2.1 Solution Lifecycle Management: The SDD must provide information to support the complete lifecycle of a software solution, as a key objective of this specification. Certain key requirements are applicable to all of the phases of deployment lifecycle operation: planning, installation, configuration, maintenance, upgrade, migration and uninstallation.

2.1.1.1 The SDD specification must not mandate the author to define a specific ordering or grouping of UI or execution, other than that required by dependencies.

2.1.1.2 The SDD specification must support the ability for the author
to define optional selection of defined parts of a solution for specific deployment lifecycle operations.

2.1.1.3 The SDD specification must support the ability for the author to define deployment lifecycle operations on common or shared components, regardless of the packaging that contains it.

2.1.1.4 The SDD specification must support the ability for the author to define error recovery and remediation information for all deployment lifecycle operations.

2.1.1.5 The SDD specification must support the ability for the author to define information sufficient for a provisioning application or installation program to determine in advance that a deployment lifecycle operation is invalid.

2.1.1.6 The SDD specification must support the ability for the author to define the information needed for a provisioning application or installation program to rollback or undo a deployment lifecycle operation, or to determine in advance that this operation is not possible.

2.1.1.6.1 The SDD specification must support the ability for the author to define the information necessary to support granular rollback for error recovery processes

2.1.1.6.2 The SDD specification must support the ability for the author to define sufficient information to support user initiated cancellation of a deployment lifecycle operation.

2.1.1.7 The SDD specification must support the ability for the author to define sufficient information to enable a provisioning application or installation program to insure that a deployment lifecycle operation completes successfully, and that the system is in an appropriate state.

2.1.2 Planning: The SDD specification must support the ability for the author to define the information required by a provisioning application or installation program to plan the installation and configuration of the contents of a solution package into a set of target environments which may span multiple machines and may consist of servers and resources of multiple different types

2.1.2.1 The SDD specification must support the ability for the author to define information about viable topologies and define relationships between nodes in the topology and components targeted to those nodes

2.1.2.1.1 The SDD specification must support the ability for the author to define prioritization of alternative topologies.

2.1.2.2 The SDD specification must provide an open and flexible definition of target environments

2.1.3 Installation: The SDD specification must support the ability for the author to define the information required by a provisioning application or installation program to install the contents of a solution package.

2.1.3.1 The SDD specification must not require knowledge of each resource type by the provisioning application or installation program in order to process the descriptor.

2.1.3.2 The SDD specification must support the ability for the author to define information separate for the install and initialconfiguration phases

2.1.3.3 The SDD specification must support the ability for the author to define information about installation packages which contain configuration content in addition to install artifacts.

2.1.3.4 The SDD specification must support the ability for the author to define information that supports the repair of an installed solution.

2.1.4 Configuration: The SDD specification must support the ability for the author to define information that supports the configuration of an installed solution.

2.1.4.1 The SDD specification must support the ability for the author to define alternative configurations and identify a default and prioritization of those alternatives.

2.1.4.2 The SDD specification must support the ability for the author to define information to support the reconfiguration of an installed solution.

2.1.4.3 SDD specification must support the ability for the author to define information about and the ability to aggregate a snapshotted configuration for subsequent installation.

2.1.5 Maintenance:The SDD specification must support the ability for the author to define information not only for the initial install of a solution, but also for the maintenance of a solution (i.e. updates and fixes).

2.1.5.1 The SDD specification must support the ability for the author to define information to support both the application and the undo of fixes.

2.1.5.2 The SDD specification must support the ability for the author to define information about the fixes superseded or obsoleted by the deployment of a fix or fixes

2.1.5.3 The SDD specification must support the ability for the author to define the aggregations of fixes to be applied, and identified as a single version.

2.1.5.4 The SDD specification must support the ability for the author to define the information required to permit the selective application of fixes within an aggregate.

2.1.5.5 The SDD specification must support the ability for the author to define the association of specific fixes to specific targets.

2.1.5.6 Element Update – SDD specification must support the ability for the author to define the information to permit individual component update, specifically System Firmware, BIOS, peripheral firmware

2.1.6 Upgrade:The SDD specification must support the ability for the author to define the information in order to enable a provisioning application or installation program to deploy an upgrade of a solution to a new version, including the migration, decomposition or obsoletion of existing components.

2.1.6.1 This upgrade may include the coexistence of old and new versions for a period of time.

2.1.6.2 The SDD specification must support the ability for the author to define information to enable a provisioning application or installation program to coordinate upgrades to distributed topologies and /or shared parts, including compatibility information

2.1.7 Verification: The SDD specification must support the ability for the author to define the information required to enable a provisioning application or installation program to support the verification of an installed solution.

2.1.7.1 The verification information provided must support the validation of payload delivery and configuration settings

2.1.7.2 The verification information provided must support the ability for the author to also define post-launch tests for active verification.

2.1.8 Uninstall: The SDD specification must support the ability for the author to define the information needed to enable a provisioning application or installation program to uninstall a previously installed solution.

2.1.8.1 The SDD specification must support the ability for the author to define the information on all product specific resources, configuration and payload

2.1.8.2 The SDD specification must support the ability for the author to define alterative uninstall scenarios

2.2 Solution Requirements on Environment to perform lifecycle mgmt task: A deployment lifecycle operation on a target platform is often times dependent on a certain set of conditions that must exist on the target.
 This set of pre-existing conditions is known as the environment.
When successful deployment lifecycle operations are dependent on a certain set of pre-existing conditions then the SDD specification must support the ability for the author to specify the required environment.

2.2.1 The SDD specification must support the ability for the author to define the information about the requirements on the target environments that must be satisfied before a particular deployment lifecycle operation is performed, to allow these requirements to be checked or a plan for satisfying them to be constructed. Specific environmental requirements that must be supported are defined in sections 2.2.2 through 2.2.14

2.2.1.1 The SDD specification must support the ability for the author to define the information in order to specify that a required entity must be operational at various points during the operation. Specifically identified as operational prior to start of the deployment lifecycle operation; operational prior to an identified step in the deployment lifecycle operation; or operational by the end of the deployment lifecycle operation

2.2.2 The SDD specification must be support the ability for the author to define the information in order to specify, as requirements for deployment lifecycle operations, software and other resource instances which must be installed in the environment.

2.2.3 The SDD specification must must support the ability for the author to define the information in order to specify, as requirements for deployment lifecycle operations, the state of run-able resources (started, stopped), and the need for a restart (reboot) to activate a change.

2.2.4 The SDD specification must must support the ability for the author to define the information in order to specify, as requirements for deployment lifecycle operations, the need for administrative user privileges. SDD specification must must support the ability for the author to define the system privileges required for deployment lifecycle operations when necessary. However, it should be noted, as a best practice, system privileges SHOULD only be required when absolutely necessary.

2.2.5 The SDD specification must support the ability for the author to define the information in order to specify, as requirements for deployment lifecycle operations, the dependencies between internal components of the solution. For example, the SDD specification must support the ability for the author to define where installation of one component is dependent on successful installation of another component within the solution.

2.2.6 The SDD specification must support the ability for the author to define the information in order to specify, as requirements for deployment lifecycle operations, the relationships to other resources and specific connectivity requirements, such as connectivity to a DNS, for example.

2.2.7 The process of deployment within an environment will have an effect on the environment itself.
The SDD specification must support the ability for the author to define the requirements on the target environments that must be satisfied after the deployment lifecycle operation, for the solution to be usable
.

2.2.8 The SDD specification must support the ability for the author to define the information in order to specify, as requirements for deployment lifecycle operations, the target environments that
may span multiple distributed machines and may consist of servers and resources of multiple different types.

2.2.9 The requirements on the environment may vary based on the selectable contents of the solution.
The SDD specification must support the ability for the author to define the information in order to specify variable environment requirements based upon decisions or choices that are made prior to or during the deployment lifecycle process.

2.2.10 The SDD specification must support the ability for the author to define the information in order to specify, as update requirements, the pre-existence of the solution or component instance being updated.

2.2.11 The SDD specification must support the author’s ability to specify description information for components and requirements, to allow a provisioning application or installation program to construct a relevant message in the event of dependency check failures, progress messages and change execution failures. This is intended to assist a user in understanding errors and other messages, which may occur during the deployment lifecycle process
2.2.12 The SDD specification must support the ability for the author to define the information in order to specify user privileges/ownership appropriate for the installed content. Where certain level of privileges are required, it is RECOMMENDED, as a best practice, to use the minimal level of required privileges in any environmental requirement.

2.2.13 The SDD specification must support the ability for the author to define environmental requirements in such as way as to be easily consumable by third party tooling, which may be used to validate the SDD requirements, analyze consistency, etc.

2.3 Projected Changes to Environment: In addition to describing the content of a solution package and the appropriate information required to install this content,
the SDD specification must support the ability for the author to define information in order to
 describe the changes to the environment once the package is installed.
 This information enables a provisioning application to better manage the system resources.

In addition, this information is required during the integration phase of the deployment lifecycle as the solution requires specific capabilities to be deployed to complete the solution.
 Just knowing the payload of the package is not adequate.

2.3.1 The SDD specification must support the author’s ability to describe the results of installing the solution package, to allow a provisioning application or installation program to determine the package or set of packages needed to satisfy the requirements for a deployment lifecycle operation. In addition, this information should provide the appropriate information to allow a provisioning application or installation program to detect that a solution or components of that solution have already been installed through an alternative means (“out-of-band” install of existing packages).

2.3.2 The SDD specification must support the ability for the author to define the information in order to describe what will be the results of installing the package to allow for the Solution Integrator to determine the package or set of packages needed to satisfy the requirements of a solution. The Solution Integrator can integrate the appropriate packages into a single solution ensuring that the composition is whole
.

2.3.3 The SDD specification must support the ability for the author to define the information in order to provide a provisioning application or installation program with the ability to create a change plan for only part of a solution, or to generate a change plan that will involve some parts of the change plan being performed manually or by a different application. This is to allow for different domains of responsibility/security.
 The implication on the SDD is that it must be structured to enable a provisioning application or installation program to understand the requirements and results of installing individual components of the solution, and to identify separately installable, updateable and uninstallable parts of a solution.

2.3.4 The SDD specification must support the ability for the author to define the information to describe the relationships and dependencies between the resulting resources to enable better management of shared components or other dependencies during update and uninstall

2.3.5 The SDD specification must support the ability for the author to define the information to enable a provisioning application or installation program to ensure that new installations/updates/uninstalls will not impact existing installed components.

2.4 Solution Instance Variability: The SDD specification must support the ability for the author to define the appropriate information in order for a provisioning application or installation program to vary how the solution can be deployed. This information is also needed to enable an integrator to control the variability per the needs of their higher-level solution.

2.4.1 The SDD specification must support the ability for the author to define the information defining the supported configurations and/or environment variability for the solution

2.4.1.1 The SDD specification must support the ability for the author to define the information defining the ability to selectable the content at time of deployment (e.g. “features” and “groups”)

Examples:

• Selecting products/components from within a suite

• Customizing the install based on user role, e.g. developer, end-user, administrator

• Configuration templates such as “evaluation”, “typical”, “express”

2.4.1.2 The SDD specification must support the ability for the author to define the information defining conditional content in which the determination of what is to be deployed can be resolved based on the environment in which it is being targeted.

2.4.1.3 The SDD specification must support the ability for the author to define the
user-input parameters.

2.4.1.3.1 This should include the ability to pass usage keys(s)
during installation.

2.4.1.4 The SDD specification must support the ability for the author to define parameters used in the operation whose values can be resolved based on the environment’s properties in which the solution is to be deployed

2.4.1.5 The SDD specification must support the ability for the author to define the specification and selection of target environments based on required properties, capabilities and relationships.

2.4.1.6 The SDD specification must support the ability for the author to define additional constraints to be specified on the target environment based on the values of input parameters.

2.4.2 The SDD specification must support the ability for the author to define the information that controls the selections to be readily collected into a “response file” for reuse. This information should include everything needed for the operation to proceed.

Examples:

• Support migration between different environments, e.g. development, test, production.

• Reinstall using the same configuration.

2.4.3 The SDD specification must support the ability for the author to define parameters to allow multiple instances of the same solution to be deployed to the same environment(s). The SDD specification must support the ability for the author to define where only one instance of a solution (a “singleton”) may be deployed to an environment.

2.4.4 The SDD specification must support the ability for the author to define defaults for parameters and selectable content (e.g. features), thereby minimizing the decisions that need to be made by different categories of user (role-based, novice/expert) or for different intended modes of use (evaluation, express,…).

2.4.5 The SDD specification must support the ability for the author to define parameters to be specified on other deployment lifecycle operations as well as on the initial install, e.g. whether to leave data behind after uninstalling the solution, or to delete everything.

2.4.6 The SDD specification must support the ability for the author to define metadata for a package of a solution in different forms in order to create the same solution, for example:

1. A customization that provides a subset of features, constrains variability, or changes default selections

2. A rollup of a base install plus maintenance

3. An image of a set of configured components captured in a single artifact

2.4.7 The SDD specification must support the ability for the author to define the information needed by a provisioning application or installation program to determine up-front what input is required in order to perform a particular change management operation, and what checks need to be performed before proceeding with the operation.

2.4.8 The SDD specification must support the ability for the author to define information for installation packages which contain localization content in addition to install artifacts.

2.4.9 The SDD specification must support the ability for the author to define the information needed by a provisioning application or installation program to store or to reacquire the values of relevant parameters and selections, for use during subsequent maintenance or repair. The SDD specification must support the ability for the author to define when a parameter may be changed by “out-of-band” configuration.

2.4.10 SDD specification must support the ability for the author to define that parameter values are sensitive data.

2.5 Solution Composition

2.5.1 The SDD specification must support the ability for the author to compose solution packages from multiple components, products, or solutions

2.5.2 The SDD specification must support the ability for the author to define a solution composition which:

1. Defines the features and parameters for the composite solution that are exposed to the Install Operator, and maps these to the features and parameters of the composed components, products, or solutions.

2. Places additional restrictions on the configuration and target of the composite solution.

3. Composes solutions where one composed solution may contribute to meeting the requirements of another composed solution.

4. Composes both initial install and maintenance packages into a single package.

5. Allows composed products and solutions to have a different disk organization or media layout than when they are packaged individually.

2.5.3 The SDD specification must support the ability for the author to indicate when components, products, or solutions may be shared between multiple solutions and provide the information needed to determine whether a change to a shared item is compatible with other solutions sharing that item.

2.5.4 The SDD specification must support the ability for the author to define the information necessary to aggregate consumption requirements and other dependencies and requirements of the components, products, and solutions within a composite solution.

2.5.5 The SDD specification must support the ability for the author to define whether composed components, product, or solution may be installed, uninstalled or updated independently.

2.5.6 The SDD specification must support the ability for the author to compose a solution which aggregates packages which contain various levels of localization support.

2.5.7 The SDD specification should allow solutions to contain:

1. Configuration instructions (only)

2. Localization content (only)

3. A bundle of maintenance, potentially for multiple solutions.

4. A bundle of solution packages that are only loosely related.

2.5.8 The SDD specification must support the ability for the author to define solution content that may override specific content in a composed Product or Solution. For example, a readme or documentation file in the composite solution may supersede the corresponding file in one or more of the composed solutions.

2.5.9 The SDD specification must support the ability for the author to define a composition of diverse content including system firmware updates, operating system updates, middleware and application level software.

2.5.10 The SDD specification must support the ability for the author to define the composition of a solution in which some content is encrypted.

2.5.11 SDD specification must not preclude update packages to be self-contained

2.6 Solution and Packaging Identity: The SDD specification must support the ability for the author to define identity information for the solution package, solution component and solution itself, which provides a basis for various use cases for them. Those include asset management, license management, support/update entitlement, component reuse during development, reporting and queries on package repository, identifying associated documentation, solution lifecycle management, traceability to build/development environment and problem management systems, correlation into the hosting environment, component reuse and maintenance history. Also, SDD specification must support the ability for the author to define the identity description information used by a provisioning application or installation program to assist a user in making correct decisions on solution installation. The SDD specification must support the ability for the author to define the information that uniquely identifies the SDD descriptor and be able to identify the version of the SDD. The customer should be able to identify the solution packages with the consistent names. The SDD description should be consistent.

2.6.1 The SDD specification must support the ability for the author to define identity information for the solution package which provides a basis for:

1. Asset management – e.g. assisting user registration, identifying the purchased entity, general description of the package.

2. License management – e.g. identifies the licensed entity, information for agreement enforcement.

3. Support/update entitlement and notifications – e.g. determining subscribed updates/refreshes and availability notifications

4. Component reuse during development – e.g. identity to lookup legal, licensing terms

5. Reporting and queries on package repository – e.g. maintenance types, interrogation by 3rd party tools.

6. Identifying, collecting and integrating the associated documentation - e.g. readmes

The identity information should include at least name, version, applicability and dependencies for packages.

2.6.2 The SDD specification must support the ability for the author to define identity information for the solution and solution components which provides a basis for:

1. Solution lifecycle management – e.g. identifies a meaningful entity to update or uninstall. Information to prepare for installation. Separate component identity and component version.

2. Traceability to build/development environment, e.g. for problem diagnosis. Interaction with common source control system.

3. Traceability to problem management systems e.g. to identify the problems fixed in a new release.

4. License management – e.g. identifies what is actually installed in a component granularity. Registration, auditability, return receipt, a revenue recognition event, a reconciliation event, additional new business event.

5. Correlation into the hosting environment – e.g. native install error logs. Percolation of error information.

6. Component reuse – e.g. capabilities, shielding of developers from internal dependencies of reusable aggregates, shielding of developers from irrelevant information.

7. Reporting and queries – e.g. visibility of subcomponents; maintenance types

8. Maintenance history – e.g. a user viewable record of what maintenance is applied (history file).

2.6.3 The SDD specification must support the ability for the author to define information used by a provisioning application or installation program to assist a user in making correct decisions about the selectable variability, including optional features, parameters and targeting decisions.
The installation should support both a smooth, easy setup and a setup with sufficient options. It should not require dialogs to a user after the initial set of questions. Useful help messages (tooltips, pop-ups, etc) should be provided. Validation constraints and descriptions/ help for install parameter should be provided.

2.6.4 The SDD specification must support the ability for the author to define information that uniquely identifies the SDD, and allows it to be updated with a more recent version if the information it contains becomes out-of-date (due to an error in the original or due to new versions of dependencies).

2.6.5 Guidelines need to be defined for changes to subsequent versions of the SDD specification to support compatibility and interoperability.

2.6.6 Consistent identity (naming, versioning and describing standard)

2.7 Physical Packaging: Physical packaging information should be contained in a separate media descriptor. The deployment model for a solution should be decoupled from the details of physical packaging.

2.7.1 The packaging specification must support the ability for the content of a solution package, including payload files and aggregated packages, to be accessed from:

1. A local filesystem

2. An archive (supporting many common formats, e.g. ZIP)

3. A network URL

4. Multiple removable media. In this case the media descriptor must allow an individual file’s contents to be spread across multiple media when the file is too large to fit on any individual medium.

2.7.2 The packaging specification must support the ability for files to be repositioned and/or renamed on the media for optimal access and to remove duplication.

2.7.3 The packaging specification must support the ability for the composition or copy of packages without requiring modification of the original package metadata unless the physical file packaging is changed
.

2.7.4 The packaging specification must support the ability for the author to define the information in order to enable a provisioning application or installation program to verify the integrity or authenticity of a package, including content and metadata. This may include checksums for package contents and a signature for the entire package when bundled as a single unit.

2.7.5 The package specification must enable the author to create the SDD, the package descriptor and the contents separable from any provided front-end install program.

2.7.6 The SDD specification must support the ability for the author to define the information needed by a provisioning application or installation program to determine which files are needed for life cycle operations on which components of the solution, on which target, and at which stage during change execution, to allow optimization of file distribution.

2.7.7 The Package specification should not preclude editing in place in which mgmt tooling expands SDD package, replaces content, and creates a new SDD package in place. This should permit incremental updates.

2.7.8 The packaging specification must support the ability for the author to define the layout of package content, including the relative placement of metadata, payload, localization files, and the location(s) where extra arbitrary content can be added. In addition, SDD shall specify a set of specific standardized formats that may be used for packaging (at minimum, the formats defined above in 7.2).

2.7.9 The packaging specification should not preclude encryption or other means used to control content access.

2.7.10 The packaging specification must support the ability for the author to define content that can be any opaque entries that are required for execution of application

2.7.11 The packaging specification must support the ability for the author to define the ability to substitute a package’s branding information, to allow OEMing of software with maximum re-use.

2.7.12 The packaging specification must not preclude the ability for the author to include any information required for application execution to be logically bundled in a package

2.8 Interoperability with existing software packaging technologies

2.8.1 The SDD specification must support the ability for the author to compose solutions from existing software packages which do not have an SDD. This means the SDD should be able to describe existing software packages, including those which:

1. Provide content variability.

2. Are composed solutions.

3. Are manageable through existing/native install capabilities

2.9 Conform to external Standards

2.9.1 The SDD specification must not preclude the ability for the author to define accessibility requirements according to Section 508 (www.section508.gov).

2.9.2 The SDD specification must facilitate introspection, authoring, and consumption by a variety of potential tools by:

1. employing a design that naturally models the domain of packaging and deployment

2. using data types as strong as possible for each set of data without losing important flexibility

3. providing unique identification of elements where applicable and appropriate

4. eliminating redundant data

5. providing a consistent and minimal set of types via inheritance and type reuse

6. employing technology-appropriate industry standards for data types and formats (e.g. regular expressions, XPATH, etc.)

2.9.3 It is expected that before an SDD package is built one or more SDD documents may exist on its behalf in an incomplete “design-time” state in source control. 1. Documents built according to the SDD schema should be viewable by a human with a text editor. 2. The SDD schema should not prevent a meaningful “diff” of two versions of an SDD document from tools such as CVS and the Unix “diff” utility.

2.9.4 It is expected that SDD packages will be assembled by an automated build process into any of the supported formats from a set of sufficient “design-time” information. It should be possible to transform SDD data and assemble it into a package using a tool such as Ant.

2.9.5 SDD packages should provide sufficient metadata to reasonably integrate with all major native platform package formats.

2.9.6 Any package built according to this standard should have sufficient data to deploy correctly on any implementation of this standard (i.e. no data should be “missing” and implementation-dependent).

2.9.7 The SDD package format should not prevent the inclusion of additional descriptors providing information about licensing and registration.

2.10 Decision Support: Requirements to perform lifecycle management operations within various target environments may not be satisfied in the target’s current state but may be able to be satisfied with additional operations. For example, deployment of a set of Java components will be dependent on the existence of a Java runtime environment that is not included with the solution. If the SDD has the ability to information that will assist lifecycle management tools in accessing and installing these external requirements the end user value is increased.

2.10.1 The SDD specification must support the ability for the author to define information to assist a provisioning application or installation program in decision making when external dependencies are not met (e.g. preferred alternatives for meeting dependencies).

2.10.2 The SDD specification must support the ability for the author to specify a means to acquire external requirements even if they reside in distributed and administratively separated locations.

2.11 Specification Organization: As part of the standards published, the TC needs to provide the semantic behavior expected by producers and consumers of this specification. This information allows for the producers to ensure that the consumers of their metadata will provide the support intended.

2.11.1 Since there are various types of producers and consumers of this specification, e.g. optimized for a specific use, the TC should define the levels of conformance to the published specification. These conformance levels enable the standard to be more consumable across a broader set of consumers and producers, i.e. they do not need to provide the full standard.

2.12 Solution Metadata: The Solution Deployment Descriptor has a specific purpose. By definition, this metadata may not be all of the information about the solution in all contexts in which the solution can be deployed. Additional metadata will be required. This section defines the requirements for additional metadata that is outside of the scope of the Solution Deployment Descriptor (SDD).

2.12.1 The packaging specification must support the distribution of additional solution metadata that is not a core part of the solution deployment descriptor, nor is it necessarily part of the content of the solution, but is specifically relevant to that solution.

This metadata may be relevant to decisions made during deployment of the solution (e.g. information about the problems fixed by a maintenance package). It may also be relevant to the management of the solution post-deployment (e.g. resource manageability descriptions).

2.12.1.1 The SDD specification must support the ability for the author to categorize payload files which contain solution metadata

Examples:

• Readmes identified to support readme aggregation (UC 93)

• EULAs identified to allow processing during end-user install (UC 25)

2.12.2 The packaging specification must enable the author to add or omit additional metadata files in the solution package and categorize them, without modifying the SDD.

Examples:

• ACS archive descriptors (UC 153)

• Maintenance and support information, such as problems fixed; fix criticality; support contact information.

• Resource manageability information.

• Information related to potential failure conditions and recovery steps that may occur during install, including error level or severity. This may include informational messages required for development debug. (UC 38, 141, 171)

• Information for install UIs, including NLS messages (UC 53)

• Information about install parameters, for use by aggregators and by install UIs (UC 88)

• Some aspects of content selection and configuration may be handled as external metadata, TBD (e.g. UC 42)

Note: I’m not clear if we think that all of the above is “separate” metadata, or if some needs to be derivable from the SDD itself. I think this section is only meant to be about the “separate” metadata.

2.12.3 The packaging specification must support the ability for the author to update or supersede additional solution metadata files, particularly when they are aggregated into a new solution.

Examples:

• Ability to replace/supersede solution documentation

• EULAs (UC 94)

• Override of branding information (UC 95)

• Override of UI display/validation information

2.12.4 Canonical metadata types should be identified as part of the packaging or SDD specifications. However, the SDD specification will not specify metadata formats, nor will it specify intended processing of the metadata.

2.13 Globalization

2.13.1 For all content in the SDD which would be displayed to the Install Operator, the specification must support the ability for the author to define strings for multiple locales; i.e., this content must be localizable.

2.13.2 The SDD specification must support the ability for the author to define the information in order to not preclude the Install Operator from viewing the localized content in a different locale from the target platform, or from installing InstallableUnits that are tied to a different locale.

2.13.3 The SDD specification must support the ability for the author to define the localized content which should run properly on all locale-specific versions of supported operating systems.

2.14 Push to other standards bodies: The requirements here call for the extensive standardization in specific areas, thus they should be pushed to the appropriate standard bodies while SDD supports those activities and foundation information in the side of the solution package. We need consider what standard bodies are appropriate for each of the items.

2.14.1 Error logs should have a link to the relevant package information and a reverse link to assist users to diagnose the problem by themselves. HE-specific logs

2.14.2 Need a set of standard interfaces to resources to permit a management application to be able to deduce how to make changes to the existing environment in order to satisfy stated requirements. This includes starting or stopping resources and environments (“reboot”); installing other software packages; provisioning new servers, aggregation and synchronization of multiple re-boot, service start/stop requests in an aggregate install

2.14.3 Mgmt app interoperability that consume SDDs. Consistency with the use of out-of-band management tools.

2.14.4 Management interfaces should enable to obtain snapshots of an installed configuration and to replay it.

2.14.5 Access to additional metadata as well as standard metadata should be provided.

2.14.6 Provide inventory of installed components

2.14.7 Need ability to programmatically figure out what packages are applicable to what components on the system; as well as the version superseding of the underlying software components (Firmware/Driver)

2.14.8 Stdized installation interfaces and formats for updating/installing firmware, BIOS, drivers and applications including online/ offline flash utilities. There is a proliferation of update tools from vendors. Different manufacturers have a different update mechanism for the same hardware.

2.14.9 Provisioning applications use the information to provide common infrastructure for software provisioning and change management solutions.

2.15 Mgmt/Installation tools: Provisioning applications and installation programs should follow a set of best practices with respect to making use of information that is provided by the SDD in order to perform deployment lifecycle operations on a solution.

2.15.1 A provisioning application or installation program should make use of preferred alternatives information present in the SDD in order to support decision making (possibly automated) in meeting the dependencies for a solution installation.

2.15.2 Provisioning applications or installation programs should make use of the information provided by the SDD in providing progress information to a user for a deployment lifecycle operation (possibly interactive).

2.15.3 Provisioning applications or installation programs should examine the user privileges in the SDD prior to beginning installation to determine if the privilege is at the correct level.

2.15.4 Provisioning applicaitons or installation programs should make use of the information provided by the SDD to provide silent and unattended installation for previous installations and in addition should make use of this information to provide updates to an existing solution and/or to rollback an update.

2.15.5 Provisioning applications or installation programs should allow for the distribution, installation, verification, upgrade and uninstall of software to multiple targets from a centralized tool.

2.15.6 Portions of a solution, or components, may be shared by other solutions. While a provisioning application or installation program should make use of dependency and relationship information in the SDD in determining the appropriateness of deployment lifecycle operations, it is the responsibility of provisioning application and installation program to determine what is appropriate for a particular shared component including determining when to install, upgrade, or uninstall that component.

2.15.7 For the purposes of auditing of license agreements and registration, provisioning applications and installation programs should support mechanisms such as metering and other types of audit-based licensing schemes. They should ensure proper compliance with software-license agreements including ensuring that what the user has installed has been legally acquired, and the user has the right number of licenses for the product and the components that are installed.

2.15.8 While it is ultimately the responsibility of a provisioning application or installation program to collect/consolidate log information from a solution lifecycle event, such a tool should make use of the SDD provided in order to support the use of a common log.

2.15.9 The SDD specification must support the ability for the author to define the information in such a way that can support a silent installation. Provisioning applications or installation programs that take advantage of silent installation should validate any silent installation and in addition ensure that for installations in which EULAs are present the terms of any license agreement have been agreed to by the user prior to silent installation. Provisioning applications or intallation programs that have an option to automatically accept EULAs might consider having their own EULA in the event that a user accepts a EULA wither terms that were unacceptable.

2.15.10 The SDD specification must support the ability for the author to define the information in order to not preclude using SDD to describe deployment using a self-extracting installation program.

2.15.11 Mgmt tools should support the ability to run from scripts.

2.16 Best Practices/Primer: Component and solution creators should use the following best practices in creating an SDD for their component or solution.

2.16.1 Component and solution creators should divide their products into the smallest possible components.

2.16.2 When aggregating components into solutions, the special requirements of a component should be described including but not limited to: EULAs, restrictions on physical distribution, and user authentication and credential requirements. This description must support a management or installation tool validating an environment prior to installation in addition to further solution aggregation. Layout of components should permit relocation when aggregating packages into larger packages.

2.16.3 The creator of a component or solution should take appropriate steps to ensure that data that is sensitive is marked as sensitive to ensure that this data doesn’t inadvertently get shared (either through further aggregation or other means).

2.16.4 New installations/updates/uninstalls should not impact existing installed components.

�I don’t think it’s clear that all of the items in 2.1.1.x are common to all of the lifecycle operations. Need heading.

�How about “author’s ability” to clarify and put the focus on the content?

This would be across all of them. I think that “the ability for the author” is awkward.

�Is this a duplicate?

�Superseded = replaced by approximate functionality; obsoleted = No longer necessary at all.

Should this be replicated across the other lifecycle operations? If so, then we should move this to 2.1.1.8 as a common requirement.

�Is it reasonable to include a premise in the requirements?

�Is this a glossary item? Should we be defining terms in the requirements?

�What is the key point? This and the next seem to be the same, and don’t seem to be structured in the same way as the rest of the requirement sections.

�Does this belong in the requirements? Seems like a best practice.

�Premise?

�I’m not clear about what this means?

�That or which? Is the goal of this requirement to specify the target environments, which by the way may span multiple distributed machines, etc? Or is it only to specify target environments spanning multiple distributed machines?

I believe it should be which.

�Premise?

�Best practices?

�Do we need this sentence?

�Would it change the requirement to replaced this with “author’s ability to”?

�Is there a relationship to 2.2.7?

�General question – do we want to add contextual information like this in the requirements?

�Do we need this?

�Is this a separate requirement?

�Is this relevant for this requirement?

�What is the difference between 2.3.1 & this?

�Is this contextual?

�Is this a clarification, a restatement or an additional requirement?

�Clarification or additional requirement?

�Does “the” belong here? I think that it doesn’t.

�Have we defined usage keys anywhere?

�Is this a separate requirement?

�Separate requirement?

�Is this a duplicate of 2.4.6?

�Does this need to be broken down into multiple requirements?

�What’s the requirement? It seems like we’re trying to imply the requirement from the examples.

�Is this multiple requirements?

�Is this a comprehensive and definitive list, or just examples?

�Is this a comprehensive and definitive list, or just examples?

�Why is this in identity? What are we trying to capture here?

�Is this best practices?

�Does this relate to the schema version or the document version? Need to clarify.

�Do we want to try and tackle the naming and versioning ? I think not. I think that we need to provide a way for each packager to define their own naming and versioning.

�Are these separate requirements? 1) Media descriptor is separate from deployment descriptor; 2) packaging & deployment are separate.

�Is this comprehensive or just examples?

�Does this add value?

�Is this part of the requirement?

�Is this a separate requirement?

�Does this actually constitute a new requirement, or is this 2.5.8?

�Heading

�Is this a comprehensive list?

�heading

�Not sure what this means for SDD specifically. We’ll need to do a 508 review of the proposed schema to identify 508 requirements.

�What does this mean?

�Where did this come from?

�Do we need to specify these?

�Is this set comprehensive?

�Multiple requirements?

�Requirement here isn’t clear.

�Do we need to be clearer about what this metadata is or what “all major native platform package formats” are?

�Does this contradict with 2.11.1?

�IS this metadata? Does this belong in section 2.12?

�What is the requirement here?

�Specify a means, or specify that requirements can be met through distributed or administratively separated solutions.

�Does this belong in the standards forwarded to other bodies section?

�Contradicts 2.9.6?

�Heading?

�I think that these should be part of the sdd, and not additional metadata.

�The author should be able to preclude this.

�Same as 2.11?

�Business requirements and best practices.

�Metadata has the requirements

�Is this in the wrong category?

�heading

�I’m not sure whether we need a best practices at this point.

