any SCA element by using the @requires attribute. 969
 970

The intents which apply to a given element depend on 971

• the intents expressed in its @requires attribute 972
• intents derived from the structural hierarchy of the element 973
• intents derived from the implementation hierarchy of the element 974

 975

When computing the intents that apply to a particular element, the @constrains attribute of 976
each relevant intent is checked against the element. If the intent in question does not apply 977
to that element it is simply discarded. 978

The structural hierarchy of an element consists of its parent element, grandparent element 979
and so on up to the <composite/> element in the composite file containing the element. 980

As an example, for the following composite: 981

 982
<composite name="C1" requires="i1"> 983
 <service name="CS" promotes="X/S"> 984
 <binding.ws requires="i2"> 985
 </service> 986
 <component name="X"> 987
 <implementation.java class="foo"/> 988

Formatted: Heading 4, Adjust

space between Latin and Asian

text

Formatted: Body Text, Adjust

space between Latin and Asian

text

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: Bullets and

Numbering

Deleted: ¶
As indicated

Deleted: , a

Deleted: optional

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 29 of 74

 <service name="S" requires="i3"> 989
 </component> 990
</composite> 991

 992

- the structural hierarchy of the component service element with the name "S" is the 993
component element named "X" and the composite element named "C1". Service "S" has 994
intent "i3" and also has the intent "i1" if i1 is not mutually exclusive with i3. 995

 996

Rule 1: An element inherits any intents specified on the elements above it in its structural 997
hierarchy EXCEPT 998

• if any of the inherited intents is mutually exclusive with an intent expressed on the 999
element, then the inherited intent is ignored 1000
 1001

• if the overall set of intents from the element itself and from its structural hierarchy 1002
contains both an unqualified version and a qualified version of the same intent, only 1003
the qualified version of the intent is used (whichever element was the source of the 1004
qualified intent) 1005

 1006

The implementation hierarchy occurs where a component configures an implementation 1007
and also where a composite promotes a service or reference of one of its components. The 1008
implementation hierarchy involves: 1009

• a composite service or composite reference element is in the implementation hierarchy of the 1010
component service/component reference element which they promote 1011
 1012

• the component element and its descendent elements (for example, service, reference, 1013
implementation) configure aspects of the implementation. Each of these elements is in the 1014
implementation hierarchy of the corresponding element in the componentType of the 1015
implementation. 1016
 1017

Rule 2: An element acquires the intents defined by the elements lower in its 1018
implementation hierarchy and it can only add intents or further qualify intents. Added 1019
intents MUST NOT be mutually exclusive with any of the intents attached lower in the 1020
hierarchy. A qualifiable intent expressed lower in the hierarchy can be qualified further up 1021
the hierarchy, in which case the qualified version of the intent applies to the higher level 1022
element. Intents from the implementation hierarchy take precedence over those from the 1023
structural hierarchy. 1024

 1025

As an example, consider the following composite: 1026
 1027
<composite name="C1" requires="i1"> 1028
 <service name="CS" promotes="X/S"> 1029
 <binding.ws requires="i2"> 1030
 </service> 1031
 <component name="X"> 1032
 <implementation.java class="foo"/> 1033
 <service name="S" requires="i3"> 1034
 </component> 1035
</composite> 1036

 1037

…the component service with name "S" has the service named "S" in the componentType of 1038
the implementation in its implementation hierarchy, and the composite service named "CS" 1039

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

Formatted: Space Before: 4

pt, After: 4 pt, Adjust space

between Latin and Asian text

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 30 of 74

has the component service named "S" in its implementation hierarchy. Service "CS" 1040
acquires the intent "i3" from service "S" – and also gets the intent "i1" from its containing 1041
composite "C1" IF i1 is not mutually exclusive with i3. 1042

 1043
When intents apply to an element following the rules described and where no policySets are 1044
attached to the element, the intents for the element can be used to select appropriate 1045
policySets during deployment, using the external attachment mechanism. 1046
 1047
Consider the following composite: 1048
 1049
<composite requires ="confidentiality" > 1050

<service name="foo" …/ > 1051
<reference name="bar" requires ="confidentiality.message" /> 1052

</ composite > 1053
 1054
…in this case, the composite declares that all of its services and references must guarantee 1055
confidentiality in their communication, but the “bar” reference further qualifies that 1056
requirement to specifically require message-level security. The “foo” service element has 1057
the default qualifier specified for the confidentiality intent (which might be transport level 1058
security) while the “bar” reference has the confidentiality.message intent. 1059
 1060
Consider this variation where a qualified intent is specified at the composite level: 1061
 1062
<composite requires ="confidentiality.transport" > 1063

<service name="foo" …/ > 1064
<reference name="bar" requires ="confidentiality.message" /> 1065

</ composite > 1066
 1067
In this case, both the confidentiality.transport and the confidentiality.message intent 1068
are required for the reference ‘bar’. If there are no bindings that support this combination, 1069
an error will be generated. However, since in some cases multiple qualifiers for the same 1070
intent may be valid or there may be bindings that support such combinations, the SCA 1071
specification allows this. 1072
 1073
It is also possible for a qualified intent to be further qualified. In our example, the 1074
confidentiality.message intent may be further qualified to indicate whether just the body 1075
of a message is protected, or the whole message (including headers) is protected. So, the 1076
second-level qualifiers might be “body” and “whole”. The default qualifier might be “whole”. 1077
If the “bar” reference from the example above wanted only body confidentiality, it would 1078
state: 1079
 1080
<reference name="bar" requires ="acme:confidentiality.message.body" /> 1081

 1082
The definition of the second level of qualification for an intent follows the same rules. As 1083
with other qualified intents, the name of the intent is constructed using the name of the 1084
qualifiable intent, the delimiter “.”, and the name of the qualifier. 1085
 1086

4.5 Usage of @requires and @policySet attributes together 1087

As indicated above, it is possible to attach both intents and policySets to an SCA element 1088
during development. The most common use cases for attaching both intents and concrete 1089
policySets to an element are with binding and reference elements. 1090
 1091

Formatted: Bullets and

Numbering

Deleted: Stating intents
with the @requires
attribute of an element

means that those intents
are additionally required by
every relevant element
descendent. For example,

specifying¶
requires=”confidentiali
ty” on a <composite>
element is the equivalent to
adding the same intent to
the @requires list of every
service and reference that

is contained within that
composite, including the
services and references

inside components.

Deleted: are specified with

Deleted: during

Deleted: is

Deleted: computed

Deleted: are

Deleted: .

Deleted: The intents

Deleted: Both qualified

Deleted: ¶

Deleted: I

Deleted: has

Deleted: d

Deleted: would

Deleted: y

Deleted: . When the intent

Deleted: will

Deleted: use

Deleted: by the PolicySet

Deleted: will use

Deleted: During policySet

Deleted: ¶

Deleted: <#>If a

Deleted: 615

Deleted: ¶

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

... [15]

... [16]

... [20]

... [18]

... [17]

... [21]

... [22]

... [23]

... [19]

... [14]

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 31 of 74

When the @requires attribute and the @policySets attributes are used together during 1092
development, it indicates the intention of the developer to configure the element, such as a 1093
binding, by the application of specific policySet(s) to this element. 1094
 1095
Developers using @requires and @policySet attributes in conjunction with each other must 1096
be aware of the implications of how the policySets are selected and how the intents are 1097
utilized to select specific intentMaps, override defaults, etc. The details are provided in the 1098
Section Guided Selection of PolicySets using Intents. 1099
 1100

4.6 Operation-Level Intents and PolicySets on Services & References 1101

 1102
It is possible to specify intents and policySets for a single service or reference operation in a 1103
way that applies to all the bindings of a service or reference. In this case, the syntax is to 1104
specify the operation directly under the <sca:service> or <sca:reference> element. The 1105
following example illustrates the placement of the <sca:operation> element: 1106
 1107
<service > or <reference > 1108

<operation name = "xs:string" 1109
policySet ="xs:QName" ? requires =" ="listOfQNames" ? /> 1110

</ service > or </ reference > 1111
 1112
The SCA Runtime MUST execute the algorithm in section Error! Reference source not 1113
found. Error! Reference source not found. one time for each operation in a service or 1114
reference interface when operation level policy attachment (intents or policySets) is used. 1115
 1116

4.7 Operation-Level Intents and PolicySets on Bindings 1117

 1118
The above mechanism for specifying operation-specific required intents and policySets may 1119
also be applied to bindings. In this case, the syntax would be: 1120
 1121
<service > or <reference > 1122

<binding.binding-type 1123
requires ="list of intent QNames" policySets ="listOfQNames" > 1124
<operation name = "xs:string" policySets ="xs:QName" ? 1125

requires ="listOfQNames" ? /> * 1126
</ binding.binding-type > 1127
</ service > or </ reference > 1128
 1129
This makes it possible to specify required intents that are specific to one operation for a 1130
single binding. The SCA Runtime MUST execute the algorithm in Error! Reference source 1131
not found. Error! Reference source not found. one time for each operation in a service 1132
or reference interface when operation level policy attachment (intents or policySets) is used. 1133
 1134

4.8 Intents and PolicySets on Implementations and Component Types 1135

It is possible to specify required intents and policySets within a component’s 1136
implementation, which get exposed to SCA through the corresponding component type. 1137
How the intents or policies are specified within an implementation depends on the 1138

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Deleted: that are in scope
for

Deleted: The same

algorithm applies whether
the intents guide the
selection of policySets

during deployment or
whether a developer uses
intents to choose the best
alternative in a set of

policySets that may apply
by configuring policySets.

Deleted: 4.10

Deleted: Guided Selection of
PolicySets using Intents

Deleted: 4.10

Deleted: Guided Selection of
PolicySets using Intents

Deleted: Similar to
operations on

implementations, the
intents required for the
operation are added to the

effective list of required
intents on the binding, and
operation-level policySets

override corresponding
policySets specified for the
binding (where a
“corresponding” policySet

@provides at least one

common intent).¶

Deleted: for

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 32 of 74

implementation technology. For example, Java can use an @requires annotation to specify 1139
intents. 1140
 1141
The required intents and policySets specified within an implementation can be found on the 1142
<sca:implementation.*> and the <sca:service> and <sca:reference> elements of the 1143
component type, for example: 1144
 1145
<omponentType > 1146

<implementation. * requires ="listOfQNames" 1147
policySets =" ="listOfQNames" > 1148
 ... 1149

</ implementation > 1150
<service name="myService" requires ="listOfQNames" 1151

policySets ="listOfQNames" > 1152
 ... 1153

</service > 1154
<reference name="myReference" requires ="listOfQNames" 1155

policySets =" ="listOfQNames" > 1156
 ... 1157

</ reference > 1158
… 1159

</ componentType > 1160
 1161
Intents expressed in the component type are handled according to the rule defined for the 1162
implementation hierarchy. 1163
 1164
For explicitly listed policySets, the list in the component using the implementation may 1165
override policySets from the component type. More precisely, a policySet on the 1166
componentType is considered to be overridden, and is not used, if it has a @provides list 1167
that includes an intent that is also listed in any component policySet @provides list. 1168

4.9 BindingTypes and Related Intents 1169

 1170
SCA Binding types implement particular communication mechanisms for connecting 1171
components together. See detailed discussion in the SCA Assembly specification [SCA-1172
Assembly]. Some binding types may realize intents inherently by virtue of the kind of 1173
protocol technology they implement (e.g. an SSL binding would natively support 1174
confidentiality). For these kinds of binding types, it may be the case that using that binding 1175
type, without any additional configuration, will provide a concrete realization of a required 1176
intent. In addition, binding instances which are created by configuring a bindingType may 1177
be able to provide some intents by virtue of its configuration. It is important to know, when 1178
selecting a binding to satisfy a set of intents, just what the binding types themselves can 1179
provide and what they can be configured to provide. 1180
 1181
The bindingType element is used to declare a class of binding available in a SCA Domain. It 1182
declares the QName of the binding type, and the set of intents that are natively provided 1183
using the optional @alwaysProvides attribute. The intents listed by this attribute are always 1184
concretely realized by use of the given binding type. The binding type also declares the 1185
intents that it may provide by using the optional @mayProvide attribute. Intents listed as 1186
the value of this attribute can be provided by a binding instance configured from this 1187
binding type. 1188
 1189
The pseudo-schema for the bindingType element is as follows: 1190

Formatted: Bullets and

Numbering

Deleted: the

Deleted: various

Deleted: When applying
policies, the i

Deleted: required by

Deleted: added to the

intents¶
required by the using
component

Deleted: the

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 33 of 74

 1191
<bindingType type ="NCName" 1192

alwaysProvides ="listOfQNames" ? mayProvide ="listOfQNames" ?/> 1193
 1194

The kind of intents a given binding might be capable of providing, beyond these inherent 1195
intents, are implied by the presence of policySets that declare the given binding in their 1196
@appliesTo attribute. An exception is binding.sca which is configured entirely by the intents 1197
listed in its @mayProvide and @alwaysProvides lists. There are no policySets with 1198
appliesTo="binding.sca". 1199
 1200
For example, if the following policySet is available in a SCA Domain it says that the 1201
sca:binding.ssl can provide “reliability” in addition to any other intents it may provide 1202
inherently. 1203
 1204
<policySet name="ReliableSSL" provides ="exactlyOnce" 1205

appliesTo ="binding.ssl" > 1206
... 1207

</ policySet > 1208

4.10 Treatment of Components with Internal Wiring 1209

This section discusses the steps involved in the development and deployment of a 1210
component and its relationship to selection of bindings and policies for wiring services and 1211
references. 1212
 1213
The SCA developer starts by defining a component. Typically, this will contain services and 1214
references. It may also have required intents defined at various locations within composite 1215
and component types as well as policySets defined at various locations. 1216
 1217
Both for ease of development as well as for deployment, the wiring constraints to relate 1218
services and references need to be determined. This is accomplished by matching 1219
constraints of the services and references to those of corresponding references and services 1220
in other components. 1221
 1222
In this process, the required intents, the binding instances, and the policySets that may 1223
apply to both sides of a wire play an important role. It must be possible to find binding 1224
instances on each side of a wire that are compatible with one another. In addition, concrete 1225
policies must be determined that satisfy the required intents for the service and the 1226
reference and are also compatible with each other. For services and references that make 1227
use of bidirectional interfaces, the same determination of matching bindings and policySets 1228
must also take place for the callbackReference and callbackService. 1229
 1230
Determining compatibility of wiring plays an important role prior to deployment as well as 1231
during the deployment phases of a component. For example, during development, it helps a 1232
developer to determine whether it is possible to wire services and references when the 1233
bindings and policySets are available in the development environment. During deployment, 1234
the wiring constraints determine whether wiring can be achievable. It does also aid in 1235
adding additional concrete policies or making adjustments to concrete policies in order to 1236
deliver the constraints. Here are the concepts that are needed in making wiring decisions: 1237
 1238

• The set of required wiring intents that individually apply to each service or reference. 1239
 1240

• When possible the intents that are required by the service, the reference and 1241
callback (if any) at the other end of the wire. This set is called the required intent set 1242

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

Formatted: Bullets and

Numbering

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 34 of 74

and is computed and MAY be used only when dealing with a wire connecting two 1243
components within the SCA Domain. When external connections are involved, from 1244
clients or to services that are outside the SCA domain, intents are only available for the 1245
end of the connection that is inside the domain. See Section "Preparing Services and 1246
References for External Connection" for more details. 1247

 1248
• The binding instances that apply to each side of the wire. 1249

 1250
• The policySets that apply to each service or reference. 1251

 1252
There may be many binding instances specified for a reference/service. If there are no 1253
binding instances specified on a service or a reference, then <sca:binding.sca> is assumed. 1254

 1255

The set of provided intents for a binding instance is the union of the intents listed in the 1256
“alwaysProvides” attribute and the “mayProvides” list of of its binding type (although the 1257
capabilities represented by the “mayProvides” intents will only be present if the intent is in 1258
the list of required intents for the binding instance). When an intent is directly provided by 1259
the binding type, there is no need to use policy set that provides that intent. 1260
 1261
When bidirectional interfaces are in use, the same selection of binding instances and 1262
policySets that provide the required intent are also performed for the callback bindings. 1263
 1264

4.10.1 Determining Wire Validity and Configuration 1265

 1266
The above approach determines the policySets that should be used in conjunction with the 1267
binding instances listed for services and references. For services and references that are 1268
resolved using SCA wires, the bindings and policySets chosen on each side of the wire may 1269
or may not be compatible. The following approach is used to determine whether they are 1270
compatible and the wire is valid. If the wire uses a bidirectional interface, then the following 1271
technique must find that valid configured bindings can be found for both directions of the 1272
bidirectional interface. 1273
 1274
Note that there may be many binding instances present at each side of the wire. The wiring 1275
compatibility algorithm below determines the compatibility of a wire by a pairwise choice of 1276
a binding instance and the corresponding policySets on each side of the wire. 1277
 1278
A potential binding pair is a pair of binding instances, one on each end of the wire, that 1279
have the same binding type. Each binding instance in the pair has a set of policy sets that 1280
were determined by the algorithm of the last section. If any potential binding pair has 1281
policySets on each end that are incompatible, then that pair of binding instances is removed 1282
as an option. The compatibility of policySets is determined by the policy language contained 1283
in the policySets. However, there are some special cases worth mentioning:\ 1284
 1285

• If both sides of the wire use the identical policySet (by referring to the same 1286
policySet by its QName in both sides of the wire), then they are compatible. 1287

 1288
• If the policySets contain WS-Policy attachments, then the following steps are used to 1289
determine their compatibility: 1290

 1291
1) The sca:policySet 1292

 1293

Formatted: Outline numbered

+ Level: 1 + Numbering Style:

Bullet + Aligned at: 0 cm +

Tab after: 0 cm + Indent at:

0 cm

Formatted: Outline numbered

+ Level: 1 + Numbering Style:

Bullet + Aligned at: 0 cm +

Tab after: 0 cm + Indent at:

0 cm

Formatted: Outline numbered

+ Level: 3 + Numbering Style:

1, 2, 3, … + Aligned at: 0 cm

+ Tab after: 0 cm + Indent

at: 0 cm

Formatted: Bullets and

Numbering

Deleted: The policySets
that apply to a service or
reference are determined

by starting with the
policySets that are
explicitly specified on that

service or reference, adding
in the policy sets for any

ancestor element, and then
finding the smallest set of

additional policySets that
provide the required wiring
intents that have not

already been satisfied
inherently by the binding
instances. (Please refer to
the Guided Selection of

PolicySets using Intents for
specifics of how the final
set of policySets are

determined. Selection of
the policySets utilize the
required wiring intents that

are computed above.)¶
¶

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 35 of 74

2) Reference elements within the policySet elements are removed 1294
recursively by replacing each reference with an equivalent policy 1295
expression encapsulated with sca:policySet element. 1296

 1297
3) The policy expressions within each policy set are normalized using WS-1298
Policy normalization rules to obtain a set of alternatives on each side of 1299
the wire. 1300

 1301
4) The resulting policy alternatives from each side of the wire are pairwise 1302
tested for compatibility using the WS-Policy intersection algorithm. WS-1303
Policy’s strict compatibility should be used by default. 1304

 1305
5) If the result of the WS-Policy intersection algorithm is non-empty, then 1306
the policy sets are considered compatible. 1307

 1308
For other policy languages, the policy language defines the comparison semantics. Where 1309
such policy languages are standardized by the SCA specifications, the SCA specifications will 1310
reference the definition of the comparison semantics or, if no such definition exists, the SCA 1311
specifications will provide a definition. 1312
 1313

4.11 Preparing Services and References for External Connection 1314

 1315
Services and references are sometimes not intended for SCA wiring, but for communication 1316
with software that is outside of the SCA domain. References may contain bindings that 1317
specify the endpoint address of a service that exists outside of the current SCA domain. 1318
Composite services that are deployed to the virtual domain composite specify bindings that 1319
can be exposed to clients that are outside of the SCA domain. When web service bindings 1320
are used, these services also may generate WSDL with attached policies that can be 1321
accessed by external clients (as described in the SCA Web Service Binding specification). 1322
 1323
Component services and references that have been promoted to composite services and 1324
references may connect to references and services in another SCA Domain or a non-SCA 1325
Domain. This section discusses the steps involved in the preparing such a service or 1326
reference for external connection. 1327
 1328
Essentially, this involves generating a WSDL interface for the service/reference and 1329
attaching to it policies that reflect abstract QoS requirements specified using intents and 1330
specific requirements using attached policySets. This section will discuss only the generation 1331
of policies. Generation of the WSDL interface is discussed in specifications for the various 1332
bindings, for example, binding.ws. 1333
 1334
Matching service/reference policies across the SCA Domain boundary will use WS-Policy 1335
compatibility (strict WS-Policy intersection) if the policies are expressed in WS-Policy 1336
syntax. For other policy languages, the policy language defines the comparison semantics. 1337
Where such policy languages are standardized by the SCA specifications, the SCA 1338
specifications will reference the definition of the comparison semantics or, if no such 1339
definition exists, the SCA specifications will provide a definition. 1340
 1341
For external services and references that make use of bidirectional interfaces, the same 1342
determination of matching policies must also take place for the callback. 1343
 1344

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

Formatted: Bullets and

Numbering

Formatted: Outline numbered

+ Level: 3 + Numbering Style:

1, 2, 3, … + Aligned at: 0 cm

+ Tab after: 0 cm + Indent

at: 0 cm

Formatted: Outline numbered

+ Level: 3 + Numbering Style:

1, 2, 3, … + Aligned at: 0 cm

+ Tab after: 0 cm + Indent

at: 0 cm

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 36 of 74

The policies that apply to the service/reference are now computed as discussed in Guided 1345
Selection of PolicySets using Intents. 1346

4.12 Guided Selection of PolicySets using Intents 1347

 1348
This section describes the selection of concrete policies that satisfy a set of required intents 1349
expressed for an element. The purpose of the algorithm is to construct the set of concrete 1350
policies that apply to an element taking into account the explicitly declared policySets that 1351
may be attached to an element as well as the externally attached. The aim is to satisfy all 1352
of the intents expressed for each element. 1353
 1354
Note: In the following algorithm, the following rule is observed whenever an 1355
intent set is computed. 1356
When a profile intent is encountered in either a @requires or @provides attribute, it is 1357
assumed that the profile intent is immediately replaced by the intents that it is composed 1358
by, namely by all the intents that appear in the profile intent’s @requires attribute. This rule 1359
is applied recursively until profile intents do not appear in an intent set. [This is stated 1360
generally, in order to not have to restate this processing step at multiple places in the 1361
algorithm]. 1362
 1363
Algorithm for Matching Intents and PolicySets: 1364

 1365

A. Calculate the required intent set that applies to the target element as follows: 1366
1. Start with the list of intents specified in the element's @requires attribute. 1367
2. Add intents found in any related interface definition. 1368
3. Add intents found in the inherited @requires attributes of each ancestor element in 1369
the element's structural hierarchy as defined in Rule 1 in Section 4.2. 1370
4. Add intents found on elements below the target element in its implementation 1371
hierarchy as defined in Rule 2 in Section 4.2. 1372
5. If the element is a binding instance and its parent element (service, reference or 1373
callback) is wired, the required intents of the other side of the wire may be added to the 1374
intent set when they are available. This may simplify, or eliminate, the policy matching 1375
step later described in step C. 1376
6. Remove any intents that do not include the target element's type in their 1377
@constrains attribute. 1378
7. If the set of intents includes both a qualified version of an intent and an unqualified 1379
version of the same intent, remove the unqualified version from the set. 1380
8. Replace any remaining qualifiable intents with the default qualified form of that 1381
intent, according to the default qualifier in the definition of the intent. 1382
9. If the list of intents contains a mutually exclusive pair of intents, raise an error. 1383
 1384

 1385
* The required intent set now contains all intents that must be provided for the target 1386
element. 1387

 1388

B. Remove all directly supported intents from the required intent set. Directly supported 1389
intents are: 1390

• For a binding instance, the intents listed in the @alwaysProvides attribute of the 1391
binding type definition as well as the intents listed in the binding type’s @mayProvides 1392
attribute that are selected when the binding instance is configured. 1393

Formatted: Bullets and

Numbering

Formatted: Body Text, Adjust

space between Latin and Asian

text

Formatted: Bullets and

Numbering

Deleted: policySets
available in the SCA
Domain that are selected to

match a required intent

Deleted: ¶

Deleted: <#>Add intents
found in the @requires
attribute of each ancestor

element.¶

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 37 of 74

• For a implementation instance, the intents listed in the @alwaysProvides attribute of 1394
the implementation type definition as well as the intents listed in the implementation 1395
type’s @mayProvides attribute that are selected when the implementation instance is 1396
configured. 1397

 1398

* The remaining required intents must be provided by policySets. 1399
 1400
C. Calculate the list of policySets which are attached to the target element. 1401
 1402
The list of PolicySets which attached include those explicitly specified using the @policySets 1403
attribute and those which are externally attached. 1404
 1405
In this calculation, a policySet applies to a target element if the XPath expression contained 1406
in the policySet’s @appliesTo attribute is evaluated against the parent of the target element 1407
and the result of the XPath expression includes the target element. For example, 1408
@appliesTo=”binding.ws[@impl=’axis’]” will match any binding.ws element that has an 1409
@impl attribute value of ‘axis’. 1410

 1411

The list of explicitly specified policySets is calculated as follows: 1412
 1413

1. Start with the list of policySets specified in the element's @policySets attribute. 1414
2. If any of these explicitly listed policySets does not apply to the target element 1415

(binding or implementation) then the composite is invalid. The point of this rule 1416
is that it must have been a mistake to have explicitly listed a policySet on a 1417
binding or implementation element that cannot apply to that element. 1418

3. Include the values of @policySets attributes from ancestor elements. 1419
4. Remove any policySet where the XPath expression in that policySet’s @appliesTo 1420

attribute does not match the target element. It is not an error for an element to 1421
inherit a policySet from an ancestor element which doesn’t apply. 1422

 1423
The list of externally attached policySets is calculated as follows: 1424
 1425

1. For each <PolicyAttachment/> and <PolicySet/> element in the Domain, if the 1426
element is targeted by their @attachTo attribute, then the identified PolicySet 1427
applies to the element. 1428

2. Remove any policySet where the XPath expression in that policySet’s @appliesTo 1429
attribute does not match the target element. It is not an error for an element to 1430
be the target of a policySet which doesn’t apply. 1431

 1432
A policySet matches a required intent if any of the following are true: 1433
 1434

1. The required intent matches a provides intent in a policySet exactly. 1435
2. The provides intent is a parent (e.g. prefix) of the required intent (in this case 1436

the policySet must have an intentMap entry for the requested qualifier) 1437
3. The provides intent is more qualified than the required intent. 1438

 1439
D. Remove all required intents that are provided by the specified policySets. 1440
 1441
* All intents should now be satisfied. 1442
 1443
F. If the collection of policySets does not cover all the required intents, the configuration is 1444
not valid. 1445

Formatted: Font: Bold, Italic

Formatted: Body Text,

Numbered + Level: 1 +

Numbering Style: 1, 2, 3, … +

Start at: 1 + Alignment: Left +

Aligned at: 0.63 cm + Tab

after: 1.9 cm + Indent at: 1.9

cm, Adjust space between

Latin and Asian text, Tabs: Not

at 0.63 cm + 1.27 cm

Formatted: Font: Bold, Italic

Formatted: Body Text,

Numbered + Level: 1 +

Numbering Style: 1, 2, 3, … +

Start at: 1 + Alignment: Left +

Aligned at: 0.63 cm + Tab

after: 1.9 cm + Indent at: 1.9

cm, Adjust space between

Latin and Asian text

Formatted: Font: Italic

Formatted: Body Text,

Numbered + Level: 1 +

Numbering Style: 1, 2, 3, … +

Start at: 1 + Alignment: Left +

Aligned at: 0.63 cm + Tab

after: 1.9 cm + Indent at: 1.9

cm, Adjust space between

Latin and Asian text, Tabs: Not

at 0.63 cm + 1.27 cm

Deleted: explicitly specified

Deleted: that apply

Deleted: * The remaining
required intents, if any, are
provided by finding

additional matching
policySets within the SCA
Domain.¶

¶
E. Choose the smallest
collection of additional
policySets that match all

remaining required intents.¶
¶
¶

Deleted: no

Deleted: s

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 38 of 74

 1446
When the configuration is not valid, it means that the required intents are not being 1447
correctly satisfied. However, an SCA Domain may allow a deployer to force deployment 1448
even in the presence of such errors. The behaviors and options enforced by a deployer is 1449
not specified. 1450
 1451

Deleted: G. If there is not
one unique smallest
collection of policySets that

satisfy all required intents,
then the composite
definition document is not
valid. The composite

definition must be changed
so that either it has enough
explicit policySets declared

that the ambiguity is
removed or additional
intents are added to

remove the ambiguity.¶
¶

Deleted: H. If a required
intent is unqualified and

matches a policySet that is
also unqualified, then the
intentMap entry for the

qualifier that is marked
with default=”true” should
be used.¶

Deleted: ¶

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 39 of 74

5 Implementation Policies 1452

 1453

The basic model for Implementation Policies is very similar to the model for interaction 1454
policies described above. Abstract QoS requirements, in the form of intents, may be 1455
associated with SCA component implementations to indicate implementation policy 1456
requirements. These abstract capabilities are mapped to concrete policies via policySets at 1457
deployment time. Alternatively, policies can be associated directly with component 1458
implementations. 1459
 1460
The following example shows how intents can be associated with an implementation: 1461
 1462
<component name="xs:NCName" … > 1463

<implementation. * … 1464
requires ="listOfQNames" > 1465
… 1466

</ implementation > 1467
… 1468

</ component > 1469
 1470
If, for example, one of the intent names in the value of the @requires attribute is ‘logging’, 1471
this indicates that all messages to and from the component must be logged. The technology 1472
used to implement the logging is unspecified. Specific technology is selected when the 1473
intent is mapped to a policySet (unless the implementation type has native support for the 1474
intent, as described in the next section). A list of required implementation intents may also 1475
be specified by any ancestor element of the <sca:implementation> element. The effective 1476
list of required implementation intents is the union of intents specified on the 1477
implementation element and all its ancestors. 1478
 1479
In addition, one or more policySets may be specified directly by associating them with the 1480
implementation of a component. 1481
 1482
<component name="xs:NCName" … > 1483

<implementation. * 1484
policySets =" ="listOfQNames" > 1485

 … 1486
</ implementation > 1487

 … 1488
</c omponent > 1489
 1490
If any of the explicitly listed policy sets includes an intent map, then the intent map entry 1491
used will be the one for the appropriate intent qualifier(s) listed in the effective list of 1492
required intents. If no qualifier is specified for an intent map’s qualifiable intent, then the 1493
default qualifier is used. 1494
 1495
The above example shows how intents and policySets may be specified on a component. It 1496
is also possible to specify required intents and policySets within the implementation. How 1497
this is done is defined by the implementation type. 1498
 1499

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

Formatted: English (U.S.)

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 40 of 74

The required intents and policy sets are specified on the <sca:implementation.*> element 1500
within the component type. This is important because intent and policy set definitions need 1501
to be able to specify that they constrain an appropriate implementation type. 1502
<componentType > 1503

<implementation. * requires ="listOfQNames" policySets ="listOfQNames" > 1504
… 1505

</ implementation > 1506
… 1507

</ componentType > 1508
 1509
When applying policies, the intents required by the implementation are added to the intents 1510
required by the using component. For the explicitly listed policySets, the list in the 1511
component may override policySets from the component type. More precisely, a policySet 1512
on the componentType is considered to be overridden, and is not used, if it has a @provides 1513
list that includes an intent that is also listed in any component policySet @provides list. 1514

 1515

5.1 Natively Supported Intents 1516

Each implementation type (e.g. <sca.implementation.java> or <sca.implementation.bpel>) 1517
has an implementation type definition within the SCA Domain. The form of the 1518
implementation type definition is as follows: 1519
 1520
<implementationType type ="NCName" 1521

alwaysProvides ="listOfQNames"? mayProvide ="listOfQNames"? /> 1522
 1523

The @type attribute should specify the QName of an XSD global element definition that will 1524
be used for implementation elements with of that type (e.g. sca:implementation.java). 1525
There are two lists of intents. The intents in the @mayProvide list are provided only for 1526
components that require them (they are present in the effective list of required intents). 1527
The intents in the @alwaysProvides list are provided irrespective of the list of required 1528
intents. 1529
 1530

5.2 Operation-Level Intents and PolicySets on Implementations 1531

 1532

It is also possible to declare implementation policies that apply only to specific operations of 1533
a service, rather than all of them, by associating intents and policySets with individual 1534
operations contained within implementations. The syntax is analogous to that proposed 1535
above. See the pseudo-schema below: 1536
 1537
<component name="xs:NCName" > 1538

<implementation. * policySets ="listOfQNames" 1539
requires ="list of intent xs:QNames" > 1540
 … 1541
<operation name="xs:string" service ="xs:string" ? 1542

policySets ="listOfQNames" ? 1543
requires ="listOfQNames" ?/> * 1544
… 1545

</ implementation > 1546
 … 1547

</ component > 1548
 1549

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

Formatted: English (U.S.)

Formatted: English (U.S.)

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 41 of 74

As in the pseudo-schema displayed earlier, the intents associated with the operation appear 1550
as the value of the optional @requires attribute. PolicySets may also be explicitly associated 1551
with the operation by using the optional @policySets attribute. If a policySet that is listed in 1552
@policySets provides a qualifiable intent that also is listed in the effective required intent 1553
list, then the qualifier is used to override the default qualifier in the policySet. 1554

 1555

Operations are identified by names which are xs:string values. The operation names will be 1556
names defined by the interface definition language. For example, for Java interfaces they 1557
will be Java names. For WSDL, they will be WSDL1.1 identifiers. See[WSDL -IDs] or WSDL 1558
2.0 Component Identifier names See [WSDL]. If more than one service implemented by this 1559
implementation has an operation with the same name, then the @service attribute is 1560
required in order to disambiguate them. However, if more than one operation within a single 1561
service has the same name (i.e. it is overloaded) then the values of the attributes 1562
@requires and @policySet are associated with all operations with that name. SCA does not 1563
currently provide a means for disambiguating overloaded operations. 1564
 1565
The algorithm for mapping of intents to policySets is described in Section Guided Selection 1566
of PolicySets using Intents. 1567

5.3 Writing PolicySets for Implementation Policies 1568

 1569
The @appliesTo attribute for a policySet takes an XPath expression that is applied to a 1570
binding or an implementation element. For implementation policies, in most cases, all that is 1571
needed is the QName of the implementation type. Implementation policies may be 1572
expressed using any policy language (which is to say, any configuration language). For 1573
example, XACML or EJB-style annotations may be used to declare authorization policies. 1574
Other capabilities could be configured using completely proprietary configuration formats. 1575
For example, a policySet declared to turn on trace-level logging for some fictional BPEL 1576
executions engine would be declared as follows: 1577
 1578
<policySet name=”loggingPolicy” provides ="acme:logging.trace" 1579

appliesTo ="sca:implementation.bpel" … > 1580
<acme:processLogging level ="3" /> 1581

</ policySet > 1582
 1583
PolicySets or intent map entries may include PolicyAttachment elements. A 1584
PolicyAttachment element has a child-element called AppliesTo followed by a policy 1585
expression. The AppliesTo indicates the subject that the policy applies to. In the SCA case, 1586
the policy subject is indicated by where the policySet is attached and so, this will generally 1587
be omitted. (This AppliesTo element should not be confused with the @appliesTo attribute 1588
for a policySet. They have quite different meanings.) 1589
 1590
Following the AppliesTo is a policy expression. In WS-Policy [WS-Policy] this can be a WS-1591
Policy expression or a WS-PolicyReference, For SCA, we need to generalize this to contain 1592
policy expressions in other policy languages. 1593
 1594

5.3.1 Non WS-Policy Examples 1595

 1596
Authorization policies expressed in XACML could be used in the framework in two ways: 1597
 1598

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 42 of 74

1. Embed XACML expressions directly in the PolicyAttachment element using the 1599
extensibility elements discussed above, or 1600
2. Define WS-Policy assertions to wrap XACML expressions. 1601
 1602
For EJB-style authorization policy, the same approach could be used: 1603
 1604
1. Embed EJB-annotations in the PolicyAttachment element using the extensibility elements 1605
discussed above, or 1606
2. Use the WS-Policy assertions defined as wrappers for EJB annotations. 1607

 1608

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 43 of 74

6 Roles and Responsibilities 1609

There are 4 roles that are significant for the SCA Policy Framework. The following is a list of 1610
the roles and the artifacts that the role creates: 1611
 1612

• Policy Administrator – policySet definitions and intent definitions 1613
• Developer – Implementations and component types 1614
• Assembler - Composites 1615
• Deployer – Composites and the SCA Domain (including the logical Domain-level 1616
composite) 1617

 1618

6.1 Policy Administrator 1619

An intent represents a requirement that a developer or assembler can make, which 1620
ultimately must be satisfied at runtime. The full definition of the requirement is the informal 1621
text description in the intent definition. 1622
 1623
The policy administrator’s job is to both define the intents that are available and to define 1624
the policySets that represent the concrete realization of those informal descriptions for 1625
some set of binding type or implementation types. See the sections on intent and policySet 1626
definitions for the details of those definitions. 1627

 1628

6.2 Developer 1629

When it is possible for a component to be written without assuming a specific binding type 1630
for its services and references, then the developer uses intents to specify requirements in 1631
a binding neutral way. 1632
 1633
If the developer requires a specific binding type for a component, then the developer can 1634
specify bindings and policySets with the implementation of the component. Those bindings 1635
and policySets will be represented in the component type for the implementation (although 1636
that component type might be generated from the implementation). 1637
 1638
If any of the policySets used for the implementation include intentMaps, then the default 1639
choice for the intentMap can be overridden by an assembler or deployer by requiring a 1640
qualified intent that is present in the intentMap. 1641

 1642

6.3 Assembler 1643

An assembler creates composites. Because composites are implementations, an assembler 1644
is like a developer, except that the implementations created by an assembler are 1645
composites made up of other components wired together. So, like other developers, the 1646
assembler can specify required intents or bindings or policySets on any service or reference 1647
of the composite. 1648
 1649
However, in addition the definition of composite-level services and references, it is also 1650
possible for the assembler to use the policy framework to further configure components 1651

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

Formatted: Indent: First line:

0 cm, Bulleted + Level: 1 +

Aligned at: 0 cm + Tab after:

0 cm + Indent at: 0 cm

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 44 of 74

within the composite. The assembler may add additional requirements to any component’s 1652
services or references or to the component itself (for implementation policies). The 1653
assembler may also override the bindings or policySets used for the component. See the 1654
assembly specification’s description of overriding rules for details on overriding. 1655
 1656
As a shortcut, an assembler can also specify intents and policySets on any element in the 1657
composite definition, which has the same effect as specifying those intents and policySets 1658
on every applicable binding or implementation below that element (where applicability is 1659
determined by the @appliesTo attribute of the policySet definition or the @constrains 1660
attribute of the intent definition). 1661
 1662

6.4 Deployer 1663

A deployer deploys implementations (typically composites) into the SCA Domain. It is the 1664
deployers job to make the final decisions about all configurable aspects of an 1665
implementation that is to be deployed and to make sure that all required intents are 1666
satisfied. 1667
 1668
If the deployer determines that an implementation is correctly configured as it is, then the 1669
implementation may be deployed directly. However, more typically, the deployer will create 1670
a new composite, which contains a component for each implementation to be deployed 1671
along with any changes to the bindings or policySets that the deployer desires. 1672

1093 When the deployer is determining whether the existing list of policySets is correct for 1673
a component, the deployer needs to consider both the explicitly listed policySets as well as 1674
the policySets that will be chosen according to the algorithm specified in Guided Selection of 1675
PolicySets using Intents. 1676

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 45 of 74

7 Security Policy 1677

 1678
The SCA Security Model provides SCA developers the flexibility to specify the required level 1679
of security protection for their components to satisfy business requirements without the 1680
burden of understanding detailed security mechanisms. 1681
 1682
The SCA Policy framework distinguishes between two types of policies: interaction policy 1683
and implementation policy. Interaction policy governs the communications between 1684
clients and service providers and typically applies to Services and References. In the 1685
security space, interaction policy is concerned with client and service provider authentication 1686
and message protection requirements. Implementation policy governs security constraints 1687
on service implementations and typically applies to Components. In the security space, 1688
implementation policy concerns include access control, identity delegation, and other 1689
security quality of service characteristics that are pertinent to the service implementations. 1690
 1691
The SCA security interaction policy can be specified via intents or policySets. Intents 1692
represent security quality of service requirements at a high abstraction level, independent 1693
from security protocols, while policySets specify concrete policies at a detailed level which 1694
are typically security protocol specific. 1695
 1696
The SCA security policy can be specified either in the SCDL or annotatively in the 1697
implementation code. Language-specific annotations are described in the respective 1698
language Client and Implementation specifications. 1699

 1700

7.1 SCA Security Intents 1701

The SCA security specification defines the following intents to specify interaction policy: 1702
authentication, confidentiality, and integrity. 1703
 1704
authentication – the authentication intent is used to indicate that a client must 1705
authenticate itself in order to use an SCA service. Typically, the client security infrastructure 1706
is responsible for the server authentication in order to guard against a "man in the middle" 1707
attack. 1708
 1709
confidentiality – the confidentiality intent is used to indicate that the contents of a 1710
message are accessible only to those authorized to have access (typically the service client 1711
and the service provider). A common approach is to encrypt the message, although other 1712
methods are possible. 1713
 1714
integrity – the integrity intent is used to indicate that assurance is required that the 1715
contents of a message have not been tampered with and altered between sender and 1716
receiver. A common approach is to digitally sign the message, although other methods are 1717
possible. 1718

 1719
Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 46 of 74

7.2 Interaction Security Policy 1720

Any one of the three security intents may be further qualified to specify more specific 1721
business requirements. Two qualifiers are defined by the SCA security specification: 1722
transport and message, which can be applied to any of the above three intent’s. 1723

 1724

7.2.1 Qualifiers 1725

transport – the transport qualifier specifies the qualified intent should be realized at the 1726
transport layer of the communication protocol. 1727
 1728
message – the message qualifier specifies that the qualified intent should be realized at the 1729
message level of the communication protocol. 1730
 1731
The following example snippet shows the usage of intents and qualified intents. 1732
 1733
<composite name="example" requires ="confidentiality" > 1734

<service name="foo" /> 1735
… 1736

<reference name="bar" requires ="confidentiality.message" /> 1737
</ composite > 1738
 1739
In this case, the composite declares that all of its services and references must guarantee 1740
confidentiality in their communication by setting requires="confidentiality". This applies to 1741
the "foo" service. However, the “bar” reference further qualifies that requirement to 1742
specifically require message-level security by setting requires="confidentiality.message". 1743

 1744

7.2.2 Operation Level Intents 1745

Intents may be specified at the operation level. The operation element does not distinguish 1746
operations with different arguments. Operation level intents override the service level 1747
intents of the same type. For example an operation level “confidentiality.message” intent 1748
would override service level “confidentiality” intent, but would not override other types of 1749
intents at service level such as “integrity” and “authentication” intents. 1750
 1751
Use the following implementation as an example. 1752
 1753
public interface HelloService { 1754
String hello(String message); 1755
} 1756
 1757
import org.osoa.sca.annotations.*; 1758
 1759
@Service(HelloServiceImpl.class) 1760
public class HelloServiceImpl implements HelloServi ce { 1761
 public String hello(String message) { 1762
... 1763
} 1764
 1765
Consider the following composite document: 1766

 1767

<service name="HelloServiceImpl" 1768

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

Formatted: French (France)

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 47 of 74

requires ="authentication integrity.transport 1769
confidentiality.transport" > 1770

<interface.wsdl interface ="…#wsdl.interface(HelloService)" /> 1771
<operation name="hello" 1772

requires ="authentication.message integrity.message" /> 1773
<binding.ws /> 1774

</ service > 1775

 1776

The effective QoS intent’s on the “hello” operation of the HelloService are 1777
“authentication.message”, “integrity.message”, and “confidentiality.transport”. 1778
 1779

7.2.3 References to Concrete Policies 1780

 1781

In addition to the SCA intent model’s late binding approach, developers can reference 1782
concrete policies explicitly by attaching policySets directly, as shown below: 1783
 1784
<service name="foo" > 1785

<interface.wsdl interface ="..." /> 1786
<binding.ws policySets ="acme:CorporatePolicySet3" /> 1787

</ service > 1788
 1789
It is possible to use the @requires attribute and the @policySets attributes together during 1790
1184 development, it indicates the intention of the developer to configure the element, such 1791
as a binding, by the application of specific @policySets that are in scope for this element 1792
using the computed intents that apply to this element. The @requires attribute designates a 1793
configuration of concrete policies specified by the policySets overiding the defaults specified 1794
in the policySets. 1795

 1796

7.3 Implementation Security Policy 1797

SCA security model provides a policy reference mechanism which can specify security 1798
implementation policy files external to the SCA composite document. Security 1799
implementation policy of component implementation such as EJB can be defined in J2EE 1800
deployment descriptor ejb-jar.xml which can be referred to by the policy reference 1801
document. Additionally SCA security model defines a security implementation policy that 1802
may be used by POJO component implementation as well as other type of component 1803
implementations. 1804

 1805

7.3.1 Authorization and Security Identity Policy 1806

Two policy assertions are defined which apply to implementations – Authorization and 1807
SecurityIdentity. Authorization controls who can access the protected SCA resources. A 1808
security role is an abstract concept that represents a set of access control constraints on 1809
SCA resources such as composites, components, and operations. The approach and scope of 1810
the mapping of role names to security principals is SCA runtime implementation dependent. 1811
Scope implies the set of artifacts contained by some higher-level artifact, so that a 1812
composite contains components, a component contains services and references, services 1813
and reference contain an interface, an interface contains operations. 1814
 1815

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 48 of 74

Security Identity declares the security identity under which an operation will be executed. 1816
There are two mutually exclusive choices to configure the identity, <useCallerIdentity/> and 1817
<runAs/>. Both are represented as policy assertions that would be used within policySets 1818
created for implementations (i.e. implementation policies). The following policy assertions 1819
are defined: 1820
 1821
<securityIdentity> 1822
 <useCallerIdentity/> 1823
 … or … 1824
 <runAs role="xs:NCName"/> 1825
</securityIdentity> 1826
 1827
The <useCallerIdentity> policy assertion specifies that an operation will be executed under 1828
the invoker’s principal. This is the default policy in the absence of a <securityIdentity> 1829
element. If the <securityIdentity> policy is <useCallerIdentity> (either explicitly or by 1830
default) and the caller did not authenticate, then the principal used is SCA runtime 1831
implementation dependent. 1832
 1833
The <runAs> policy assertion specifies the name of a security role. Any code so annotated 1834
will run with the permissions of that role. How runAs role names are mapped to security 1835
principals is implementation dependent. 1836
 1837
 1838
Authorization declarations describe the role constraints on a composite, component, service 1839
or reference. This declaration allows one of three mutually exclusive choices to configure 1840
authorization policy, <allow/>, <permitAll/> and <denyAll/>. 1841
 1842
<authorization> 1843
 <allow roles="listOfNCNames"/> 1844
 … or … 1845
 <permitAll/> 1846
 … or … 1847
 <denyAll/> 1848
</authorization> 1849
 1850
The <allow> element indicates that access is granted only to principals whose role 1851
corresponds to one of the role names listed in the @roles attribute. How role names are 1852
mapped to security principals is SCA Runtime implementation dependent (SCA does not 1853
define this). 1854
 1855
The <permitAll/> and <denyAll/> policy assertions grant or deny access to all principals, 1856
respectively. 1857
 1858
A policySet MAY contain more than one <authorization> or <securityIdentity> element, but 1859
the SCA Runtime MUST raise an error if more than one of either element is in effect at the 1860
same time. For example, multiple <authorization> elements can appear on different 1861
branches of an intent Map as long as only one of the branches will be in effect at runtime. 1862

 1863

7.3.2 Implementation Policy Example 1864

 1865

The following is an example implementation, written in Java. The AccountServiceImpl 1866
implements the AccountService interface, which is defined via a Java interface: 1867

Deleted: <allow
roles ="listOfNCNames" >¶
¶
When t

Deleted: is included in a

policySet used on a
component, then

Deleted: component can

only be accessed by

Deleted: <permitAll />¶
<denyAll />¶
¶

Deleted: /

Deleted: <runAs
role ="xs:NCName" >¶
¶
The <runAs> policy
assertion specifies the

name of a security role.
Any code so annotated will
run with the permissions of

that role. How runAs role
names are mapped to
security principals is

implementation dependent.¶

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 49 of 74

 1868
package services.account; 1869
 1870
@Remotable 1871
 1872
public interface AccountService{ 1873
 1874

public AccountReport getAccountReport(String customerID); 1875
} 1876
 1877
The following is a composite that contains an AccountServiceComponent, which should be 1878
accessible by anyone with the “customer” role. 1879
 1880
<composite xmlns ="http://www.osoa.org/xmlns/sca/1.0" 1881

name="AccountService" > 1882
<component name="AccountServiceComponent" >* 1883

<implementation.java class ="services.account.AccountServiceImpl" 1884
policySets ="acme:allow_customers" /> 1885

</ component > 1886
</ composite > 1887
 1888
The following is what the policySet definition looks like for this case. 1889
 1890
<policySet name="allow_customers" > 1891
 <authorization> 1892

<allow roles ="customers" / > 1893
 </authorization> 1894
</ policySet > 1895
 1896

7.3.3 SCA Component Container Requirements 1897

 1898

SCA component containers MUST support the SCA policy intent model including annotated 1899
intent and policySets reference. Additionally SCA component containers MUST satisfy the 1900
following security management requirements. 1901

 1902

7.3.4 Security Identity Propagation 1903

SCA container MUST establish security identity when authentication is required based on the 1904
security intents before executing the SCA component implementation. The security identity 1905
under which the operation is executed is determined by the run-as security policy. It is 1906
either the user identity who invokes the SCA operation or the identity that represents the 1907
run-as security role. When an SCA operation invokes other SCA services, SCA component 1908
container must propagate the security identity along with the SCA request. 1909
 1910

7.3.5 Security Identity Of Async Callback 1911

In SCA async programming model, the security identity that executes the callback operation 1912
by default should be the same as security identity under which the original operation was 1913
executed. 1914
 1915

Formatted: Indent: First line:

0 cm

Formatted: French (France)

Deleted: ¶

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 50 of 74

7.3.6 Default Authorization Policy 1916

It may happen that some operations are not assigned any security roles and are not marked 1917
as DenyAll or PermitAll. In the SCA deployment process, those operations must be assigned 1918
security roles or marked as DenyAll or PermitAll. At runtime time if any operations are not 1919
associated with any explicit authorization policy, no access control will be enforced on those 1920
operations, i.e., PermitAll. 1921
 1922

7.3.7 Default RunAs Policy 1923

Operations will be executed as if <useCallerIdentity/> were specified if no RunAs role policy 1924
is explicitly specified. 1925

 1926

Deleted: under
authentication user identity

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 51 of 74

8 Reliability Policy 1927

Failures can affect the communication between a service consumer and a service provider. 1928
Depending on the characteristics of the binding, these failures could cause messages to be 1929
redelivered, delivered in a different order than they were originally sent out or even worse, 1930
could cause messages to be lost. Some transports like JMS provide built-in reliability 1931
features such as at least once and exactly once message delivery. Other transports like 1932
HTTP need to have additional layers built on top of them to provide some of these features. 1933
 1934
The events that occur due to failures in communication may affect the outcome of the 1935
service invocation. For an implementation of a stock trade service, a message redelivery 1936
could result in a new trade. A client (i.e. consumer) of the same service could receive a fault 1937
message if trade orders are not delivered to the service implementation in the order they 1938
were sent out. In some cases, these failures could have dramatic consequences. 1939
 1940
An SCA developer can anticipate some types of failures and work around them in service 1941
implementations. For example, the implementation of a stock trade service could be 1942
designed to support duplicate message detection. An implementation of a purchase order 1943
service could have built in logic that orders the incoming messages. In these cases, service 1944
implementations don’t need the binding layers to provide these reliability features (e.g. 1945
duplicate message detection, message ordering). However, this comes at a cost: extra 1946
complexity is built in the service implementation. Along with business logic, the service 1947
implementation has additional logic that handles these failures. 1948
 1949
Although service implementations can work around some of these types of failures, it is 1950
worth noting that is not always possible. A message may be lost or expire even before it is 1951
delivered to the service implementation. 1952
 1953
Instead of handling some of these issues in the service implementation, a better way of 1954
doing it is to use a binding or a protocol that supports reliable messaging. This is better, not 1955
just because it simplifies application development, it may also lead to better throughput. For 1956
example, there is less need for application-level acknowledgement messages. A binding 1957
supports reliable messaging if it provides features such as message delivery guarantees, 1958
duplicate message detection and message ordering. 1959
 1960
It is very important for the SCA developer to be able to require, at design-time, a binding or 1961
protocol that supports reliable messaging. SCA defines a set of policy intents that can be 1962
used for specifying reliable messaging Quality of Service requirements. These reliable 1963
messaging intents establish a contract between the binding layer and the application layer 1964
(i.e. service implementation or the service consumer implementation) (see below). 1965

 1966

8.1 Policy Intents 1967

 1968

Based on the use-cases described above, we define the following policy intents. It’s worth 1969
noting that SCA does not provide support for attaching an intent at a message level. 1970
Therefore, an intent attached at an operation level applies to all the messages in the 1971
operation (e.g. both request and response messages for a request/response message 1972
exchange pattern). 1973

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 52 of 74

1) atLeastOnce - The binding implementation guarantees that a message that is 1974
successfully sent by a service consumer is delivered to the destination (i.e. service 1975
implementation). The message could be delivered more than once to the service 1976
implementation. 1977
 1978

The binding implementation guarantees that a message that is successfully sent by a 1979
service implementation is delivered to the destination (i.e. service consumer). The 1980
message could be delivered more than once to the service consumer. 1981

 1982
2) atMostOnce - The binding implementation guarantees that a message that is 1983
successfully sent by a service consumer is not delivered more than once to the service 1984
implementation. The binding implementation does not guarantee that the message is 1985
delivered to the service implementation. 1986
 1987

The binding implementation guarantees that a message that is successfully sent by a 1988
service implementation is not delivered more than once to the service consumer. The 1989
binding implementation does not guarantee that the message is delivered to the 1990
service consumer. 1991
 1992

3) ordered – The binding implementation guarantees that the messages are delivered 1993
to the service implementation in the order in which they were sent by the service 1994
consumer. This intent does not guarantee that messages that are sent by a service 1995
consumer are delivered to the service implementation. 1996
 1997

The binding implementation guarantees that the messages are delivered to the 1998
service consumer in the order in which they were sent by the service 1999
implementation. This intent does not guarantee that messages that are sent by the 2000
service implementation are delivered to the service consumer. 2001

 2002
4) exactlyOnce - The binding implementation guarantees that a message sent by a 2003
service consumer is delivered to the service implementation. Also, the binding 2004
implementation guarantees that the message is not delivered more than once to the 2005
service implementation. 2006
 2007

The binding implementation guarantees that a message sent by a service 2008
implementation is delivered to the service consumer. Also, the binding 2009
implementation guarantees that the message is not delivered more than once to the 2010
service consumer. 2011
 2012

NOTE: This is a profile intent, which is composed of atLeastOnce and atMostOnce. 2013

 2014

This is the most reliable intent since it guarantees the following: 2015
 2016

• message delivery – all the messages sent by a sender are delivered to the service 2017
implementation (i.e. Java class, BPEL process, etc.). 2018
 2019
• duplicate message detection and elimination – a message sent by a sender is not 2020
processed more than once by the service implementation. 2021

 2022
How can a binding implementation guarantee that a message that it receives is delivered to 2023
the service implementation? One way to do it is by persisting the message and keeping 2024
redelivering it until it is processed by the service implementation. That way, if the system 2025

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 53 of 74

crashes after delivery but while processing it, the message will be redelivered on restart and 2026
processed again. Since a message could be delivered multiple times to the service 2027
implementation, this technique usually requires the service implementation to perform 2028
duplicate message detection. However, that is not always possible. Often times service 2029
implementations that perform critical operations are designed without having support for 2030
duplicate message detection. Therefore, they cannot process an incoming 2031
message more than once. 2032

 2033

Also, consider the scenario where a message is delivered to a service implementation that 2034
does not handle duplicates - the system crashes after a message is delivered to the service 2035
implementation but before it is completely processed. Should the underlying layer redeliver 2036
the message on restart? If it did that, there is a risk that some critical operations (e.g. 2037
sending out a JMS message or updating a DB table) will be executed again when the 2038
message is processed. On the other hand, if the underlying layer does not redeliver the 2039
message, there is a risk that the message is never completely processed. 2040
 2041
This issue cannot be safely solved unless all the critical operations performed by the service 2042
implementation are running in a transaction. Therefore, exactlyOnce cannot be assured 2043
without involving the service implementation. In other words, an exactlyOnce message 2044
delivery does not guarantee exactlyOnce message processing unless the service 2045
implementation is transactional. It’s worth noting that this is a necessary condition but not 2046
sufficient. The underlying layer (e.g. binding implementation, container) would have to 2047
ensure that a message is not redelivered to the service implementation after the transaction 2048
is committed. As an example, a way to ensure it when the binding uses JMS is by making 2049
sure the operation that acknowledges the message is executed in the same transaction the 2050
service implementation is running in. 2051

 2052

8.2 End to end Reliable Messaging 2053

Failures can occur at different points in the message path: in the binding layer on the 2054
sender side, in the transport layer or in the binding layer on the receiver side. The SCA 2055
service developer doesn’t really care where the failure occurs. Whether a message was lost 2056
due to a network failure or due to a crash of the machine where the service is deployed, is 2057
not that much important. What is important though, is that the contract between the 2058
application layer (i.e. service implementation or service consumer) and the binding layer is 2059
not violated (e.g. a message that was successfully transmitted by a sender is always 2060
delivered to the destination; a message that was successfully transmitted by a sender is not 2061
delivered more than once to the service implementation, etc). It is worth noting that 2062
the binding layer could throw an exception when a sender (e.g. service consumer, service 2063
implementation) sends a message out. This is not considered a successful message 2064
transmission. 2065
 2066
In order to ensure the semantics of the reliable messaging intents, the entire message path, 2067
which is composed of the binding layer on the client side, the transport layer and the 2068
binding layer on the service side, must be reliable. 2069

 2070

8.3 Intent definitions 2071

<?xml version ="1.0" encoding ="ASCII" ?> 2072
<definitions xmlns ="http://www.osoa.org/xmlns/sca/1.0" > 2073

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 54 of 74

<intent name="atLeastOnce" 2074
appliesTo ="sca:binding" > 2075
<description > 2076

This intent is used to indicate that a message sent 2077
by a client is always delivered to the component. 2078

</ description > 2079
</ intent > 2080

 2081
<intent name="atMostOnce" 2082

appliesTo ="sca:binding" > 2083
<description > 2084

This intent is used to indicate that a message that was 2085
successfully sent by a client is not delivered more than 2086
once to the component. 2087

 2088
</ description > 2089

</ intent > 2090
 2091

<intent name="ordered" 2092
appliesTo ="sca:binding" > 2093
<description > 2094

This intent is used to indicate that all the messag es 2095
are delivered to the component in the order they we re 2096
sent by the client. 2097

</ description > 2098
</ intent > 2099

 2100
<intent name="exactlyOnce" 2101

appliesTo ="sca:binding" requires ="atLeastOnce atMostOnce" > 2102
<description > 2103

This profile intent is used to indicate that a mess age 2104
sent by a client is always delivered to the compone nt. 2105
It also indicates that duplicate messages are not 2106
delivered to the component. 2107

</ description > 2108
</ intent > 2109

</definitions> 2110

 2111

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 55 of 74

9 Miscellaneous Intents 2112

The following are standard intents that apply to bindings and are not related to either 2113
security or reliable messaging: 2114

 2115

SOAP – The SOAP intent specifies that the SOAP messaging model should be used for 2116
delivering messages. It does not require the use of any specific transport technology for 2117
delivering the messages, so for example, this intent can be supported by a binding that 2118
sends SOAP messages over HTTP, bare TCP or even JMS. If the intent is required in an 2119
unqualified form then any version of SOAP is acceptable. Standard qualified intents also 2120
exist for SOAP.1_1 and SOAP.1_2, which specify the use of versions 1.1 or 1.2 of SOAP 2121
respectively. 2122
 2123
JMS – The JMS intent does not specify a wire-level transport protocol, but instead requires 2124
that whatever binding technology is used, the messages should be able to be delivered and 2125
received via the JMS API. 2126
 2127
NoListener – This intent may only be used within the @requires attribute of a reference. It 2128
states that the client is not able to handle new inbound connections. It requires that the 2129
binding and callback binding be configured so that any response (or callback) comes either 2130
through a back channel of the connection from the client to the server or by having the 2131
client poll the server for messages. An example policy assertion that would guarantee this is 2132
a WS-Policy assertion that applies to the <binding.ws> binding, which requires the use of 2133
WS-Addressing with anonymous responses (e.g. 2134
<wsaw:Anonymous>required</wsaw:Anonymous>” – see 2135
http://www.w3.org/TR/ws-addr-wsdl/#anonelement). 2136
 2137
BP.1_1 – This intent specifies the use of a binding that conforms to the WS-I Basic Profile 2138
version 1.1. Any binding or policySet that provides this intent should also provide the SOAP 2139
intent. However, the BP intent is not a profile intent, since it is not completely satisfied by 2140
the lower-level SOAP– there are additional semantic requirements. 2141
 2142
Conversational - This intent is meant to be used on an interface, and indicates that the 2143
interface is "conversational" as defined in the SCA Assembly Specification [SCA-Assembly]. 2144
 2145
 2146

Deleted: <#>Conformance¶

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 56 of 74

10 Transactions 2147

SCA recognizes that the presence or absence of infrastructure for ACID transaction 2148
coordination has a direct effect on how business logic is coded. In the absence of ACID 2149
transactions, developers must provide logic that coordinates the outcome, compensates for 2150
failures, etc. In the presence of ACID transactions, the underlying infrastructure is 2151
responsible for ensuring the ACID nature of all interactions. SCA provides declarative 2152
mechanisms for describing the transactional environment required by the business logic. 2153
Components that use a synchronous interaction style can be part of a single, distributed 2154
ACID transaction within which all transaction resources are coordinated to either atomically 2155
commit or rollback. The transmission or receipt of oneway messages can, depending on the 2156
transport binding, be coordinated as part of an ACID transaction as illustrated in the 2157
OneWay Invocations section below. Well-known, higher-level patterns such as store-and-2158
forward queuing can be accomplished by composing transacted one-way messages with 2159
reliable-messaging qualities of service. 2160
This document describes the set of abstract policy intents – both implementation intents 2161
and interaction intents – that can be used to describe the requirements on a concrete 2162
service component and binding respectively. 2163

10.1 Out of Scope 2164

The following topics are outside the scope of this document: 2165
• The means by which transactions are created, propagated and established as part 2166

of an execution context. These are details of the SCA runtime provider and 2167
binding provider. 2168

• The means by which a transactional resource manager (RM) is accessed. These 2169
include, but are not restricted to: 2170

o abstracting an RM as an sca:component 2171

o accessing an RM directly in a language-specific and RM-specific fashion 2172

o abstracting an RM as an sca:binding 2173

 2174

10.2 Common Transaction Patterns 2175

In the absence of any transaction policies there is no explicit transactional behavior defined 2176
for the SCA service component or the interactions in which it is involved and the 2177
transactional behavior is environment-specific. An SCA runtime provider may choose to 2178
define an out of band default transactional behavior that applies in the absence of any 2179
transaction policies. 2180
Environment-specific default transactional behavior may be overridden by specifying 2181
transactional intents described in the document. The most common transaction patterns can 2182
be summarized as follows: 2183
Managed, shared global transaction pattern – the service always runs in a global 2184
transaction context regardless of whether the requester runs under a global transaction. If 2185
the requester does run under a transaction, the service runs under the same transaction. 2186
Any outbound, synchronous request-response messages will – unless explicitly directed 2187
otherwise – propagate the service’s transaction context. This pattern offers the highest 2188

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Formatted: Font: Italic

Deleted: OneWay
Invocations

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 57 of 74

degree of data integrity by ensuring that any transactional updates are committed 2189
atomically 2190
Managed, local transaction pattern – the service always runs in a managed local 2191
transaction context regardless of whether the requester runs under a transaction. Any 2192
outbound messages will not propagate any transaction context. This pattern is 2193
recommended for services that wish the SCA runtime to demarcate any resource manager 2194
local transactions and do not require the overhead of atomicity. 2195
 2196
The use of transaction policies to specify these patterns is illustrated later in Table 2. 2197
 2198

10.3 Summary of SCA transaction policies 2199

This specification defines implementation and interaction policies that relate to transactional 2200
QoS in components and their interactions. The SCA transaction policies are specified as 2201
intents which represent the transaction quality of service behavior offered by specific 2202
component implementations or bindings. 2203
SCA transaction policy can be specified either in the SCDL or annotatively in the 2204
implementation code. Language-specific annotations are described in the respective 2205
language binding specifications, for example the SCA Java Common Annotations and APIs 2206
specification [SCA-Java-Annotations]. 2207
This specification defines the following implementation transaction policies: 2208

• managedTransaction – Describes the service component’s transactional 2209
environment. 2210

• transactedOneWay and immediateOneWay – two mutually exclusive intents that 2211
describe whether the SCA runtime will process OneWay messages immediately or 2212
will enqueue (from a client perspective) and dequeue (from a service 2213
perspective) a OneWay message as part of a global transaction. 2214

This specification also defines the following interaction transaction policies: 2215
• propagatesTransaction and suspendsTransaction – two mutually exclusive intents 2216

that describe whether the SCA runtime propagates any transaction context to a 2217
service or reference on a synchronous invocation. Note that transaction context 2218
MUST NOT be propagated on OneWay messages. 2219

 2220
 2221

10.4 Global and local transactions 2222

This specification describes “managed transactions” in terms of either “global” or “local” 2223
transactions. The “managed” aspect of managed transactions refers to the transaction 2224
environment provided by the SCA runtime for the business component. Business 2225
components may interact with other business components and with resource managers. The 2226
managed transaction environment defines the transactional context under which such 2227
interactions occur. 2228

10.4.1 Global transactions 2229

From an SCA perspective, a global transaction is a unit of work scope within which 2230
transactional work is atomic. If multiple transactional resource managers are accessed 2231
under a global transaction then the transactional work is coordinated to either atomically 2232
commit or rollback regardless using a 2PC protocol. A global transaction can be propagated 2233
on synchronous invocations between components – depending on the interaction intents 2234

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Deleted: Table 2

Deleted: Table 1

Deleted: [

Deleted: 3]

Deleted: .

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 58 of 74

described in this specification - such that multiple, remote service providers can execute 2235
distributed requests under the same global transaction. 2236

10.4.2 Local transactions 2237

From a resource manager perspective a resource manager local transaction (RMLT) is 2238
simply the absence of a global transaction. But from an SCA persective iti is not enough to 2239
simply declare that a piece of business logic runs without a global transaction context. 2240
Business logic may need to access transactional resource managers without the presence of 2241
a global transaction. The business logic developer still needs to know the expected semantic 2242
of making one or more calls to one or more resource managers, and needs to know when 2243
and/or how the resource managers local transactions will be committed. The term local 2244
transaction containment (LTC) is used to describe the SCA environment where there is no 2245
global transaction. The boundaries of an LTC are scoped to a remotable service provider 2246
method and are not propagated on invocations between components. Unlike the resources 2247
in a global transaction, RMLTs coordinated within a LTC may fail independently. 2248
The two most common patterns for components using resource managers outside a global 2249
transaction are: 2250

• The application desires each interaction with a resource manager to commit after 2251
every interaction. This is the default behavior provided by the 2252
noManagedTransaction policy (defined below in Transaction implementation 2253
policy) in the absence of explicit use of RMLT verbs by the application. 2254

• The application desires each interaction with a resource manager to be part of an 2255
extended local transaction that is committed at the end of the method. This behavior 2256
is specified by the managedTransaction.local policy (defined below in Transaction 2257
implementation policy). 2258

While an application may use interfaces provided by the resource adapter to explicitly 2259
demarcate resource manager local transactions (RMLT), this is a generally undesirable 2260
burden on applications which typically prefer all transaction considerations to be managed 2261
by the SCA runtime. In addition, once an application codes to a resource manager local 2262
transaction interface, it may never be redeployed with a different transaction environment 2263
since local transaction interfaces may not be used in the presence of a global transaction. 2264
This specification defines intents to support both these common patterns in order to provide 2265
portability for applications regardless of whether they run under a global transaction or not. 2266

 2267

10.5 Transaction implementation policy 2268

10.5.1 Managed and non-managed transactions 2269

The mutually exclusive managedTransaction and noManagedTransaction intents 2270
describe the transactional environment required by a service component or composite.. SCA 2271
provides transaction environments that are managed by the SCA runtime in order to 2272
remove the burden of coding transaction APIs directly into the business logic. The 2273
managedTransaction and noManagedTransaction intents can be attached to the 2274
sca:composite or sca:componentType XML elements. 2275
The mutually exclusive managedTransaction and noManagedTransaction intents are 2276
defined as follows: 2277

• managedTransaction – There must be a managed transaction environment in 2278
order to run this component. The specific type of managedTransaction required is not 2279
constrained. The valid qualifiers for this intent are mutually exclusive and are defined 2280
as: 2281

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 59 of 74

• managedTransaction.global – There must be an atomic transaction in order to run 2282
this component. The SCA runtime must ensure that a global transaction is present 2283
before dispatching any method on the component. The SCA runtime uses any 2284
transaction propagated from the client or else begins and completes a new 2285
transaction. See the propagatesTransaction intent below for more details. 2286

• managedTransaction.local – The component cannot tolerate running as part of a 2287
global transaction, and will therefore run within a local transaction containment 2288
(LTC) that is started and ended by the SCA runtime. Any global transaction context 2289
that is propagated to the hosting SCA runtime must not be visible to the target 2290
component. Any interaction under this policy with a resource manager is performed 2291
in an extended resource manager local transaction (RMLT). Upon successful 2292
completion of the invoked service method, any RMLTs are implicitly requested to 2293
commit by the SCA runtime. Note that, unlike the resources in a global transaction, 2294
RMLTs so coordinated in a LTC may fail independently. If the invoked service method 2295
completes with a non-business exception then any RMLTs are implicitly rolled back 2296
by the SCA runtime. In this context a business exception is any exception that is 2297
declared on the component interface and is therefore anticipated by the component 2298
implementation. The manner in which exceptions are declared on component 2299
interfaces is specific to the interface type– for example Java interface types declare 2300
Java exceptions, WSDL interface types define wsdl:faults. Local transactions cannot 2301
be propagated outbound across remotable interfaces. 2302

• noManagedTransaction – The component runs without a managed transaction, 2303
under neither a global transaction nor an LTC. A transaction that is propagated to the 2304
hosting SCA runtime MUST NOT be joined by the hosting runtime on behalf of this 2305
component. When interacting with a resource manager under this policy, the 2306
application (and not the SCA runtime) is responsible for controlling any resource 2307
manager local transaction boundaries, using resource-provider specific interfaces (for 2308
example a Java implementation accessing a JDBC provider must choose whether a 2309
Connection should be set to autoCommit(true) or else must call the Connection 2310
commit or rollback method). SCA defines no APIs for interacting with resource 2311
managers. 2312

• (absent) – The absence of an implementation intents leads to runtime-specific 2313
behavior. A runtime that supports global transaction coordination may choose to 2314
provide a default behavior that is the managed, shared global transaction pattern but 2315
is not required to do so. 2316

 2317

10.5.2 OneWay Invocations 2318

 2319
When a client uses a reference and sends a OneWay message then any client transaction 2320
context is not propagated. However, the OneWay invocation on the reference may, itself, be 2321
transacted. Similarly, from a service perspective, any received OneWay message cannot 2322
propagate a transaction context but the delivery of the OneWay message may be 2323
transacted. A transacted OneWay message is a one-way message that - because of the 2324
capability of the service or reference binding - can be enqueued (from a client perspective) 2325
or dequeued (from a service perspective) as part of a global transaction. SCA defines two 2326
mutually exclusive implementation intents, transactedOneWay and immediateOneWay, 2327
that determine whether OneWay messages must be transacted or delivered immediately. 2328
Either of these intents may be attached to the sca:service or sca:reference elements but a 2329
deployment error will occur if both intents are attached to the same element. Either of these 2330

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

Formatted: Bullets and

Numbering

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 60 of 74

intents may be attached to the sca:component element, indicating that the intent applies to 2331
any service or reference element children. The intents are defined as follows: 2332

• transactedOneWay – When applied to a reference indicates that any OneWay 2333
invocation messages MUST be transacted as part of a client global transaction. If 2334
the client is not configured to run under a global transaction or if the binding 2335
does not support transactional message sending, then a deployment error occurs. 2336
When applied to a service indicates that any OneWay invocation message MUST 2337
be received from the transport binding in a transacted fashion, under the target 2338
service’s global transaction. The receipt of the message from the binding is not 2339
committed until the service transaction commits; if the service transaction is 2340
rolled back the the message remains available for receipt under a different 2341
service transaction. If the service is not configured to run under a global 2342
transaction or if the binding does not support transactional message receipt, then 2343
a deployment error occurs. 2344

• immediateOneWay – When applied to a reference indicates that any OneWay 2345
invocation messages is sent immediately regardless of any client transaction. 2346
When applied to a service indicates that any OneWay invocation is received 2347
immediately regardless of any target service transaction. The outcome of any 2348
transaction under which an immediateOneWay message is processed has no 2349
effect on the processing (sending or receipt) of that message. 2350

The absence of either intent leads to runtime-specific behavior. The SCA runtime may send 2351
or receive a OneWay message immediately or as part of any sender/receiver transaction. 2352
The results of combining this intent and the managedTransaction implementation policy 2353
of the component sending or receiving the transacted OneWay invocation are summarized 2354
below in Table 1. 2355

transacted/immediate

intent

managedTransaction (client

or service implementation

intent)

Results

transactedOneWay managedTransaction.global OneWay interaction (either client

message enqueue or target service

dequeue) is committed as part of

the global transaction.

transactedOneWay managedTransaction.local

or

noManagedTransaction

This is an "incompatible

deployment" Error

immediateOneWay Any value of

managedTransaction

The OneWay interaction occurs

immediately and is not transacted.

<absent> Any value of

managedTransaction

Runtime-specific behavior. The

SCA runtime may send or receive

a OneWay message immediately

or as part of any sender/receiver

transaction.

Table 1 Transacted OneWay interaction intent 2356

 2357
 2358
[Note: The SCA Assembly specification [SCA-Assembly]will need to specify the semantics of 2359
oneway sends. For example, can a oneway send result in a synchronous Runtime exception 2360
related to protocol error that occurs during the send?] 2361
 2362

Formatted: Bullets and

Numbering

Deleted: Table 1

Deleted: Table 1

Deleted: 1]

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 61 of 74

10.6 Transaction interaction policies 2363

The mutually exclusive propagatesTransaction and suspendsTransaction intents may 2364
be attached either to an interface (e.g. Java annotation or WSDL attribute) or explicitly to 2365
an sca:service and sca:reference XML element to describe how any client transaction 2366
context will be made available and used by the target service component. Section 10.6.1 2367
considers how these intents apply to service elements and Section 10.6.2 considers how 2368
these intents apply to reference elements. 2369

 2370

10.6.1 Handling Inbound Transaction Context 2371

The mutually exclusive propagatesTransaction and suspendsTransaction intents may 2372
be attached to an sca:service XML element to describe how a propagated transaction 2373
context should be handled by the SCA runtime, prior to dispatching a service component. If 2374
the service requester is running within a transaction and the service interaction policy is to 2375
propagate that transaction, then the primary business effects of the provider’s operation are 2376
coordinated as part of the client's transaction – if the client rolls back its transaction, then 2377
work associated with the provider's operation will also be rolled back. This allows clients to 2378
know that no compensation business logic is necessary since transaction rollback can be 2379
used. 2380
These intents specify a contract that MUST be implemented by the SCA runtime. This aspect 2381
of a service component is most likely captured during application design. Either the 2382
propagatesTransaction or suspendsTransaction intent can be attached to sca:service 2383
elements and their children but a deployment error will occur if both intents are specified. 2384
The intents are defined as follows: 2385

• propagatesTransaction – The SCA runtime MUST ensure that the service is 2386
dispatched under any propagated (client) transaction. Use of the 2387
propagatesTransaction intent implies that the service binding MUST be capable of 2388
receiving a transaction context and that a service with this intent specified will 2389
always join a propagated transaction, if present. However, it is important to 2390
understand that some binding/policySet combinations that provide this intent for a 2391
service will require the client to propagate a transaction context. In SCA terms, for a 2392
reference wired to such a service, this implies that the reference must use either the 2393
propagatesTransaction intent or a binding/policySet combination that does 2394
propagate a transaction. If, on the other hand, the service does not require the client 2395
to provide a transaction (even though it has the capability of joining the client's 2396
transaction), then some care is needed in the configuration of the service. One 2397
approach to consider in this case is to use two distinct bindings on the service, one 2398
that uses the propagatesTransaction intent and one that does not - clients that do 2399
not propagate a transaction would then wire to the service using the binding without 2400
the propagatesTransaction intent specified. 2401

• suspendsTransaction – The SCA runtime MUST ensure that the service is NOT 2402
dispatched under any propagated (client) transaction. 2403

The absence of either interaction intent leads to runtime-specific behavior; the client is 2404
unable to determine from transaction intents whether its transaction will be joined. 2405
 2406
Transaction context is never propagated on OneWay messages. The SCA runtime ignores 2407
propagatesTransaction for OneWay methods. 2408
 2409
These intents are independent from the implementation’s managedTransaction intent and 2410
provides no information about the implementation’s transaction environment. 2411

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Deleted: 10.6.1

Deleted: 1.5.1

Deleted: 10.6.2

Deleted: 1.5.2

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 62 of 74

 2412
The combination of these service interaction policies and the managedTransaction 2413
implementation policy of the containing component completely describes the transactional 2414
behavior of an invoked service, as summarized in Table 2. 2415
 2416

service interaction intent managedTransaction

(component implementation

intent)

Results

propagatesTransaction managedTransaction.global Component runs in propagated

transaction if present, otherwise a

new global transaction. This

combination is used for the

managed, shared global

transaction pattern described in

Common Transaction Patterns.

propagatesTransaction managedTransaction.local

or

noManagedTransaction

This is an "incompatible

deployment" Error

suspendsTransaction

managedTransaction.global Component runs in a new global

transaction

suspendsTransaction

managedTransaction.local

Component runs in a managed

local transaction containment. This

combination is used for the

managed, local transaction

pattern described in Common

Transaction Patterns. This is the

default behavior for a runtime that

does not support global

transactions.

suspendsTransaction

noManagedTransaction Component is responsible for

managing its own local

transactional resources.

Table 2 Combining service transaction intents 2417

Note - the absence of either interaction or implementation intents leads to runtime-specific 2418
behavior. A runtime that supports global transaction coordination may choose to provide a 2419
default behavior that is the managed, shared global transaction pattern. 2420
In the case where the propagatesTransaction intent conflicts with the component’s 2421
managedTransaction.local intent, an appropriate error message must be issued at 2422
deployment. SCA tooling may also detect the error earlier in the development process. 2423
 2424
 2425

10.6.2 Handling Outbound Transaction Context 2426

The mutually exclusive propagatesTransaction and suspendsTransaction intents may 2427
also be attached to an sca:reference XML element to describe whether any client transaction 2428
context should be propagated to a target service when a synchronous interaction occurs 2429
through the reference. These intents specify a contract that MUST be implemented by the 2430
SCA runtime. This aspect of a service component is most likely captured during application 2431
design. Either the propagatesTransaction or suspendsTransaction intent can be 2432
attached to sca:service elements and their children but a deployment error will occur if both 2433

Formatted: Bullets and

Numbering

Deleted: Table 2

Deleted: Table 2

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 63 of 74

intents are specified. The intents are defined as defined in Section 10.6.1. When used as a 2434
reference interaction intent, the meaning of the qualifiers is as follows: 2435

• propagatesTransaction – any transaction context under which the client runs will 2436
be propagated when the reference is used for a request-response interaction. To 2437
satisfy policy framework rules, the reference binding MUST be capable of propagating 2438
a transaction context. The reference should be wired to a service that can join the 2439
client’s transaction. For example, any service with an intent that @requires 2440
propagatesTransaction can always join a client’s transaction. The reference 2441
consumer can then be designed to rely on the work of the target service being 2442
included in the caller’s transaction. 2443

• suspendsTransaction – any transaction context under which the client runs will not 2444
be propagated when the reference is used. The reference consumer can use this 2445
intent to ensure that the work of the target service is not included in the caller’s 2446
transaction. . 2447

The absence of either interaction intent leads to runtime-specific behavior. The SCA runtime may or 2448
may not propagate any client transaction context to the referenced service, depending on the SCA 2449
runtime capability. 2450

 2451
 2452
These intents are independent from the client’s managedTransaction implementation 2453
intent. The combination of the interaction intent of a reference and the 2454
managedTransaction implementation policy of the containing component completely 2455
describes the transactional behavior of a client’s invocation of a service. Table 3 summarizes 2456
the results of the combination of either of these interaction intents with the 2457
managedTransaction implementation policy of the containing component. 2458

reference interaction

intent

managedTransaction (client

implementation intent)

Results

propagatesTransaction managedTransaction.global Target service runs in the client’s

transaction. This combination is

used for the managed, shared

global transaction pattern

described in Common Transaction

Patterns.

propagatesTransaction managedTransaction.local

or

noManagedTransaction

This is an "incompatible

deployment" Error

suspendsTransaction

Any value of

managedTransaction

The target service will not run

under the same transaction as any

client transaction. This

combination is used for the

managed, local transaction

pattern described in Common

Transaction Patterns.

Table 3 Transaction propagation reference intents 2459

 2460
Note - the absence of either interaction or implementation intents leads to runtime-specific 2461
behavior. A runtime that supports global transaction coordination may choose to provide a 2462
default behavior that is the managed, shared global transaction pattern. 2463
In the case where the propagatesTransaction reference intent conflicts with the using 2464
component’s managedTransaction.local intent, an appropriate error message must be 2465

Formatted: Bullets and

Numbering

Formatted: English (U.S.)

Formatted: English (U.S.)

Formatted: English (U.S.)

Field Code Changed

Deleted: 10.6.1

Deleted: 1.5.1

Deleted: Table 3

Deleted: Table 3

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 64 of 74

issued at deployment. SCA tooling may also detect the error earlier in the development 2466
process. 2467
 2468
Table 4 shows the valid combination of interaction and implementation intents on the client 2469
and service that result in a single global transaction being used when a client invokes a 2470
service through a reference. 2471
 2472
managedTransaction

(client implementation

intent)

reference

interaction intent

service interaction

intent

managedTransaction

(service implementation

intent)

managedTransaction.global propagatesTransaction propagatesTransaction managedTransaction.global

Table 4 Intents for end-to-end transaction propagation 2473

 2474
Transaction context is never propagated on OneWay messages. The SCA runtime ignores 2475
propagatesTransaction for OneWay methods. 2476
 2477

10.6.3 Web services binding for propagatesTransaction policy 2478

This specification defines the XML syntax for a policySet that provides the 2479
propagatesTransaction intent and applies to a Web service binding (binding.ws). When 2480
used on a service, this policySet requires the client to send a transaction context. This 2481
intent is provided on Web service interactions using the mechanisms described in the Web 2482
Services Atomic Transaction [WS-AtomicTransaction] specification. As such the policy is 2483
described using the wsat:ATAssertion defined by the WS-AtomicTransaction specification as 2484
follows: 2485
<policySet name="JoinsTransactionWS" provides="sca: propagatesTransaction" 2486
 appliesTo="sca :binding.ws"> 2487
 <wsp:Policy> 2488
 <wsat:ATAssertion 2489
 xmlns:wsat="http://docs.oasis-open.org/ws -tx/wsat/2006/06"/> 2490
 </wsp:Policy> 2491
</policySet> 2492

 2493

10.7 Example 2494

 2495
The following example shows some of the transaction polices in use for an implementation. 2496
 2497

<?xml version="1.0" encoding="UTF-8"?> 2498

<componentType xmlns:sca=" http://www.osoa.org/xmln s/sca/1.0" 2499

 requires="managedTransaction.global"> 2500

 2501

 <implementation.java class="com.acme.Transactional Component1" 2502

 requires="managedTransaction.global"> 2503

 2504

 <service name="Service1" requires="propagatesTrans action"> 2505

 <interface /> 2506

 </service> 2507

Formatted: Bullets and

Numbering

Formatted: Bullets and

Numbering

Deleted: Table 4

Deleted: Table 4

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 65 of 74

 2508

 <reference name="Reference1" requires="transactedO neWay"> 2509

 <interface /> 2510

 <reference> 2511

 2512

 <implementation/> 2513

 2514
</componentType> 2515

 2516

10.8 Intent Definitions 2517

The SCA Policy Framework specification defines an XML schema for defining abstract intents. The 2518
following XML snippet shows the intent definitions for the transaction policy domain. 2519

 2520

10.8.1 Intent.xml snippet 2521

 2522
 2523

 2524

 2525

 2526

 2527

 <intent name="managedTransaction" constrains="sca :implementation"> 2528

 <description> 2529

Used to indicate the transaction environment desire d by a 2530
component 2531

implementation. 2532

 </description> 2533

 </intent> 2534

 2535

 <intent name="managedTransaction.global" constrai ns="sca:implementation"> 2536

 <description> 2537

Used to indicate that a component implementation re quires a 2538
managed 2539

global transaction. 2540

 </description> 2541

 </intent> 2542

 2543

 <intent name="managedTransaction.local" constrain s="sca:implementation"> 2544

 <description> 2545

Used to indicate that a component implementation re quires a 2546
managed local 2547

transaction. 2548

 </description> 2549

Formatted: Bullets and

Numbering

Formatted: French (France)

Formatted: Bullets and

Numbering

Deleted: <?xml
version ="1.0"
encoding ="ASCII" ?>

Deleted: <intents
xmlns ="http://www.osoa.
org/xmlns/sca/1.0" >

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 66 of 74

 </intent> 2550

 2551

 <intent name="noManagedTransaction" constrains="s ca:implementation"> 2552

 <description> 2553

Used to indicate that a component implementation wi ll manage its 2554
own 2555

transaction resources. 2556

 </description> 2557

 </intent> 2558

 2559

 2560

 <intent name="propagatesTransaction" constrains=" sca:binding"> 2561

 <description> 2562

Used to indicate that a reference will propagate an y client 2563
transaction 2564

or that a service will be dispatched under any rece ived 2565
transaction. 2566

 </description> 2567

 </intent> 2568

 2569

 <intent name="suspendsTransaction" constrains="sc a:binding"> 2570

 <description> 2571

Used to indicate that a reference will not propagat e any client 2572

transaction or that a service will not be dispatche d under any 2573
received 2574

transaction. 2575

 </description> 2576

 </intent> 2577

 2578

 2579

 <intent name="transactedOneWay" constrains="sca:b inding"> 2580

 <description> 2581

Used to indicate that the component requires the SC A runtime to 2582
transact OneWay send of messages as part of any cli ent global 2583
transaction or 2584

to transact oneWay message receipt as part of any s ervice global 2585
transaction. 2586

 </description> 2587

 </intent> 2588

 2589

 <intent name="immediateOneWay" constrains="sca:bi nding"> 2590

 <description> 2591

Used to indicate that the component requires the SC A runtime to 2592
process the sending or receiving of OneWay messages immediately, 2593

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 67 of 74

regardless of any transaction under which the sendi ng/receiving 2594
component runs. 2595

 </description> 2596

 </intent> 2597

 2598

 2599
 2600

2601

Formatted: Bullets and

Numbering

Deleted: </intents>

Deleted: <#>References¶
¶

[1] SCA Assembly Model
Specification v1.0¶
http://www.osoa.org/downl

oad/attachments/35/SCA_A
ssemblyModel_V100.pdf¶
¶
[2] SCA Policy Framework

v1.0¶
http://www.osoa.org/downl
oad/attachments/35/SCA_P

olicy_Framework_V100.pdf¶
¶
[3] SCA Java Common

Annotations and APIs ¶

http://www.osoa.org/downl
oad/attachments/35/SCA_J
avaAnnotationsAndAPIs_V1

00.pdf¶
¶
[4] Web Services Atomic

Transaction (WS-
AtomicTransaction)
http://docs.oasis-

open.org/ws-
tx/wsat/2006/06.¶

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 68 of 74

11 Conformance 2602

 2603

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 69 of 74

A. Schemas 2604

A.1 XML Schemas 2605

 2606
<?xml version ="1.0" encoding ="UTF-8" ?> 2607
<!-- (c) Copyright SCA Collaboration 2006, 2007 --> 2608
<schema xmlns ="http://www.w3.org/2001/XMLSchema" 2609

targetNamespace ="http://www.osoa.org/xmlns/sca/1.0" 2610
xmlns:sca ="http://www.osoa.org/xmlns/sca/1.0" 2611
xmlns:wsp ="http://schemas.xmlsoap.org/ws/2004/09/policy" 2612
elementFormDefault ="qualified" > 2613

 2614
<include schemaLocation ="sca-core.xsd" /> 2615

<import namespace =" http://www.w3.org/ns/ws-policy 2616
" 2617

schemaLocation =" http://www.w3.org/2007/02/ws-policy.xsd 2618
" /> 2619

 2620
 2621

<element name="intent" type="sca:Intent"/> 2622

<complexType name="Intent"> 2623

<sequence> 2624

<element name="description" type="string" minOccurs ="0" 2625
maxOccurs="1" /> 2626

<element name="qualifier" type="sca:IntentQualifier " 2627
minOccurs="0" maxOccurs="unbounded" /> 2628

</sequence> 2629

<any namespace="##other" processContents="lax" 2630

minOccurs="0" maxOccurs="unbounded"/> 2631

<attribute name="name" type="NCName" use="required" /> 2632

<attribute name="constrains" type="sca:listOfQNames " 2633
use="optional"/> 2634

<attribute name="requires" type="sca:listOfQNames" 2635
use="optional"/> 2636

<attribute name="excludes" type="sca:listOfQNames" 2637
use="optional"/> 2638

<attribute name="mutuallyExclusive" type="boolean" use="optional" 2639
default=”false”/> 2640

 2641

<anyAttribute namespace="##any" processContents="la x"/> 2642

</complexType> 2643

 2644

<complexType name=”IntentQualifier”> 2645

<element name="description" type="string" minOccu rs="0" 2646
maxOccurs="1" /> 2647

 <attribute name="name" type="NCName" use="requ ired"/> 2648

Formatted: Bullets and

Numbering

Formatted: English (U.S.)

Formatted: French (France)

Formatted: English (U.S.)

Formatted: English (U.S.)

Deleted: http://schemas.x
mlsoap.org/ws/2004/09/p
olicy

Deleted: http://schemas.x
mlsoap.org/ws/2004/09/w
s-policy.xsd

Deleted: <element
name="intent"
type ="sca:Intent" />¶
<complexType
name="Intent" >¶
<sequence >¶
<element
name="description"
type ="string"
minOccurs ="0"¶
maxOccurs ="1" />¶
<any
namespace ="##other"
processContents ="lax"¶
minOccurs ="0"
maxOccurs ="unbounded" />¶
</ sequence >¶
<attribute name="name"
type ="NCName"
use ="required" />¶
<attribute
name="constrains"
type ="sca:listOfQNames"
use ="required" />¶
<attribute
name="requires"
type ="sca:listOfQNames"
use ="optional" />¶
<anyAttribute
namespace ="##any"
processContents ="lax" />¶
</ complexType >¶

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 70 of 74

 <attribute name="default" type="boolean" use="opt ional” default 2649
=”false” 2650

</complexType> 2651

 2652

Constraint: If the intent definition contains one or more <qualifier> children, one and 2653
only one of the qualifier children MUST have the value of the default attribute set to 2654
‘true’. The values of the name attributes of the qualifiers within a single intent 2655
definition MUST be unique. 2656

 2657
 2658

<element name="policySet" type ="sca:PolicySet" /> 2659
<complexType name="PolicySet" > 2660

<choice minOccurs ="0" maxOccurs ="unbounded" > 2661
 < element name="policySetReference" 2662
 type ="sca:PolicySetReference" /> 2663
 < element name="intentMap" type ="sca:IntentMap" /> 2664
 2665
 < any namespace ="##other" processContents ="lax" /> 2666
</ choice > 2667
<attribute name="name" type ="NCName" use ="required" /> 2668
<attribute name="provides" type ="sca:listOfQNames" /> 2669
<attribute name="appliesTo" type ="string" use ="required" /> 2670
<attribute name="attachTo" type="string" use="optio nal"/> 2671
<anyAttribute namespace ="##any" processContents ="lax" /> 2672

</ complexType > 2673
 2674
<element name="policyAttachment" type="sca:PolicyAt tachment"/> 2675
<complexType name="PolicySet"> 2676

<any namespace="##other" processContents="lax" minO ccurs="0" 2677
 maxOccurs="unbounded"/> 2678
<attribute name="policySet" type="QName"/> 2679
<attribute name="attachTo" type="string" use="requi red"/> 2680
<anyAttribute namespace="##any" processContents="la x"/> 2681

</complexType> 2682
 2683
<complexType name="PolicySetReference" > 2684

<attribute name="name" type ="QName" use ="required" /> 2685
<anyAttribute namespace ="##any" processContents ="lax" /> 2686

</ complexType > 2687
 2688

<complexType name="IntentMap" > 2689
<choice minOccurs ="1" maxOccurs ="unbounded" > 2690
<element name="qualifier" type ="sca:Qualifier" /> 2691
<any namespace ="##other" processContents ="lax" /> 2692
</ choice > 2693
<attribute name="provides" type ="QName" use ="required" /> 2694
 2695
<anyAttribute namespace ="##any" processContents ="lax" /> 2696

</ complexType > 2697
 2698

<complexType name="Qualifier" > 2699
<choice minOccurs ="1" maxOccurs ="unbounded" > 2700
<element name="intentMap" type ="sca:IntentMap" /> 2701
 2702
<any namespace ="##other" processContents ="lax" /> 2703

Formatted: Indent: Left: 0

cm

Formatted: Indent: First line:

1.27 cm

Formatted: Font: Courier

New, Font color: Custom

Color(RGB(0,129,129))

Formatted: English (U.S.)

Deleted: <element
ref ="wsp:PolicyAttachme
nt" />¶
 < element
ref ="wsp:Policy" />¶
 < element
ref ="wsp:PolicyReferenc
e" />

Deleted: <attribute
name="default"
type ="string"
use ="optional" />

Deleted: <element
ref ="wsp:PolicyAttachme
nt" />

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 71 of 74

</ choice > 2704
<attribute name="name" type ="string" use ="required" /> 2705
<anyAttribute namespace ="##any" processContents ="lax" /> 2706

</ complexType > 2707
 2708

<element name="securityIdentity" type="sca:Security Identity"/> 2709
<complexType name="SecurityIdentity"> 2710

<choice> 2711
 <element name="useCallerIdentity" 2712

type="sca:UseCallerIdentity"/> 2713
 <element name="runAs" type="sca:RunAs"/> 2714

</choice> 2715
</complexType> 2716
 2717
<complexType name="UseCallerIdentity"/> 2718
<complexType name="RunAs"> 2719

<attribute name="role" type="string" use="required" /> 2720
</complexType> 2721
 2722
 2723
<element name="authorization" type="sca:Authorizati on"/> 2724
<complexType name="Authorization"> 2725

<choice> 2726
 <element name="allow" type="sca:Allow"/> 2727
 <element name="permitAll" type="sca:PermitAll"/> 2728
 <element name="denyAll" type="sca:DenyAll"/> 2729

</choice> 2730
</complexType> 2731

 2732
<complexType name="Allow" > 2733

<attribute name="roles" type ="string" use ="required" /> 2734
</ complexType > 2735

 2736
<complexType name="PermitAll" /> 2737

 2738
<complexType name="DenyAll" /> 2739

 2740
<simpleType name="listOfNCNames" > 2741
<list itemType ="NCName"/> 2742
</ simpleType > 2743
 2744

</ schema> 2745
 2746

Deleted: <element
name="allow"
type ="sca:Allow" />¶

Deleted: <element
name="permitAll"
type ="sca:PermitAll" />¶

Deleted: <element
name="denyAll"
type ="sca:DenyAll" />¶

Deleted: <element
name="runAs"
type ="sca:RunAs" />¶
<complexType
name="RunAs" >¶
<attribute name="role"
type ="string"
use ="required" />¶
</ complexType >¶
¶

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 72 of 74

B. Acknowledgements 2747

 2748

 2749

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 73 of 74

C. Non-Normative Text 2750

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17-2008
Copyright © OASIS® 2005-2008. All Rights Reserved. Page 74 of 74

D. Revision History 2751

[optional; should not be included in OASIS Standards] 2752

 2753

Revision Date Editor Changes Made

2 Nov 2, 2007 David Booz Inclusion of OSOA errata and Issue 8

3 Nov 5, 2007 David Booz Applied resolution of Issue 7, to Section 4.1
and 4.10. Fixed misc. typos/grammatical items.

4 Mar 10, 2008 David Booz Inclusion of OSOA Transaction specification as
Chapter 11. There are no textual changes other
than formatting.

5 Apr 28 2008 Ashok Malhotra Added resolutions to issues 17, 18, 24, 29, 37,
39 and 40,

6 July 7 2008 Mike Edwards Added resolution for Issue 38

7 Aug 15 2008 David Booz Applied Issue 26, 27

7 + Issue 15 Sept 8 2008 Mike Edwards Proposal for Issue 15

 2754

 2755

Deleted: il

Deleted: ,

Deleted: ust

Deleted: 0

Deleted: 7

Deleted: 69

Deleted: 71

Deleted: 71

Page 12: [1] Deleted asmalhot 3/14/2008 2:10:00 PM

Where:

@name attribute defines the name of the intent

@constrains attribute (optional) specifies the SCA constructs (SCA binding or

implementation) that this intent is meant to configure. If a value is not

specified, it is

assumed that this intent is a qualified intent and inherits its constraint list

from the qualifiable intent it is qualifying (see below). This attribute does not

define the valid attach points of the intent.

Note that the “constrains” attribute may name an abstract element type, such as

sca:binding in our running example. This means that it will match against any

binding used within a SCDL file. A SCDL element may match @constrains if its type

is in a substitution group.

Page 12: [2] Deleted asmalhot 3/14/2008 2:10:00 PM

@requires attribute (optional) defines the set of all intents that the referring

intent requires. In essence, the referring intent requires all the intents named to

be satisfied. This attribute is used to compose an intent from a set of other

intents. This use is further described in Section 3.2 below.

The confidentiality intent may be defined as:

 <intent name="confidentiality" constrains ="sca:binding" >

<description >
Communication through this binding must prevent
unauthorized users from reading the messages.

</ description >
 </ intent >

Page 13: [3] Deleted asmalhot 3/14/2008 2:15:00 PM

Because qualified intents include the name of the qualifiable intent, the qualifiable

intent definition does not need to list its valid qualifiers. The set of all qualified

intents defined for that qualifiable intent determines the list of valid qualifiers. This is

illustrated by adding two additional intents to our example called

confidentiality.transport and confidentiality.message. Note that the original

intent definition or confidentiality does not change.

Page 13: [4] Deleted asmalhot 3/14/2008 2:15:00 PM

Further, the @constrains attribute of a qualified intent is unnecessary because qualified intents
inherit the @constrains attribute from the qualifiable intent. It is an error to specify @constrains in
the definition of a qualified intent. The following are definitions of the transport and message
qualifiers of the confidentiality intent.

Page 13: [5] Deleted asmalhot 3/14/2008 2:16:00 PM

<intent name=”confidentiality.transport” />
<intent name=”confidentiality.message” />

Page 13: [6] Formatted Mike Edwards 9/8/2008 12:16:00 PM

Font: Courier New, Font color: Blue

Page 13: [7] Formatted Mike Edwards 9/8/2008 12:17:00 PM

Font: Courier New, Font color: Blue, French (France)

Page 13: [8] Formatted Mike Edwards 9/8/2008 12:16:00 PM

Font: Courier New, Font color: Blue

Page 13: [9] Change asmalhot 3/14/2008 2:16:00 PM

Formatted Bullets and Numbering

Page 13: [10] Change asmalhot 3/14/2008 2:16:00 PM

Formatted Bullets and Numbering

Page 13: [11] Formatted Mike Edwards 9/8/2008 12:14:00 PM

Indent: Left: 0.63 cm

Page 13: [12] Change asmalhot 3/14/2008 2:16:00 PM

Formatted Bullets and Numbering

Page 13: [13] Formatted Mike Edwards 9/8/2008 3:40:00 PM

Bulleted + Level: 1 + Aligned at: 0.63 cm + Tab after: 1.27 cm + Indent at: 1.27 cm

Page 30: [14] Deleted Mike Edwards 7/7/2008 1:14:00 PM

Stating intents with the @requires attribute of an element means that those intents

are additionally required by every relevant element descendent. For example,

specifying

requires=”confidentiality” on a <composite> element is the equivalent to

adding the same intent to the @requires list of every service and reference that is

contained within that composite, including the services and references inside

components. Therefore, the computed intents that apply to a specific element is the

union of all intents that are present in the @requires attribute values of its ancestors

that apply to the specific type of element. This is equivalent to listing an intent in the

@requires list of all of descendent elements that match one of the xs:QName values

of the @constrains attribute of an intent, taking into account the presence of

substitution groups.

When computing the intents that apply to a particular element, the @constrains

attribute of each relevant intent is checked against the element. If the intent in

question does not apply to that element it is simply discarded.

Page 30: [15] Deleted Mike Edwards 7/7/2008 1:16:00 PM

are specified with @requires attribute values of

Page 30: [16] Deleted Mike Edwards 7/7/2008 1:16:00 PM

during development

Page 30: [17] Deleted Mike Edwards 7/7/2008 1:18:00 PM

The intents specified for an element are also used to determine a specific

mapping/choice other than the default, should the selected policySet contain

intentMaps. The developer in this case is not choosing policySets that apply as they

will be determined, if possible, during a later deployment step.

Page 30: [18] Deleted Mike Edwards 7/7/2008 1:19:00 PM

Both qualified intents and their respective qualifiable intents, and profile intents, can

be specified as values of a @requires attribute. In considering the set of intents that

are computed for a specific element, however, the following rules must be observed.

When the computed values of a @requires attribute includes both the qualified

and unqualified form of a qualifiable intent, the unqualified form is ignored. For

example, assume that the confidentiality intent uses

confidentiality.transport as its default when specified as part of a PolicySet.

Page 30: [19] Deleted Mike Edwards 9/8/2008 1:52:00 PM

. When the intent is matched with the appropriate policySet (by the assembler or

deployer) to generate concrete policies that satisfies the intents, t

Page 30: [20] Deleted Mike Edwards 7/7/2008 1:22:00 PM

by the PolicySet that is used at deployment time

Page 30: [21] Deleted Mike Edwards 7/7/2008 1:23:00 PM

During policySet selection, it is only possible to override a qualifiable intent that

doesn’t specify a qualifier. Thus, multiple qualifiers MUST NOT be specified for the

same qualifiable intent as part of a computed intent set.

Page 30: [22] Deleted Mike Edwards 7/7/2008 1:24:00 PM

If a component type includes a list of required intents on a service or reference, it

is not possible for a component that uses that component type to remove any of

those required intents. However, if any of the intents are qualifiable intents, the

component MAY specify a qualifier for that intent.

Page 30: [23] Change Dave Booz 3/5/2008 7:18:00 AM

Formatted Bullets and Numbering

