OASIS 19

SCA Policy Framework Version 1.1

Specification URIs:
This Version:
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd-01.html

http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd-01.doc
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1-spec-cd-01.pdf

Previous Version:
N/A

Latest Version:
http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.html

http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.doc
| http://docs.oasis-open.org/opencsa/sca-policy/sca-policy-1.1.pdf_(Authoritative)

Technical Committee:
OASIS SCA Policy TC

Chair(s):
David Booz, IBM <booz@us.ibm.com>

Ashok Malhotra, Oracle <ashok.malhotra@oracle.com>
Editor(s):

David Booz, IBM <booz@us.ibm.com>

Michael J. Edwards, IBM <mike.edwards@uk.ibm.com>
Ashok Malhotra, Oracle <ashok.malhotra@oracle.com>
Michael Rowley, BEA <mrowley@bea.com>

Related work:
This specification replaces or supercedes:

¢ SCA Policy Framework
SCA Policy Framework SCA Version 1.00 March 07, 2007
This specification is related to:
¢« SCA Assembly Specification
sca-assembly-1.1-spec-WD-02.doc
sca-assembly-1.1-spec-WD-02.pdf

sca-policy-1.1-spec-WD-06
Copyright © OASIS® 2005, 2008. All Rights Reserved.

07-07-2008
Page 1 of 74

. { Deleted:

Committee

p {/// { Deleted:

4

N
NS

{ Deleted:

N
Deleted:
\ \\[

Re :
Bae { Deleted

6

1528 Apri

%“:\i\ ‘[Deleted:

“:\\\ N

i { Deleted:
\

7

\\{ Deleted:

August

‘\\\\\\{ Deleted:

July

0)
) \{ Deleted:

0

‘\\\{ Deleted:
W\

2

‘\‘\[Deleted:

‘\(Deleted

: November

(Deleted:

7

o A U U

_ -~ -| Deleted
- Deloitte

: Jeff T. Anderson,

<jeffanderson@deloitte.ca>

Declared XML Namespace(s):
In this document, the namespace designated by the prefix “sca” is associated with the namespace URL
docs.oasis-open.org/ns/opencsa/sca/200712 . This is also the default namespace for this document.

Abstract:
TBD

Status:
This document was last revised or approved by the SCA Policy TC on the above date. The level
of approval is also listed above. Check the “Latest Version” or “Latest Approved Version” location
noted above for possible later revisions of this document.

Technical Committee members should send comments on this specification to the Technical
Committee’s email list. Others should send comments to the Technical Committee by using the
“Send A Comment” button on the Technical Committee’s web page at http://www.oasis-
open.org/committees/sca-policy/.

For information on whether any patents have been disclosed that may be essential to
implementing this specification, and any offers of patent licensing terms, please refer to the
Intellectual Property Rights section of the Technical Committee web page (http://www.oasis-
open.org/committees/sca-policy/ipr.php.

sca-policy-1.1-spec-WD-06 07-07-2008
Copyright © OASIS® 2005, 2008. All Rights Reserved. Page 2 of 74

Notices

Copyright © OASIS® 2007, 2008. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual
Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.

This document and translations of it may be copied and furnished to others, and derivative works that
comment on or otherwise explain it or assist in its implementation may be prepared, copied, published,
and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice
and this section are included on all such copies and derivative works. However, this document itself may
not be modified in any way, including by removing the copyright notice or references to OASIS, except as
needed for the purpose of developing any document or deliverable produced by an OASIS Technical
Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must
be followed) or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors
or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS
DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY
WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would
necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard,
to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to
such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that
produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of
any patent claims that would necessarily be infringed by implementations of this specification by a patent
holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR
Mode of the OASIS Technical Committee that produced this specification. OASIS may include such
claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or
the extent to which any license under such rights might or might not be available; neither does it
represent that it has made any effort to identify any such rights. Information on OASIS' procedures with
respect to rights in any document or deliverable produced by an OASIS Technical Committee can be
found on the OASIS website. Copies of claims of rights made available for publication and any
assurances of licenses to be made available, or the result of an attempt made to obtain a general license
or permission for the use of such proprietary rights by implementers or users of this OASIS Committee
Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no
representation that any information or list of intellectual property rights will at any time be complete, or
that any claims in such list are, in fact, Essential Claims.

The names "OASIS"and “SCA-Policy” are trademarks of OASIS, the owner and developer of this
specification, and should be used only to refer to the organization and its official outputs. OASIS
welcomes reference to, and implementation and use of, specifications, while reserving the right to enforce
its marks against misleading uses. Please see http://www.oasis-open.org/who/trademark.php for above
guidance.

sca-policy-1.1-spec-WD-06 07-07-2008
Copyright © OASIS® 2005, 2008. All Rights Reserved. Page 3 of 74

Table of Contents

1 INEFOAUCTION Lttt ettt a e e 7
1.1 T O MUNOIOQY ettt ettt e e e e e 7
1.2 XML NBMESPACES .ttt ittt ettt ettt et e et e et e e et et et et e e et et e e e e e s e e e 7
13 NOrMative REfEIENCES ..ot 7

2 OV BTV IBW . ettt ettt et ettt et ettt et ettt e e et e e e 9
2.1 POlICIES aNd POlICYSEES. ...ttt 9
2.2 Intents describe the requirements of Components, Services and Referencesccue...... 9
2.3 Determining which policies apply to a particular wire

3 Framework Model. ..
3.1 NEENES ettt a e
3.2 Profile INTENTS ...ueeiiiiii sttt e
3.3 POlICYSOIS ittt

3.3 INEENEMADS ittt
3.3.2 Direct Inclusion of Policies within PONCYSEtSciuviiiiiiiiiiiiiiiiiiiiieiiiiiieisiie e
3.3.3 Policy Set REfErENCES ...uuiiiiiiiiiiiiiieiieie ittt

4 Attaching Intents and PolicySets t0 SCA CONSIUCEScevvviiiiiiiiiiiiiiiiiiiiisiiieiieiiieiieieeee
4.1 Attachment RUIES = INTENES ..ot
4.2 Attachment RUIES - POICYSELSuiiiiiiiiiii i
4.3 External Attachment of PolicySets Mechanism ..

4.3.1 The Form of the @attachTO AtMDULE.ueveieiiiiiiieeiiiieeeese e
4.3.2 Cases Where Multiple PolicySets are attached to a Single Artifact.........cccccoeeeviiieeiiceennee.. 26
4.3.3 XPath Functions for the @attachTo Attribute.........cuveeeiiiiiiiiiiiiiiiiiiii 26
4.33.1 Interface Related FUNCHONSueeeiieiiiiiiiei i 27
4.33.2 Intent BaSEd FUNCHONSviiiiiiiiiie ittt i i 27
4.3.3.3 URI BASEA FUNCHON . ..ttt ettt eeee 28
4.4 Usage of @requires attribute for specifying intentsS............eeeiiieiiieiiiiiiiiiiiiiieeiiieeee 28
4.5 Usage of @requires and @policySet attributes togetherccueeeeeiiiiiiiieiiiiiiiiiiiiiieeeee 30
4.6 Operation-Level Intents and PolicySets on Services & References..........cccoeeeiiieeeeiiiiiiiieenn. 31
4.7 Operation-Level Intents and PolicySets 0n BINAINGS ...oooooeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieie 31
4.8 Intents and PolicySets on Implementations and Component TYPeScccovevieeeeiieieiiiiiiiiennee 31
4.9 BindingTypes and Related INteNtS........cceveeiiiiieiiiciiiiiiiiiiiiseenes
4.10 Treatment of Components with Internal Wiring
4.10.1 Determining Wire Validity and Configurationc.coeeieeiiieiiiiiiiiiiiiiiiiiiiiieeieeee 34
4.11 Preparing Services and References for External ConNNeCtioncevveevviieeiiiciiiiiiiiiiiiiieeens 35
4.12 Guided Selection of PolicySets uUSing INtENTSeeeueeeiiiiiiiiiiiee et 36

5 IMPIEMENAtION POIICIESeiiiiii ettt 39
5.1 Natively SUPPOIEd INTENES.uuei ettt 40
5.2 Operation-Level Intents and PolicySets on ImplementationS...........eeeeiiicieeiiiiiiiiiiieeieiii 40
5.3 Writing PolicySets for Implementation PONCIESccueveiiiiiiiiiiiiiisiiiiieeeeeeeeee e 41

5.3.1 NON WS-POICY EXAMPIESeeiiiiiiiiiiiiieieee ettt 41

6 Roles and Responsibilities

sca-policy-1.1-spec-WD-06 07-07-2008

Copyright © OASIS® 2005, 2008. All Rights Reserved. Page 4 of 74

6.1 POliCY ADMINISTIATON teiuiiisiieiiies ettt ettt
6.2 DOV EIODET . ettt
6.3 Assembler. .
6.4 DD O e e et e e et a e e e
7 SECUMEY PONCY ittt ettt e e
7.1 SCA SECUIMY INEENES ...ttt ettt ea e
7.2 Interaction SeCUNtY PONCY ..couuiiiiiiiiiiiiiie ittt
721 QUANFIEIS toieiiiiiises et
7.2.2 Operation LeVel INtENEScouuiiiiiiiiiiiiiiieiee ettt
7.2.3 References to CONCrete POlICIESuuiiiiiiiiiiiiiiiiiiiiie et
7.3 Implementation SeCUrity PONCY.......cuuiiiuuiiiiiiiiiiiiiiii ettt
7.3.1 Authorization and Security Identity PONCYcocuuiiiiiiiiiiiiiiiiiiiieeeeieeeiieee e
7.3.2 _Implementation Policy Example
7.3.3 SCA Component Container Requirements
7.3.4 Security Identity Propagatione.ueeieiieieiiii i
7.3.5 Security Identity Of ASync CallDackcccouviiiieiiiiiiiiiiiiiiiiiiie sttt
7.3.6 Default Authorization PONCYceiiiiiiiiiiiiiiiiiies sttt
7.3.7 Default RUNAS PONCYuuiiiiiiiiiiii ittt ettt
8 RENADIITY PONCY. ettt ettt
8.1 POlICY INTENTS ..uiiiiiiiiie sttt ettt
8.2 End to end Reliable MESSAQINGuuuiiiiiiiiii ittt ettt e e e e s e a e e e
8.3 INteNt EfiNITIONS .. .eiiiiiiiiiieiie sttt
9 Miscellaneous Intents
10 TrANSACHONS ..eiiieiiii ittt ettt ettt ettt ettt e e
10.1 OUL Of SCOPE .ttt ettt
10.2 Common Transaction PatterNSuuuueeiiiiiiiiiiiiies ittt
10.3 Summary of SCA transaction POLICIESuueeiiiiiiiiieiiie et
10.4 Global and local tranSACHIONS.ueiii ittt
10.4.1 GlObal traNSACHIONSeiiiiiee e
10.4.2 LOCAl trANSACHONS ...eiiiiiie ittt
10.5 Transaction implementation PONCYcuueeiiiiiiieiiiie it
10.5.1 Managed and non-managed tranSacCtioNSeeueiiiiueeiiiiiiiiieeeeie e 58
10.5.2 OneWay INnvocationScceeeiieeeiieeiieennne
10.6 Transaction interaction policies
10.6.1 Handling Inbound Transaction CONtEXE......uuuuiueuiiiiiiiiiiiii ittt
10.6.2 Handling Outbound Transaction Context
10.6.3 Web services binding for propagatesTransaction policy
10.7 EXBIMPDIE ettt
10.8 INtent DEfiNItIONS ...euieieiiiiiiii ittt
10.8.1 INEENEXMI SNIPPEL ettt
11 CONFOIMANCE ittt ettt ettt ettt
A SCNEMAS ittt
Al XML Schemas
B. Acknowledgements
C. Non-Normative Text

sca-policy-1.1-spec-WD-06 07-07-2008
Copyright © OASIS® 2005, 2008. All Rights Reserved. Page 5 of 74

D, REVISION HISt O . ittt iiiii it i ittt eeeee e eeeeeseeeeeeeseseeeteetaae s s tsssssssssssssssssssssssssesessssesseessseasens 74

sca-policy-1.1-spec-WD-06 07-07-2008
Copyright © OASIS® 2005, 2008. All Rights Reserved. Page 6 of 74

©oo~NOOUPAWN =

16

17
18
19

20

21

22

23

24

25
26

1 Introduction

The capture and expression of non-functional requirements is an important aspect of service
definition and has an impact on SCA throughout the lifecycle of components and
compositions. SCA provides a framework to support specification of constraints, capabilities
and QoS expectations from component design through to concrete deployment. This
specification describes the framework and its usage.

Specifically, this section describes the SCA policy association framework that allows policies
and policy subjects specified using WS-Policy [WS-Policy] and WS-PolicyAttachment [WS-
PolicyAttach], as well as with other policy languages, to be associated with SCA
components.

This document should be read in conjunction with the SCA Assembly Specification [SCA-
Assembly]. Details of policies for specific policy domains can be found in sections 7, 8 and 9.

1.1 Terminology

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL", “SHALL NOT”, “SHOULD”", “SHOULD
NOT”, “RECOMMENDED", “MAY”, and “OPTIONAL" in this document are to be interpreted as described
in [RFC2119].

1.2 XML Namespaces

Prefixes and Namespaces used in this Specification

Prefix XML Namespace Specification

docs.oasis-open.org/ns/opencsa/sca/200712

This is assumed to be the default namespace in this SCA
specification. xs:QNames that appear without a pre fix [!
are from the SCA namespace.

sca

acme Some namespace; a generic prefix

wsp http://www.w3.0rg/2006/07/ws-policy [WS-Policy]

XS http://www.w3.0rg/2001/XMLSchema [XML Schema

Datatypes]
. Deleted: 0
1.3 Normative References {petete
’//,[Deleted: 7
/! [Deleted: 69
[RFC2119] S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, //u {Deleted: 71

http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.),
/1 | Deleted: 71

o A

sca-policy-1.1-spec-CD-01 03-17:2008 /.
Copyright © OASIS® 2005-2008, All Rights Reserved. Page 7 of 74,

27
28
29
30
31
32
33
34

35
36

37
38
39
40
41
42
43

44
45

46
47
48
49

50
51

52
53

[SCA]

[SCA-Assembly]

Service Component Architecture (SCA)
http://www.osoa.org/display/Main/Service+Component+Architecture+
Specifications

Service Component Architecture Assembly Model Specification
http://www.osoa.org/display/Main/Service+Component+Architecture+
Specifications

[SCA-Java-Annotations]

[WSDL]

SCA Java Common Annotations and APIs

100.pdf
Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language
— Appendix http://www.w3.0rg/TR/2006/CR-wsdl20-20060327/

[WS-AtomicTransaction]

[WSDL-Ids]

[WS-Policy]

Web Services Atomic Transaction (WS-AtomicTransaction)
http://docs.oasis-open.org/ws-tx/wsat/2006/06.

SCA WSDL 1.1 Element Identifiers — forthcoming W3C Note

http://dev.w3.org/cvsweb/~checkout~/2006/ws/policy/wsdl11lelementidentifiers.ht
ml

Web Services Policy (WS-Policy)
http://www.w3.0org/TR/ws-policy

[WS-PolicyAttach] Web Services Policy Attachment (WS-PolicyAttachment)

[XML-Schema?2]

sca-policy-1.1-spec-CD-01

http://www.w3.0org/TR/ws-policy-attachment

XML Schema Part 2: Datatypes Second Edition XML Schema Part 2: Datatypes
Second Edition, Oct. 28 2004.

http://www.w3.org/TR/xmlschema-2/

7,
03-1%,2008 /11
Page 8 of 74, j’/

(Field Code Changed

{ Deleted: 0
/

//{ Deleted: 7

////{ Deleted: 69

1 { Deleted: 71
1, :
1y

/
/1) | Deleted: 71
i

o A

54

55

56
57 |
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79 |
80
81
82
83
84 |
85
86
87
88
89
90
91
92

93
94

95
96
97
98
99 |

2 Overview

2.1 Policies and PolicySets

The term Policy is used to describe some capability or constraint that can be applied to
services and references. An example of a policy is that messages exchanged betweena
service client and a service provider must be encrypted, so that the exchange is confidential

In SCA, services and references can have policies applied to them that affect the form of the
interaction that takes place at runtime. These are called interaction policies.

Service components can also have other policies applied to them which affect how the
components themselves behave within their runtime container. These are called
implementation policies.

How particular policies are provided varies depending on the type of runtime container for
implementation policies and on the binding type for interaction policies. Some policies may
be provided as an inherent part of the container or of the binding — for example a binding

using the https protocol will always provide encryption of the messages flowing between a

providing a particular policy at all.

In SCA, policies are held in policySets, which may contain one or many policies, expressed
in some concrete form, such as WS-Policy assertions. Each policySet targets a specific

policies to a component or to the binding of a service or reference, through configuration
information attached to a component or attached to a composite.

For example, a service can have a policy applied that requires all interactions (messages)

with the service to be encrypted. A reference which is wired to that service needs to support

sending and receiving messages using the specified encryption technology if it is going to
use the service successfully.

In summary, a service presents a set of interaction policies which it requires the references
to use. In turn, each reference has a set of policies which define how it is capable of
interacting with any service to which it is wired. An implementation or component can
describe its requirements through a set of attached implementation policies.

2.2 Intents describe the requirements of Components, Services and
References

SCA intents are used to describe the abstract policy requirements of a component or the
requirements of interactions between components represented by services and references.
Intents provide a means for the developer and the assembler to state these requirements in
a high-level abstract form, independent of the detailed configuration of the runtime and

sca-policy-1.1-spec-CD-01 03-1%72008 '

- { Deleted:

21

- [Deleted: conversation

- [Deleted:

may

- { Deleted:

may

o ‘[Deleted:

U

_ - | Deleted:
1

- - [Deleted:

must

h { Deleted:

be able

[Deleted:

is

) /{ Deleted:

o

) [Deleted:

/ /
K ////{ Deleted:

/
! ///,”,{ Deleted:
S

/ /
- /‘/j////{ Deleted:

o A

1y
7
W,

Copyright © OASIS® 2005-2008, All Rights Reserved. Page 9 of 74,/

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

133

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

services and references to particular SCA bindings, since they assist the deployer in
choosing appropriate bindings and concrete policies which satisfy the abstract requirements
expressed by the intents.

time during the creation of an assembly, through the configuration of bindings and the
attachment of policy sets. Attachment may be done by the developer of a component at the
time when the component is written or it may be done later by the deployer at deployment
time. SCA recommends a late binding model where the bindings and the concrete policies
for a particular assembly are decided at deployment time.

SCA favors the late binding approach since it promotes re-use of components. It allows the
use of components in new application contexts which may require the use of different
bindings and different concrete policies. Forcing early decisions on which bindings and
policies to use is likely to limit re-use and limit the ability to use a component in a new
context.

For example, in the case of authentication, a service which requires its messages to be
authenticated can be marked with an intent "authentication". This intent marks the
service as requiring message authentication capability without being prescriptive about how
it is achieved. At deployment time, when the binding is chosen for the service (say SOAP
over HTTP), the deployer can apply suitable policies to the service which provide aspects of
WS-Security and which supply a group of one or more authentication technologies.

In many ways, intents can be seen as restricting choices at deployment time. If a service is
marked with the confidentiality intent, then the deployer must use a_binding and a
policySet that provides for the encryption of the messages.

The set of intents available to developers and assemblers can be extended by policy

- [Deleted: arbitrarily

administrators. The SCA Policy Framework specification does define a set of intents which
address the infrastructure capabilities relating to security, transactions and reliable
messaging.

2.3 Determining which policies apply to a particular wire

In order for a reference to connect to a particular service, the policies of the reference must
intersect with the policies of the service.

Multiple policies may be attached to both services and to references. Where there are
multiple policies, they may be organized into policy domains, where each domain deals with
some particular aspect of the interaction. An example of a policy domain is confidentiality,
which covers the encryption of messages sent between a reference and a service. Each
policy domain may have one or more policy. Where multiple policies are present for a
particular domain, they represent alternative ways of meeting the requirements for that

domain. For example, in the case of message,ntegrity, there could be a set of policies, - [Deleted: ¢

where each one deals with a particular security token to be used: e.g. X509, SAML,

Kerberos. Any one of the tokens may be used - they will all ensure that the overall goal of

message integrity is achieved. /{ Deleted: 0
/ [Deleted: 7

In order for a service to be accessed by a wide range of clients, it is good practice for the J /{ Deleted: 69

service to support multiple alternative policies within a particular domain. So, if a service ////{ Deleted: 71

requires message confidentiality, instead of insisting on one specific encryption technology, 1 :

/1 | Deleted: 71

o A

sca-policy-1.1-spec-CD-01 03-17:2008 /.

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

the service can have a policySet which has a host of alternative encryption technologies,
any of which are acceptable to the service. Equally, a reference can have a policySet
attached which defines the range of encryption technologies which it is capable of using.
Typically, the set of policies used for a given domain will reflect the capabilities of the
binding and of the runtime being used for the service and for the reference.

When a service and a reference are wired together, the policies declared by the policySets
at each end of the wire are matched to each other. SCA does not define how policy
matching is done, but instead delegates this to the policy language (e.g. WS-Policy) used
for the binding. For example, where WS-Policy is used as the policy language, the matching
procedure looks at each domain in turn within the policy sets and looks for 1 or more
policies which are in common between the service and the reference. When only one match
is found, the matching policy is used. Where multiple matches are found, then the SCA
runtime can choose to use any one of the matching policies. No match implies that the wire
cannot be used - it is an error.

{ Deleted: 0
/

/ [Deleted: 7

/
/! [Deleted: 69

/
/,//",{ Deleted: 71
S

/1 | Deleted: 71

o A

sca-policy-1.1-spec-CD-01 03-17:2008 /.

Deleted: the

()
’J[Deleted: always J
‘ Deleted:]
|)

)

i
(Deleted: i.e.
(

16 3 Framework Model
167 The SCA Policy Framework model is comprised of intents and policySets. Intents J -
Iy, Deleted: intents that are

168 represent abstract assertions and Policy Sets contain concrete policies that may be applied)

169 to SCA bindings and implementations. The framework describes how intents are related to ;| Deleted: An intentis
170 PolicySets. It also describes how intents and policySets are utilized to express the i g:gggg_g;lgmt:ilf°”°W'”9
171 constraints that govern the behavior of SCA bindings and implementations. Both intents and (i '
172 | policySets may be used to specify QoS requirements on services and references. Iy| <intent name="NCName"{
173)) . . .) . constrains ="listOfQName
174 | The following section describes the Framework Model and illustrates it using Interaction s
175 | Policies. Implementation Policies follow the same basic model and are discussed later in roequ;]res ="listOfQNames"
. ? >
i;g section 1.5. <description >q
<l-- description of the
intent -->9
/ descripti 1
178 3.1 Intents Jinent 5
179 As discussed earlier, an intent is an abstract assertion about a specific Quality of Service C Deleted:
180 (QoS) characteristic that is expressed independently of any particular implementation Foe 1
181 technology. An intent is thus used to describe the desired runtime characteristics of an SCA i ! Deleted: Where:
182 construct. Intents are typically defined by a policy administrator. See section [Policy IR)
183 | Administrator] f detailed description of SCA roles with t to Poli ts, || || Sk>@name attribute
ministra pr] or a more detailed description o ,5.”;9 les with respect to Policy concepts, 1/ || gefines the name of the
184 | their definition and their use. The semantics of an intent may not always be available |/ | intent
185 normatively, but could be expressed with documentation that is available and accessible. . AR
186 | I I (<#>@c<|))nstrainfs att}r1ibustgA
. - - Lo - . . "1y 1| (optional) specifies the
187 For example, an intent named_lntegrlty may be_speC|f|_eq t_o signify that communications 11| constructs (SCA binding orq
188 should be protected from possible tampering. This specific intent may be declared as a 11| implementation) that this
189 | requirement by some SCA artifacts, £.9. a reference. Note that this intent can be satisfied | | ‘*,“ intent is meant to
190 by a variety of bindings and with many different ways of configuring those bindings. Thus, il 202222?'.?.:{’3'”6 is not
191 the reference where the intent is expressed as a requirement could eventually be wired ! J J agsu'n;ed’t'ha't this intent is
192 using either a web service binding (SOAP over HTTP) or with an EJB binding that 1] | aqualified intent and
193 communicates with an EJB via RMI/IIOP. | ! || inherits its constraint list
194 1y from the qualifiable intent it
HEE i
195 Intents can be used to express requirements for interaction policies or implementation '/ 'Tsh?suzlt'tfxftéze:eger:g?)'
196 | policies. The integrity intent in the above example is used to express a requirement for " define the valid attach
197 | an interaction policy. Interaction policies are, typically applied to a service or reference.] points of the intent. {
198 They are meant to govern the communication between a client and a service provider. y E te that the “constrains”
199 | Intents may also be applied to SCA component implementations as_requirements for i atc;r?butz m;;, :::fe raa'nsﬁ
200 implementation policies. These intents specify the qualities of service that should be {F ttod: Enalish (U S"'
201 provided by a container as it runs the component. An example of such an intent could be a | /\.Formatted: Engiish (US.)
202 requirement that the component must run in a transaction. ;}f //{ ﬁelete‘t 1 J
203 (/)
204 | For convenience and conciseness, it is often desirable to declare a single, higher-level intent l - | Deleted: <#>@requires
205 to denote a requirement that could be satisfied by one of a number of lower-level intents. .| attribute (optional) defines
- . reels . . _ . . [the set of all intents t|"_ 2]
206 For example, the confidentiality intent requires either message-level encryption or N
207 transport-level encryption. { Deleted: 1)
208 _ _ _ _ [Deteted: 0)
209 Both of these are abstract intents because the representation of the configuration necessary /,[Deleted: 7]
210 to realize these two kinds of encryption could vary from binding to binding, and each would //{
. o . . /'’ [Deleted: 69)
211 also require additional parameters for configuration. Iy
1, { Deleted: 71]
212 17
/‘/;/////{ Deleted: 71]

sca-policy-1.1-spec-CD-01 03-17:2008 /.

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

254
255

256
257
258
259
260
261

An intent that can be completely satisfied by one of a choice of Iower Ievel intents is

In general, SCA allows the developer or assembler to attach multiple qualifiers for a single
qualifiable intent to the same SCA construct. However, domain-specific constraints may
prevent the use of some combinations of qualifiers (from the same qualifiable intent)., _

Jntents, their qualifiers and their defaults are defined using the following pseudo schema:

<intent name="xs:string" constrains ="list of QName s - ‘\::\\
requires="list of QNames" excludes="list of QNames” ? \\\\ ‘\\\:\
mutuallyExclusive="boolean”? > \ \\\
\

Sdescription> xs:string.</description>?
<qualifier name = "xs:string" default = “xs:boolea
<description> xs:string.</description>?
</qualifier>
</intent> M \

Where: \\\\\\\
« [@name is a required attribute that defines the name of the intent

W
\ \\\

\

» _@constrains attribute (optional) specifies the SCA constructs that this intent is “\
dmeant to configure. If a value is not specified for this attribute then it can apply to any ' \) \

SCA element.

\
Note that the “constrains” attribute may name an abstract element type, such as “
sca:binding in our running example. This means that it will match against any binding

used within a SCDL file. A SCDL element may match @constrains if its type is in a \ \\

substitution group. \\

» @requires attribute (optional) defines the set of all intents that the referring intent «

\\\\
0

\

{ Deleted: an
{ Deleted: ,

h ‘[Deleted:
B ‘[Deleted: (separated by “.”),

\
\

‘ % \\\{Deleted Further, the

)
v Deleted:]
\\ Deleted:]
\\\ Deleted:]
‘\\\
\\\\{ Deleted: J
\\\\\\(Deleted: J
\\ ‘(Formatted [ﬁ
\\[Deleted:]
\\\\[Formatted [ﬁ
\‘\(Deleted:]

.. [9]

qualifiable intent

)
)
Deleted: the name of a }
)
)

Deleted: See Usage of
@requires attribute for
specifying intents.

Deleted: Because qualified
intents include the name of
the qualifiable intent, the
qualifiable intent definition
does not need to list its
valid qualifiers. The set of
all qualified intents defined
for that qualifiable intent
determines the list of valid

qualifiers. This is illus{”_ 37

.. [4]

Deleted: §

... [5]

Deleted: <intent

Deleted:

Formatted [6]

Formatted: Body Text

Formatted: Bullets and
Numberlng

requires. In essence, the referring intent requires all the intents named to be satisfied. \ Formatted: Bullets and
This attribute is used to compose an intent from a set of other intents. This use is \\ '| Numbering T10]
further described in Section 3.2 below. \(Deleted m J
\
\\(Formatted ... [11]
» @excludes attribute (optional) contains a list of the excluded intents as a set of OQNames. AR {Formaued: Bullets and
Note that if one intent declares itself to be exclusive of some other intent, it is not required that the “«_ [Numbering ... [12]
other intent also names the original intent in its exclude list, although it is good practice to do this. \[Formatted [ﬁ
Where one intent is applied to a given artifact in a composition and another intent is applied to one of {Deleted 0]
its parents, which intents apply to the artifact differs depending on whether the two intents are {Deleted 7]
Additive or Mutually Exclusive.
{Deleted 69]
- Where the intents are Additive, both intents apply to the artifact and its child artifacts. /,/ {Deleted 71]
’//, {Deleted 71]

03-1% 2008 ////

sca- policy 1.1-spec-CD- 01

262
263

264

265
266
267

268
269

270
271

272
273
274
275

276

277
278

279

280
281

282
283
284
285
286
287
288
289
290
201
292
293
294
295
296

297
298
299
300
301
302
303
304
305
306

- Where the intents are mutually exclusive, only the intent attached directly to the artifact
applies to the artifact and to its child artifacts.

+ @mutuallyExclusive attribute (optional) with a default of “false”. If this attribute is
present and has a value of “true” is indicates that the qualified intents defined for
this intent are mutually exclusive.

One or more <qualifier> child elements MAY be used to define qualifiers for the intent. The

«— — —

attributes of <qualifier> are:

» [@name is a required attribute that defines the name of the intent

1.27 cm

Formatted: Bulleted + Level:
1 + Aligned at: 0.63 cm + Tab
after: 1.27 cm + Indent at:

o { Deleted:

77 o ‘{ Formatted: Bullets and

» (@default is an optional attribute that declares the particular qualifier to be the
default gqualifier for the intent. If an intent has more than one gualifier, one and only
one of them MUST be declared as the default. Further, the names of the qualifiers must

be unigue within the intent definition.

» The <qgualifier> element may have an optional child element called “description”
whose value is a xs:string.

For example, the confidentiality intent which has qualified intents called
confidentiality.transport and confidentiality.message may be defined as:

<intent name="confidentiality" constrains="sca:bind ing">

<description>
Communication through this binding must prevent

unauthorized users from reading the messages.

</description>
<qualifier name="transport”>

<description>Automatic encryption by transport
</description>

</qualifier>
<qualifier name="message” default="true’>
<description>Encryption applied to each message

</description>

</qualifier>
</intent>

All the intents in a SCA Domain are defined in a global, domain-wide file named
definitions.xml. Details of this file are described in the SCA Assembly Model [SCA-
Assembly].

SCA normatively defines a set of core intents that all SCA implementations are expected to
support, to ensure a minimum level of portability. Users of SCA may define new intents, or
extend the qualifier set of existing intents.

sca-policy-1.1-spec-CD-01 03-17:2008 /.

Numbering

Numbering

- ‘[Formatted: Bullets and

- ‘[Formatted: Bullets and

Numbering

{ Deleted: 0
/

/ { Deleted: 7

/
/// { Deleted: 69
/

////{D | :
/) eleted: 71
/ /

//
i {Deleted: 71
n, 7

o A

307

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

332

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357

3.2 Profile Intents

An intent that is satisfied only by satisfying all of a set of other intents is called a profile
intent. It can be used in the same way as any other intent.

The presence of @requires attribute in the intent definition signifies that this is a profile
intent. The @requires attribute may include all kinds of intents, including qualified intents

cannot BE a qualified intent (so its name must not have “.” in it).

Requiring a profile intent is always semantically identical to requiring the list of intents that
are listed in its @requires attribute.

An example of a profile intent could be an intent called messageProtection which is a
shortcut for specifying both confidentiality and integrity, where integrity means to
protect against modification, usually by signing. The intent definition may look like the
following:

<intent name="messageProtection"

constrains ="sca:binding"
requires ="confidentiality integrity" >
<description >
Protect messages from unauthorized reading or modif ication.
</ description >
</ intent >

3.3 PolicySets

A policySet element is used to define a set of concrete policies that apply to some binding
type or implementation type, and which correspond to a set of intents provided by the
policySet.,

The pseudo schema for policySet is shown below:

<policySet name="NCName"
provides="listOfQNames"
appliesTo="xs:string"
attachTo="xs:string"
xmins=http://www.osoa.org/xmins/sca/l1.0
xmlins:wsp="http://schemas.xmlsoap.org/ws/2004/09/po licy">
<policySetReference name="xs:QName"/>*
<intentMap/>*
<xs:any>*
</policySet>

| PolicySet has the following attributes:

« The @name attribute declares a name for the policySet. The value of the @name
attribute is a xs:QName.

« The @appliesTo attribute is used to determine which SCA constructs this policySet
can configure. The contents of the attribute must match the XPath 1.0 production Expr.

+ The @attachTo attribute is a string which is an XPath 1.0 expression identifying one

or more elements in the SCDL within the Domain. It is used to declare which set of

sca-policy-1.1-spec-CD-01 03-17:2008 /.

- { Deleted: 1

_ - | Deleted: The structure of
the PolicySet element is as
follows:

| Formatted: Bullets and
,,/ Numbering

/
/ { Deleted: 0
/ /

/) //{ Deleted: 7

! ////{ Deleted: 69

1 { Deleted: 71
1, :
/ /

//
/1) | Deleted: 71
n,

o A)

358
359
360
361
362
363

365
366
367
368
369

elements the policySet is actually attached to. See the section on "Attaching Intents and

PolicySets to SCA Constructs" for more details on how this attribute is used.

+ The @provides attribute, whose value is a list of intent names (that may or may not
be qualified), designates the intents the PolicySet provides. Members of the list are
xs:string values separated by a space character ™ ™.

+ intentMap element
» policySetReference element
« Xs:any extensibility element

- ’[Deleted: It J

370 | Any mix of the above types of elements, in any number, can be included as children of the <.

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

policySet element including extensibility elements. There are likely to be many different
policy languages for specific binding technologies and domains. In order to allow the
inclusion of any policy language within a policySet, the extensibility elements may be from
any namespace and may be intermixed. However, the SCA policy framework expects that
WS-Policy will be a common policy language for expressing interaction policies, especially
for Web Service bindings.,

either directly as <wsp:Policy> elements, or as <wsp:PolicyReference> elements or using
<wsp:PolicyAttachment>. These three elements, and others, can be attached using the
extensibility point provided by the <xs:any> in the pseudo schema above. See example
below.

For example, the policySet element below declares that it provides
authentication.message and reliability for the “binding.ws” SCA binding.

<policySet name="SecureReliablePolicy"
provides ="authentication.message exactlyOne"
appliesTo ="sca:binding.ws"

xmlins ="http://www.osoa.org/xmlns/sca/1.0"
xmins:wsp ="http://schemas.xmlsoap.org/ws/2004/09/policy" >
<wsp:PolicyAttachment >
<!-- policy expression and policy subject for
"basic authentication" -->

</ wsp:PolicyAttachment >
<wsp:PolicyAttachment >
<!-- policy expression and policy subject for
"reliability" -->

</ wsp:PolicyAttachment >
</ policySet >

PolicySet authors should be aware of the evaluation of the @appliesTo attribute in order to
designate meaningful values for this attribute. Although policySets may be attached to any
element in the SCA design, the applicability of a policySet is not scoped by where it is

attached in the SCA framework. Rather, policySets always apply to either binding instances

or implementation elements regardless of where they are attached to. In this regard, the
SCA policy framework does not scope the applicability of the policySet to a specific
attachment point in contrast to other frameworks, such as WS-Policy. Attachment is a
shorthand.

sca-policy-1.1-spec-CD-01

/
////{ Deleted: 71
///
! 7, { Deleted: 71
!
03-1%,2008 |17,

Deleted: <#>wsp:PolicyAtt
achment elementf
<#>wsp:Policy elementf
<#>wsp:PolicyReference
element]

Formatted: Body Text, Adjust
space between Latin and Asian
text

Deleted: For this reason,
wsp:PolicyAttachment is
explicitly included in the
schema for clarity.

' <intentMap /> *q|

Deleted: The pseudo
schema for policySet is
shown below:9

1

<policySet
name="NCName"{

provides ="listOfQNames"

appliesTo ="xs:string"{
xmins =http://www.osoa.o
rg/xmins/sca/1.0 1
xmins:wsp ="http://schem
as.xmlsoap.org/ws/2004/
09/policy" >1
<policySetReference
name="xs:QName" /> *{

Formatted: Body Text]

| hment>*{

' <wsp:PolicyReference>*{

Deleted: <wsp:PolicyAttac

<wsp:Policy>*

Deleted: <xs:any >*{
</ policySet >
1

{

Deleted: 0

/
/

Deleted: 7

/
////{ Deleted: 69

o A

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

434

435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

With this design principle in mind, an XPath expression that is the value of an @appliesTo
attribute designates what a policySet applies to. Note that the XPath expression will always
be evaluated within the context of an attachment considering elements where binding
instances or implementations are allowed to be present. The expression is evaluated against
the parent element of any binding or implementation element. The policySet will apply to
any child binding or implementation elements returned from the expression. So, for
example, appliesTo="binding.ws” will match any web service binding. If
appliesTo="binding.ws[@impl="axis’]” then the policySet would apply only to web service
bindings that have an @impl attribute with a value of ‘axis’.

For further discussion on attachment of policySets and the computation of applicable
policySets, please refer to Section 4.

All the policySets in a SCA Domain are defined in a global, domain-wide file named
definitions.xml. Details of this file are described in the SCA Assembly Model [SCA-
Assembly].

SCA may normatively define a set of core policySets that all SCA implementations are
expected to support, to ensure a minimum level of portability. Users of SCA may define new
policySets as needed.

3.3.1 IntentMaps

Intent maps contain the concrete policies and policy subjects that are used to realize a
specific intent that is provided by the policySet.

The pseudo-schema for intentMaps is given below:

<intentMap provides ="xs:QName"

Y - { Deleted: default ="xs:stri
<qualifier name="xs:string" >? ng"
,fl)SSjQrDQ z t 777 - — — 7| Deleted: <wsp:PolicyAttac
<intentMap /> ? hment >*q
</ qualifier > |
</ intentMap > </ wsp:PolicyAttachment >

It is often desirable to attach WS-Policies directly as children of <qualifier> elements; either directly as
<wsp:Policy> elements, or as <wsp:PolicyReference> elements or using <wsp:PolicyAttachment>.
These three elements, and others, can be attached using the extensibility point provided by the <xs:any>
in the pseudo schema above.

When a policySet element contains a set of intentMap elements, the value of the @provides
attribute of each intentMap corresponds to an unqualified intent that is listed within the
@provides attribute value of the parent policySet element.

If a policySet specifies a qualifiable intent in the @provides attribute, then it MUST include
an intentMap element that specifies all possible qualifiers for that intent. If a qualified intent

can be further qualified, then the qualifier element must also contain an intentMap. /{ Deleted: 0)
/ { Deleted: 7]

/
For each intent (qualified or unqualified) listed as a member of the @provides attribute list ////{Deleted: 69]
of a policySet element, there may be at most one corresponding intentMap element that iy {Deleted: 71]
////// {Deleted: 71]

P

sca-policy-1.1-spec-CD-01 03-17:2008 /.

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

declares the unqualified form of that intent in its @provides attribute. In other words, each
intentMap within a given policySet must uniquely provide for a specific intent.

The @provides attribute value of each intentMap that is an immediate child of a policySet
must be included in the @provides attribute of the parent policySet.

An intentMap element must contain qualifier element children. Each qualifier
element corresponds to a qualified intent where the unqualified form of that
intent is the value of the @provides attribute value of the parent intentMap.
The qualified intent is either included explicitly in the value of the enclosing
policySet’'s @provides attribute or implicitly by that @provides attribute
including the unqualified form of the intent._One of the qualifiers referenced
in the intentMap MUST be the default qualifier defined for the qualifiable

intent.

A qualifier element designates a set of concrete policy attachments that correspond to a
qualified intent. The concrete policy attachments may be specified using
wsp:PolicyAttachment element children or using extensibility elements specific to an

environment.

the @provides attribute. The alternatives (transport and message) it contains each specify
the policy and policy subject they provide. The default is “transport”.

<policySet

name="SecureMessagingPolicies"
provides
appliesTo
xmins ="http://www.osoa.org/xmins/sca/1.0"

="confidentiality"
="binding.ws"

xmins:wsp ="http://schemas.xmlsoap.org/ws/2004/09/policy" >

| <intentMap p

<qualifier

rovides
name="transport"
<wsp:PolicyAttachment

="confidentiality"

>
>

<l-- policy expression and policy subject for

"transport" alternative -->

</ wsp:PolicyAttachment
<wsp:PolicyAttachment

</ wsp:PolicyAttachment

</ qualifier >

<qualifier

<wsp:PolicyAttachment

name="message" >

>

>

>

>

<l-- policy expression and policy subject for

"message" alternative” -->

</ wsp:PolicyAttachment

</ qualifier >

</ intentMap >
</ policySet >

>

PolicySets can embed policies that are defined in any policy language. Although WS-Policy is
the most common language for expressing interaction policies, it is possible to use other
policy languages. The following is an example of a policySet that embeds a policy defined in
a proprietary language. This policy provides “authentication” for binding.ws.

sca-policy-1.1-spec-CD-01

03-17,2008 /1.

\

Deleted: The default
attribute of an intentMap
must correspond to a
qualified intent that is
named on one of the child
qualifier elements. This is
used when the unqualified
form of the intent has been
specified as a requirement.
The relationship between
intents and policySets, and
their use within SCDL is

1| explained in more detail in

'| section 1.5.

N [Deleted:ﬂ
‘LT
\

="transpo

{ Deleted: default
"

|
|

{ Deleted: 0
/

//{ Deleted: 7

////{ Deleted: 69

1 { Deleted: 71
1, :
/ /

//
/1) | Deleted: 71
n,

o A

518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536 |

540

543
544
545
546
547
548
549
550
551
552
553
554
555

556

557
558
559
560
561
562
563
564
565
566
567
568
569

<policySet name="AuthenticationPolicy"
provides ="authentication"
appliesTo ="binding.ws"

xmlins ="http://www.osoa.org/xmlns/sca/1.0" >
<e:policyConfiguration xmins:e ="http://example.com” >
<e:authentication type = “X509” />

<e:trustedCAStore type ="JKS” />
<e:keyStoreFile >Foo.jks </ e:keyStoreFile >
<e:keyStorePassword >123</ e:keyStorePassword >
</ e:authentication >
</ e:policyConfiguration >
</ policySet >

The following example illustrates an intent map that defines policies for an intent with more
than one level of qualification.

<policySet name="SecurityPolicy” provides ="confidentiality” >

<intentMap provides ="confidentiality” > - { Deleted: default="message }

<qualifier name="message” >

<intentMap provides ="message’ > o { Deleted: defauli="whole”

)

<qualifier name="body” >
<! --- policy attachment for body encryption >
</ qualifier >
<qualifier name="whole” >
<! --- policy attachment for whole message
->encryption
</ qualifier >
</ intentMap >
</ qualifier >
<qualifier name="transport” >
<! --- policy attachment for transport
encryption >
</ qualifier >
</ intentMap >
</ policySet >

3.3.2 Direct Inclusion of Policies within PolicySets

In cases where there is no need for defaults or overriding for an intent included in the
@provides of a policySet, the policySet element may contain policies or policy attachment
elements directly without the use of intentMaps or policy set references. There are two ways
of including policies directly within a policySet. Either the policySet contains one or more
wsp: policyAttachment elements directly as children or it contains extension elements (using
xs:any) that contain concrete policies.

When a policySet element directly contains wsp:policyAttachment children or policies using {Deleted_ 0

extension elements, it is assumed that the set of policies specified as children satisfy the K :

intents expressed using the @provides attribute value of the policySet element. The intent //{ Deleted: 7

names in the @provides attribute of the policySet may include names of profile intents. ///{ Deleted: 69
///////{ Deleted: 71
) { Deleted: 71
l, 7

o A

sca-policy-1.1-spec-CD-01 03-17:2008 /.

570

571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

3.3.3 Policy Set References

A policySet may refer to other policySets by using sca:PolicySetReference element. This
provides a recursive inclusion capability for intentMaps, policy attachments or other specific

mappings from different domains., - { Deleted: ¢

2 --= { Deleted: 9

When a policySet element contains policySetReference element children, the @name
attribute of a policySetReference element designates a policySet defined with the same
value for its @name attribute. Therefore, the @name attribute must be a QName.

The @appliesTo attribute of a referenced policySet must be compatible with that of the
policySet referring to it. Compatibility, in the simplest case, is string equivalence of the
binding names.

The @provides attribute of a referenced policySet must include intent values that are
compatible with one of the values of the @provides attribute of the referencing policySet. A
compatible intent either is a value in the referencing policySet's @provides attribute values
or is a qualified value of one of the intents of the referencing policySet's @provides attribute
value.

The usage of a policySetReference element indicates a copy of the element content children
of the policySet that is being referred is included within the referring policySet. If the result
of inclusion results in a reference to another policySet, the inclusion step is repeated until
the contents of a policySet does not contain any references to other policySets.

When a policySet is applied to a particular element, the policies in the policy set
include any standalone polices plus the policies from each intent map contained in the
PolicySet as described below.

Note that, since the attributes of a referenced policySet are effectively removed/ignored by
this process, it is the responsibility of the author of the referring policySet to include any
necessary intents in the @provides attribute if the policySet is to correctly advertise its
aggregate capabilities.

The default values when using this aggregate policySet come from the defaults in the
included policySets. A single intent (or all qualified intents that comprise an intent) in a
referencing policySet must only be included once by using references to other policySets.

Here is an example to illustrate the inclusion of two other policySets in a policySet element:

<policySet name="BasicAuthMsgProtSecurity"
provides ="authentication confidentiality"
appliesTo ="binding.ws"
xmins ="http://www.osoa.org/xmins/sca/1.0" >
<policySetReference name="acme:AuthenticationPolicies" />
<policySetReference name="acme:ConfidentialityPolicies" />
</ policySet >

The above policySet refers to policySets for authentication and confidentiality and, by /{ Deleted: 0

reference, provides policies and policy subject alternatives in these domains. //{ Deleted: 7

////{ Deleted: 69

If the policySets referred to have the following content: iy {Deleted: 71

!
Sy {Deleted: 71
P

o A

sca-policy-1.1-spec-CD-01 03-17:2008 /.

623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679

<policySet name="AuthenticationPolicies"
provides ="authentication"
appliesTo ="binding.ws"
xmlns ="http://www.osoa.org/xmlns/sca/1.0" >
<wsp:PolicyAttachment >
<l-- policy expression and policy subject for "basi
authentication" -->

</ wsp:PolicyAttachment >

</ policySet >

<policySet name="acme:ConfidentialityPolicies"
provides ="confidentiality"
bindings ="binding.ws"

xmins ="http://www.osoa.org/xmlns/sca/1.0" >
| <intentMap provides ="confidentiality" >
<qualifier name="transport" >

<wsp:PolicyAttachment >
<!-- policy expression and policy subject for "tran
alternative -->

</ wsp:PolicyAttachment >
<wsp:PolicyAttachment >

</ wsp:PolicyAttachment >

</ qualifier >
<qualifier name="message" >

<wsp:PolicyAttachment >

<!I-- policy expression and policy subject for "mess

alternative” -->

</ wsp:PolicyAttachment >

</ qualifier >

</ intentMap
</ policySet >

>

The result of the inclusion of policySets via policySetReferences would be semantically
equivalent to the following:

<policySet name="BasicAuthMsgProtSecurity"

provides ="authentication confidentiality"
appliesTo ="binding.ws"
xmlns ="http://www.osoa.org/xmlns/sca/1.0"

<wsp:PolicyAttachment >
<!I-- policy expression and policy subject for "basi
authentication" -->

</ wsp:PolicyAttachment >

| <intentMap

provides ="confidentiality" >

<qualifier name="transport" >

sca-policy-1.1-spec-CD-01

<wsp:PolicyAttachment >
<!-- policy expression and policy subject for "tran
alternative -->

</ wsp:PolicyAttachment >
<wsp:PolicyAttachment >

- ‘{ Deleted: default ="transpo
"
sport
age”
- ‘{ Deleted: default ="transpo
"
sport" /{ Deleted: 0
/ { Deleted: 7
/
////{ Deleted: 69
/
'/ [Deleted: 71
/ /

/
iy {Deleted: 71
n, 7

o A J

03-17,2008 |1/

680
681
682
683
684
685
686
687
688
689
690
691
692
693

</ wsp:PolicyAttachment
name="message" >
<wsp:PolicyAttachment
<!I-- policy expression and policy subject for "mess
alternative -->

</ wsp:PolicyAttachment

</ intentMap >

sca-policy-1.1-spec-CD-01

age"

{ Deleted: 0
/

/ { Deleted: 7

/
/// { Deleted: 69
/

/////{D | H
/ eleted: 71
/ /

o A

/
/ //i//{ Deleted: 71
/y
03-17,2008 |1/

694

695
696
697
698
699

700

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723

724

725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740

4 Attaching Intents and PolicySets to SCA Constructs

This section describes how intents and policySets are associated with SCA constructs. It <~~~ Formatted: Body Text, Adjust
describes the various attachment points and semantics for intents and policySets and their space between Latin and Asian
relationship to other SCA elements and how intents relate to policySets in these contexts. text

4.1 Attachment Rules_- Intents

Intents can be attached to any SCA element used in the definition of components and <+~~~ - Formatted: Body Text, Adjust
composites since an intent specifies an abstract requirement. The attachment is specified by space between Latin and Asian
using the optional @requires attribute. This attribute takes as its value a list of intent e

names. Intents can optionally be applied to interface definitions. For WSDL Port Type [Formatted: Font: Bold, Italic]
elements (WSDL 1.1) and for WSDL Interface elements (WSDL 2.0), the @requires attribute _ - - { Formatted: Font color: Black |

can be applied that holds a list of intent names that are required for the interface. Other
interface languages may define their own mechanism for specifying a list of required
intents. Any service or reference that uses an interface with required intents implicitly adds
those intents to its own @requires list.

Because intents specified on interfaces can be seen by both the provider and the client of a
service, it is appropriate to use them to specify characteristics of the service that both the
developers of provider and the client need to know. For example, the fact that an interface
is conversational is such a characteristic, since both the client and the service provider need
to know about the conversational semantics.

For example:

<service > or <reference >...
<binding.binding-type requires ="listOfQNames"
</ binding.binding-type >

</ service > or </reference >

Formatted: Heading 2, Adjust
space between Latin and Asian
text

-

4.2 Attachment Rules - PolicySets

One or more policySets can be attached to any SCA element used in the definition of - [Deleted: Similarly, one

.« - { Formatted: Font: Bold, Italic
4\{\’\" {Formatted: Font: Bold, Italic
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, NN

" AN TFormatted: Bullets and

The policySets, attribute takes as its value a list of policySet names. _ '\ [Numbering J
N \\{ Deleted: .]
For example: AN {Formatted: Font: Bold, Italic]
<service > or <reference >... {Deleted: is J
<binding.binding-type policySets ="listOfQNames" /{ Deleted: 0]
</ binding.binding-type >... /[Deleted: 7)

</ service > or </reference > ’,
///{ Deleted: 69]

///
The SCA Policy framework enables two distinct cases for utilizing intents and PolicySets: W ,{Deleted: 71]
/’//////[Deleted: 71]

sca-policy-1.1-spec-CD-01 03-17:2008 /.

741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

766

767
768
769
770
771
772
773
774
775
776
77
778
779
780
781
782
783
784
785
786
787
788
789
790

- It is possible to specify QoS requirements by specifying abstract intents utilizing the <«---
@requires element on an element at the time of development. In this case, it is
implied that the concrete bindings and policies that satisfy the abstract intents are

Formatted: Body Text,
Bulleted + Level: 1 + Aligned
at: 0.63 cm + Tab after: 1.27
cm + Indent at: 1.27 cm,
Adjust space between Latin
and Asian text, Tabs: Not at
0.63 cm

Deleted: will not be

within policySets that are applied during deployment using the external attachment '\
mechanism. The intents associated with a SCA element is the union of intents \\ \ {
specified for it and its parent elements subject to the detailed rules below. \\\{

« Itis also possible to specify QoS requirements for an element by using both intents <. I

Deleted: will be available in

Deleted: will be]
a deployment environment J

and concrete policies contained in directly attached policySets at development time.

settings in the specified policySets using intents. The policySets associated
with a SCA element is the union of policySets specified for it and its parent elements
subject to the detailed rules below. ,

Formatted: Body Text,
Bulleted + Level: 1 + Aligned
at: 0.63 cm + Tab after: 1.27
cm + Indent at: 1.27 cm,
Adjust space between Latin
and Asian text

~

When computing the policySets that apply to a particular element, the @appliesTo

In this case, it is possible to configure the policySets, by overriding the default w
attribute of each relevant policySet is checked against the element. If the policySet I

Deleted: §
<#>9

is attached directly to the element and does not apply to that element an error is
raised. If a policySet that is attached to an ancestor element does not apply to the
element in question, it is simply discarded.

These two different approaches of specifying policies are illustrated in detail below. Also - [Deleted: will be]
discuss is_how intents are used to guide the selection and application of specific policySets. - { Deleted: we a)
_ - | Formatted: Heading 2, Adjust
i . «” space between Latin and Asian
4.3 External Attachment of PolicySets Mechanism text

The External Attachment mechanism for policySets is used for deployment-time application
of policySets to SCA elements. It is called "external attachment" because the principle of
the mechanism is that the place that declares the attachment is separate from the
composite files which hold the elements. This separation provides the deployer with a way
to attach policySets without having to modify the artifacts where they apply.

A PolicySet is attached to one or more elements in one of two ways:

a) through the use of a <PolicyAttachment/> element which is a child of a <definitions/>
element in a definitions file

b) through the @attachTo attribute of the PolicySet

A

Formatted: Font: Courier New

The pseudo-schema for the Policy Attachment element is: L {

Formatted: Font: Courier New

Sscadefinitons> . {

Formatted: Font: Courier New

1,
!

/
/ /

Deleted: 71

)

)

<scq:PoTi6>7A’ttééﬁrﬁén’t policySet="QName"attac |, hTo="xsistring"/>+ " [Formatted: Font: Courier New%

mt‘idﬁsg *** N B ‘[Formatted: Font: Courier New]

R ‘[Formatted: Font: Courier New}

The PolicyAttachment element attaches a single PolicySet to a set of locations in the SCDL. /{Formaued: Bullets and }
It has 2 attributes: 7| Numbering

» policySet (required) — QName of the PolicySet to attach <7 {Dehted; 0]

» attachTo (required) — string which is an XPath 1.0 expression identifying one or more /{ Deleted: 7 J

elements in the SCDL to which the policySet is attached (See below for details) S
/ //{ Deleted: 69 %
)

/7
/ /{
1

/
Ly, s

Deleted: 71

sca-policy-1.1-spec-CD-01 03-17:2008 /.

791
792
793

794

795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841

The meaning of the @attachTo attribute of the PolicyAttachment element is identical to the
meaning of the @attachTo attribute of the PolicySet element. This is described in the next

subsection. - -
_ - 7| Formatted: Heading 3, Adjust
. « space between Latin and Asian
4.3.1 The Form of the @attachTo Attribute text
The @attachTo attribute of a PolicySet or of a PolicyAttachment is an XPath1.0 expression
identifying a SCA element to which the PolicySet is attached.
The XPath applies to the Infoset for External Attachment - ie to SCA composite files, - { Formatted: Font: Bold, Italic]
with the following special characteristics:
1. The Domain is treated as a special composite, with a blank nhame - "" <+~~~ - Formatted: Bullets and
Numbering
2. Where one composite includes one or more other composites, it is the including <~ - - - Formatted: Bullets and
composite which is addressed by the XPath and its contents are the result of Numbering
preprocessing all of the include elements
3. Where the PolicySet is intended to be specific to a particular use of a composite <«-- *‘{Formatted: Bullets and J
file (rather than to all uses), each (nested) component is given a unique URI for Numbering
each use of the component, based on a concatenation of all the hames of the
components involved, starting with the name of the component at the Domain
level.
The XPath expression can make use of the unigue URI to indicate specific use
instances, where different policySets need to be used for those different
instances.
Special case. Where the @attachTo attribute of a PolicySet is absent or is blank, the
PolicySet cannot be used on its own for external attachment. It can be used:
1. For direct attachment <+~~~ - Formatted: Bullets and
Numbering
2. By reference from another PolicySet or from a <PolicyAttachment/> element
Such a policySet can in principle be applied to any element through these means.
The XPath expression for the @attachTo attribute can make use of a series of XPath
functions which enable the expression to easily identify elements with specific
characteristics that are not easily expressed with pure XPath. These functions enable:
» the identification of elements to which specific intents apply. - *‘{Formatted: Bullets and }
This permits the attachment of a PolicySet to be linked to specific intents on the Numbering
target element - for example, a PolicySet relating to encryption of messages can be
targeted to services and references which have the confidentiality intent applied. - /{Formatted: Font: Bold, Italic]
» the targeting of subelements of an interface, including operations and messages.
This permits the attachment of a PolicySet to an individual operation or to an
individual message within an interface, separately from the Policies that apply to /{ Deleted: 0]
other operations or messages in the interface. /{Deleted: 7]
/
. . . . ,// { Deleted: 69]
« the targeting of a specific use of a component, through its unique URI. //,/{D leted: 71 }
This permits the attachment of a PolicySet to a specific use of a component in one S A e
/ ///,//{ Deleted: 71]

sca-policy-1.1-spec-CD-01

842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870

871

872
873
874
875
876
877

878

879
880
881
882
883
884
885
886
887
888
889

context, that can be different from the PolicySet(s) that are applied to other uses of
the same component.

Detail of the available XPath functions is given in a following section.

Examples of @attachTo attribute:

1. //component(@name="test3")

attach to all instances of a component named "test3"

2. //component/URIRef("top level/testl/test3")

attach to the unique instance of component "test3" when used by component "testl1" when
used by component "top level" (top level is a component at the Domain level)

- { Formatted: French (France) J

selects the services of component "test3" which have the intent "intent1" applied

4, //component/binding.ws

selects the web services binding of all components with a service or reference with a Web
services binding

5. /composite(@name="")/component(@name="fred")

selects a component with the name "fred" at the Domain level

space between Latin and Asian

- W Formatted: Heading 3, Adjust
-
text

4.3.2 Cases Where Multiple PolicySets are attached to a Single Artifact

Multiple PolicySets can be attached to a single artifact. This can happen either as the result
of one or more direct attachments using the @policySets attribute plus one or more
external attachments which target the particular artifact.

Where multiple PolicySets are attached to a single artifact, all of the PolicySets attached

apply to the artifact. __ - Formatted: Heading 3, Adjust
. . A space between Latin and Asian
4.3.3 XPath Functions for the @attachTo Attribute text
Utility functions are useful in XPath expressions where otherwise it would be complex to
write the XPath expression to identify the required elements.
This particularly applies in SCA to Interfaces and the child parts of interfaces (operations
and messages). XPath Functions are proposed for the following:
° Picking out a specific interface
° Picking out a specific operation in an interface {Deleted:o]
° Picking out a specific message in an operation in an interface /{ Deleted: 7 J
° Picking out artifacts with specific intents //
/,//{ Deleted: 69]
K ///{ Deleted: 71 J
/ ////i//{ Deleted: 71]

sca-policy-1.1-spec-CD-01

890

891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929

930

931
932
933
934
935
936
937
938
939
940

_ | Formatted: Heading 4, Adjust

4.3.3.1 Interface Related Functions . space between Latin and Asian
text

nterfaceRef(InterfaceName) __ - { Formatted: Font: Bold]
picks out an interface identified by InterfaceNeme -~ - { Formatted: Font: Not Bold |
OperationRef(InterfaceName/OperationName) ... - { Formatted: Font: Bold]
picks out the operation OperationName in the interface InterfaceName
MessageRef(InterfaceName/OperationName/MessageName) - { Formatted: Font: Bold]
picks out the message MessageName in the operation OperationName in the interface
InterfaceName.

"*" can be used for wildcarding of any of the names.

The interface is treated as if it is a WSDL interface (for other interface types, they are
treated as if mapped to WSDL using their reqular mapping rules).

Examples of the Interface functions:

InterfaceRef("MylInterface")

picks out an interface with the name "Mylnterface"

OperationRef("MyInterface/MyOperation")

picks out the operation named "MyOperation" within the interface named "MylInterface"

OperationRef("*/MyOperation")

picks out the operation named "MyOperation" from any interface

MessageRef("Mylnterface/MyOperation/MyMessage")

picks out the message named "MyMessage" from the operation named "MyOperation" within
the interface named "Mylnterface"

MessageRef("*/*/MyMessage")

picks out the message named "MyMessage" from any operation in any interface

_ - -| Formatted: Heading 4, Adjust

. - space between Latin and Asian
4.3.3.2 Intent Based Functions text

For the following intent-based functions, it is the total set of intents which apply to the
artifact which are examined by the function, including directly attached intents plus intents
acquired from the structural hierarchy and from the implementation hierarchy.

P { Formatted: Font: Bold J
IntentRefs(Intentlist) 7 {Deleted:o]
picks out an element where the intents applied match the intents specified in the IntentList: /{ Deleted: 7)
1y .
IntentRefs("intent1" /////{ Deleted: 69)
////{ Deleted: 71 J
picks out an artifact to which intent named "intentl" is attached //,j;/ { Deleted: 71]
I,

sca-policy-1.1-spec-CD-01

941
942
943
944
945
946
947
948
949

950

951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967

968

969
970

971

972
973
974

975

976
977
978

979
980

981

982

983
984
985
986
987
988

IntentRefs("intentl intent2")
picks out an artifact to which intents named "intent1" AND "intent2" are attached

IntentRefs("intentl lintent2")

picks out an artifact to which intent hamed "intentl" is attached but NOT the intent named
"intent2"

-«

4.3.3.3 URI Based Function

The following function is used to pick out a particular use of a nested components - ie «--
where some Domain level component is implemented using a composite implementation

which in turn may have one or more components implemented with a composite (and so on

to an arbitrary level of nesting):

URIRef(URL) .

picks out the particular use of a component identified by the URI string URI.

Example:

URIRef("top comp name/middle comp name/lowest comp name")

picks out the particular use of a component — where component lowest comp name is used
within the implementation of middle comp name within the implementation of the top-level
(Domain level) component top comp name.

«

4.4 Usage of @requires attribute for specifying intents

A list of intents can be specified for any SCA element by using the @requires attribute. -

SN
NS

\

The intents which apply to a given element depend on

» the intents expressed in its @requires attribute
» intents derived from the structural hierarchy of the element
» intents derived from the implementation hierarchy of the element

When computing the intents that apply to a particular element, the @constrains attribute of
each relevant intent is checked against the element. If the intent in question does not apply
to that element it is simply discarded.

The structural hierarchy of an element consists of its parent element, grandparent element
and so on up to the <composite/> element in the composite file containing the element.

As an example, for the following composite:

space between Latin and Asian

- -| Formatted: Heading 4, Adjust
text

space between Latin and Asian

~ 7| Formatted: Body Text, Adjust
text

- { Formatted: Font: Bold

h ‘[Formatted: Font: Bold

_~ -| Formatted: Bullets and
Numbering

- | Deleted: 1
As indicated

N ‘[Deleted: ,a
N

{ Deleted: optional

o - J

<composite name="C1" requires="1"> /{ Deleted: 0
<service name="CS" promotes="X/S"> /{Deleted: 7
<binding.ws requires="i2"> //
</service> iy /{ Deleted: 69
<component name="X"> /// { Deleted: 71
/

<implementation.java class="foo"/>

sca-policy-1.1-spec-CD-01

/
iy {Deleted: 71
s

o A

989
990
991

992

993
994
995

996

997
998

999
1000
1001
1002
1003
1004
1005
1006

1007
1008
1009

1010
1011
1012
1013
1014
1015
1016
1017

1018
1019
1020
1021
1022
1023
1024

1025

1026

1027
1028
1029
1030
1031
1032
1033
1034
1035
1036

1037

1038
1039

</component>
</composite>

- the structural hierarchy of the component service element with the name "S" is the
component element nhamed "X" and the composite element named "C1". Service "S" has
intent "i3" and also has the intent "i1" if i1 is not mutually exclusive with i3.

Rule 1: An element inherits any intents specified on the elements above it in its structural
hierarchy EXCEPT

« if any of the inherited intents is mutually exclusive with an intent expressed on the
element, then the inherited intent is ignored

» if the overall set of intents from the element itself and from its structural hierarchy
contains both an unqualified version and a qualified version of the same intent, only
the gualified version of the intent is used (whichever element was the source of the

qualified intent)

The implementation hierarchy occurs where a component configures an implementation
and also where a composite promotes a service or reference of one of its components. The
implementation hierarchy involves:

e acomposite service or composite reference element is in the implementation hierarchy of the
component service/component reference element which they promote

« the component element and its descendent elements (for example, service, reference,
implementation) configure aspects of the implementation. Each of these elements is in the
implementation hierarchy of the corresponding element in the componentType of the
implementation.

Rule 2: An element acquires the intents defined by the elements lower in its
implementation hierarchy and it can only add intents or further qualify intents. Added
intents MUST NOT be mutually exclusive with any of the intents attached lower in the
hierarchy. A gualifiable intent expressed lower in the hierarchy can be qualified further up
the hierarchy, in which case the qualified version of the intent applies to the higher level
element. Intents from the implementation hierarchy take precedence over those from the

structural hierarchy.

As an example, consider the following composite:

<composite nhame="C1" requires="i1">
<service name="CS" promotes="X/S">
<binding.ws requires="i2">

</service>
<component name="X"> , Formatted: Space Before: 4
<implementation.java class="foo"/> ;| pt, After: 4 pt, Adjust space
<service name="S" requires="i3"> J between Latin and Asian text
_</component> J {Deleted: 0
</composite> P
i/ { Deleted: 7
/ /
) .) . / ,// { Deleted: 69
...the component service with name "S" has the service named "S" in the componentType of ¥ /,/
- - .. - . ; - pp— ’y, {Deleted: 71
the implementation in its implementation hierarchy, and the composite service named "CS)

/
iy {Deleted: 71
s

o A

sca-policy-1.1-spec-CD-01

1040
1041
1042

1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

1087

1088
1089
1090
1091

has the component service named "S" in its implementation hierarchy. Service "CS"

acquires the intent "i3" from service "S" — and also gets the intent "i1l" from its containing ,"| with the @requires
composite "C1" IF il is not mutually exclusive with i3. ,/ | attribute of an element

J/ means that those intents
A ——_..—, e Ee—e—e - are additionally required by
When intents apply to an element following the rules described and where no policySets are every relevant element
attached to the element, thentents for the element can be used to select appropriate } descendent. For example,

<composite requires ="confidentiality" >
<service name="foo" .../>
<reference name="bar" yequires ="confidentiality.message" />

</ composite >

Deleted: Stating intents

specifyingq
requires="confidentiali
ty” on a <composite>
element is the equivalent to
adding the same intent to
the @requires list of every
service and reference that
is contained within that
77 composite, including the
services and references
inside components.

... [14]
e deyy MR LUTIPRSItE SRR dl By VAL al YL Tho SR VILES Al IR RS e udldiIes Deleted:arespecifie(w
confidentiality in their communication, but the “bar” reference further qualifies that =~ Deleted: durt i
requirement to specifically require message-level security. .,The “foo” service element has, ! clete — uring ... [16]
the default qualifier specified for the confidentiality intent (which might be transport level Deleted: is)
security) while the “bar” reference has, the confidentiality.message intent. =~ Deleted: computed]
X i L . . . = i Deleted: are J
Lonsider this variation where a qualified intent is specified at the composite level: Deleted:)
<composite requires ="confidentiality.transport" > Deleted: The intents (", [17]
<service name="foo" ..[> Deleted: Both lifi
<reference name="bar" yequires ="confidentiality.message" s e o ua™ ... [18]
</ composite > Deleted:]
Deleted: I]
In this case, both the confidentiality.transport and the confidentiality.message intent Deleted: has]
are required for the reference ‘bar’. If there are no bindings that support this combination, Deleted: d]
an error will be generated. However, since in some cases multiple qualifiers for the same :
intent may be valid or there may be bindings that support such combinations, the SCA Deleted: would)
specification allows this. Deleted: y]
Deleted: . When the [[197)
4t is also possible for a qualified intent to be further qualified. In our example, the Deleted: will)
«confidentiality.message intent may be further qualified to indicate whether just the body ' e
of a message is protected, or the whole message (including headers) is protected. So, the Deleted: use J
second-level qualifiers might be “body” and “whole”. The default qualifier might be “whole”. \ [Deleted: by the PoIic[ﬂ_ [20]
If the “bar” reference from the example above wanted only body confidentiality, it would [Deleted: will use J
state: ‘{ Deleted: During poliq_ [21]
<reference name="bar" _Jequires ="acme:confidentiality.message.body” /> { Deleted: {]
\\\ \{ Deleted: <#>If a ... [22]
The definition of the second level of qualification for an intent follows the same rules. As . { Deleted: 615]
with other qualified intents, the name of the intent is constructed using the name of the . -
qualifiable intent, the delimiter “.”, and the name of the qualifier. {De'eted: Il]
_ - Formatted: Bullets and
- - Numbering - [23]
4.5 Usage of @requires and @policySet attributes together [Deteted: 0)
/ .
As indicated above, it is possible to attach both intents and policySets to an SCA element K /{ Deleted: 7 J
during development. The most common use cases for attaching both intents and concrete ! //{ Deleted: 69 }
policySets to an element are with binding and reference elements. //////{Deleted: 71]
/’///////[Deleted: 71)
sca-policy-1.1-spec-CD-01 03-17:2008 ,/1/,”

1092
1093
1094
1095
1096
1097
1098

1099
1100

1101

1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116

1117

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

1135

1136
1137
1138

When the @requires attribute and the @policySets attributes are used together during
development it indicates the intention of the developer to configure the element, such as a

-| Deleted: that are in scope

for

Developers using @requires and @policySet attributes in conjunction with each other must
be aware of the implications of how the policySets are selected and how the intents are
utilized to select specific intentMaps, override defaults, etc. The details are provided in the

\

Section Guided Selection of PolicySets using Intents.,

4.6 _Operation-Level Intents and PolicySets on Services & References -

\
\
\

\

It is possible to specify intents and policySets for a single service or reference operation in a
way that applies to all the bindings of a service or reference. In this case, the syntax is to

\

Deleted: The same
algorithm applies whether
the intents guide the
selection of policySets
during deployment or
whether a developer uses
intents to choose the best
alternative in a set of
policySets that may apply
by configuring policySets.

specify the operation directly under the <sca:service> or <sca:reference> element. The :
following example illustrates the placement of the <sca:operation> element: [

Formatted: Bullets and
Numbering

<service > or <reference >
<operation name = "xs:string"
policySet ="xs:QName" ? requires ="="listOfQNames"
</ service > or </reference >

? />

The SCA Runtime MUST execute the algorithm in section Error! Reference source not

found. Error! Reference source not found., one time for each operation in a_service or

- Deleted: 4.10

reference interface when operation level policy attachment (intents or policySets) is used.

Deleted: Guided Selection of
PolicySets using Intents

4.7 Operation-Level Intents and PolicySets on Bindings

Formatted: Bullets and
Numbering

Deleted 4.10

The above mechanism for specifying operation-specific required intents and policySets may
also be applied to bindings. In this case, the syntax would be:

Deleted: Guided Selection of
PolicySets using Intents

- J J G

<service > or <reference > 0
<binding.binding-type)

requires ="list of intent QNames" policySets ="listOfQNames" > K

<operation name = "xs:string" policySets ="xs:QName" ? 0!

requires ="listOfQNames" ? /> *)

</ binding.binding-type > Ui !

</ service > or </reference >
This makes it possible to specify required intents that are specific to one operation for a f‘f
single binding. The SCA Runtime MUST execute the algorithm in Error! Reference source |,
not found. Error! Reference source not found. one time for each operation in a_service_ //

Deleted: Similar to
operations on
implementations, the
intents required for the
operation are added to the
effective list of required
intents on the binding, and
operation-level policySets
override corresponding
policySets specified for the
binding (where a
“corresponding” policySet
@provides at least one
common intent).q

Formatted: Bullets and
Numbering

. . ’ Deleted: for
4.8 Intents and PolicySets on Implementations and Component Types }Deleted_o
It is possible to specify required intents and policySets within a component’'s {Ddeted: 7
implementation, which get exposed to SCA through the corresponding component type. {Deleted: 59
How the intents or policies are specified within an implementation depends on the {D ©otod: 71
/// eleted:
/ /// {Deleted: 71

o A

sca- policy 1.1-spec-CD- 01 03-1% 2008 ////

1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168

1169

1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190

intents.

The required intents and policySets specified within an implementation can be found on the

component type, for example:

<omponentType >

<implementation. * requires ="listOfQNames"
policySets =" ="listOfQNames" >

</ implementation >

<service name="myService" requires ="listOfQNames"
policySets ="listOfQNames" >

</service >

<reference name="myReference" requires ="listOfQNames"
policySets =" ="listOfQNames" >

</ reference >

</ componentType >

Jntents gxpressed in the component type are handled according to the rule defined for the = - { Deleted: When applying
implementation hierarchy, "~ _ | policies, the i

i R { Deleted: required by

==l o=t BT =y o L e e e e e e e L - Deleted: added to the

override policySets from the component type. More precisely, a policySet on the N intentsq
componentType is considered to be overridden, and is not used, if it has a @provides list ‘| required by the using
that includes an intent that is also listed in any component policySet @provides list. \ [component
« {Deleted: the
4.9 BindingTypes and Related Intents . { Formatted: Bullets and
Numbering

« _J A 00 A)

SCA Binding types implement particular communication mechanisms for connecting
components together. See detailed discussion in the SCA Assembly specification [SCA-
Assembly]. Some binding types may realize intents inherently by virtue of the kind of
protocol technology they implement (e.g. an SSL binding would natively support
confidentiality). For these kinds of binding types, it may be the case that using that binding
type, without any additional configuration, will provide a concrete realization of a required
intent. In addition, binding instances which are created by configuring a bindingType may
be able to provide some intents by virtue of its configuration. It is important to know, when
selecting a binding to satisfy a set of intents, just what the binding types themselves can
provide and what they can be configured to provide.

The bindingType element is used to declare a class of binding available in a SCA Domain. It
declares the QName of the binding type, and the set of intents that are natively provided
using the optional @alwaysProvides attribute. The intents listed by this attribute are always

concretely realized by use of the given binding type. The binding type also declares the

intents that it may provide by using the optional @mayProvide attribute. Intents listed as /{ Deleted: 0
the value of this attribute can be provided by a binding instance configured from this //{ Deleted: 7
binding type. /! [Deleted: 69
L . ////,” {Deleted: 71
The pseudo-schema for the bindingType element is as follows: Sl
) /{ Deleted: 71

o A

sca-policy-1.1-spec-CD-01 03-17:2008 /.

1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208

1209

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242

<bindingType type ="NCName"
alwaysProvides ="listOfQNames" ? mayProvide ="listOfQNames" ?/>

The kind of intents a given binding might be capable of providing, beyond these inherent
intents, are implied by the presence of policySets that declare the given binding in their
@appliesTo attribute. An exception is binding.sca which is configured entirely by the intents
listed in its @mayProvide and @alwaysProvides lists. There are no policySets with
appliesTo="binding.sca".

For example, if the following policySet is available in a SCA Domain it says that the
sca:binding.ssl can provide “reliability” in addition to any other intents it may provide
inherently.

<policySet name="ReliableSSL" provides ="exactlyOnce"
appliesTo ="binding.ssl" >

</ policySet > {

Formatted: Bullets and
Numbering

4.10Treatment of Components with Internal Wiring

This section discusses the steps involved in the development and deployment of a
component and its relationship to selection of bindings and policies for wiring services and
references.

The SCA developer starts by defining a component. Typically, this will contain services and
references. It may also have required intents defined at various locations within composite
and component types as well as policySets defined at various locations.

Both for ease of development as well as for deployment, the wiring constraints to relate
services and references need to be determined. This is accomplished by matching