

[image: image1.png]OASIS)

Solution Deployment Architecture Specification v0.0 r19

Committee Draft, 1 August 2006
Artifact Identifier:

oasis-sdd-spec-draft-v0.0-19
Location:

Current: docs.oasis-open.org/sdd/ MACROBUTTON NoMacro [spec-id or profile-id] /latest

This Version: docs.oasis-open.org/sdd/ MACROBUTTON NoMacro [spec-id or profile-id] / MACROBUTTON NoMacro [version-id]
Previous Version: docs.oasis-open.org/sdd/ MACROBUTTON NoMacro [spec-id or profile-id] / MACROBUTTON NoMacro [version-id]
Artifact Type:

spec
Technical Committee:

OASIS Solution Deployment Descriptor (SDD) TC
Chair(s):

Brent Miller
Editor(s):

Julia McCarthy
Robert Dickau
OASIS Conceptual Model topic area:

 MACROBUTTON NoMacro [Topic Area]
Related work:

This specification replaces or supersedes:
· MACROBUTTON NoMacro [specifications replaced by this standard]
· MACROBUTTON NoMacro [specifications replaced by this standard]
This specification is related to:
· MACROBUTTON NoMacro [related specifications]
· MACROBUTTON NoMacro [related specifications]
Abstract:

The Solution Deployment Architecture defines a schema for XML documents called Solution Deployment Descriptors, or SDDs. SDDs define the characteristics of resources that are relevant for their creation, configuration, and maintenance. SDDs also define external metadata that is common across all resource types. The Solution Deployment Architecture defines the required characteristics of the context in which these XML documents are used.
Status:

This document was last revised or approved by the OASIS Solution Deployment Descriptor (SDD) Technical Committee on the above date. The level of approval is also listed above. Check the current location noted above for possible later revisions of this document. This document is updated periodically on no particular schedule.
Technical Committee members should send comments on this specification to the Technical Committee’s email list. Others should send comments to the Technical Committee by using the “Send a Comment” button on the Technical Committee’s web page at www.oasis-open.org/committees/sdd.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Technical Committee web page (www.oasis-open.org/committees/sdd/ipr.php).
The non-normative errata page for this specification is located at www.oasis-open.org/committees/sdd.

Notices
Copyright © OASIS Open 2005, 2006. All Rights Reserved.

All capitalized terms in the following text have the meanings assigned to them in the OASIS Intellectual Property Rights Policy (the "OASIS IPR Policy"). The full Policy may be found at the OASIS website.
This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published, and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this section are included on all such copies and derivative works. However, this document itself may not be modified in any way, including by removing the copyright notice or references to OASIS, except as needed for the purpose of developing any document or deliverable produced by an OASIS Technical Committee (in which case the rules applicable to copyrights, as set forth in the OASIS IPR Policy, must be followed) or as required to translate it into languages other than English.
The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

OASIS requests that any OASIS Party or any other party that believes it has patent claims that would necessarily be infringed by implementations of this OASIS Committee Specification or OASIS Standard, to notify OASIS TC Administrator and provide an indication of its willingness to grant patent licenses to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification.

OASIS invites any party to contact the OASIS TC Administrator if it is aware of a claim of ownership of any patent claims that would necessarily be infringed by implementations of this specification by a patent holder that is not willing to provide a license to such patent claims in a manner consistent with the IPR Mode of the OASIS Technical Committee that produced this specification. OASIS may include such claims on its website, but disclaims any obligation to do so.

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS’ procedures with respect to rights in any document or deliverable produced by an OASIS Technical Committee can be found on the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this OASIS Committee Specification or OASIS Standard, can be obtained from the OASIS TC Administrator. OASIS makes no representation that any information or list of intellectual property rights will at any time be complete, or that any claims in such list are, in fact, Essential Claims.
Table of Contents
61
Introduction

61.1 Purpose

61.2 Scope

61.3 Audience

61.4 Notation

61.4.1 Normative Sections

61.4.2 Normative Terms

61.4.3 Namespaces

71.5 Diagram Conventions

71.6 Normative References

81.7 Non-Normative References

92
Solution Package Descriptor (normative)

92.1 PackageIdentity (normative)

102.2 Files (normative)

123
Solution Deployment Descriptor (normative)

123.1 Topology (normative)

133.1.1 Resource (normative)

153.2 Content (normative)

153.2.1 RootIU

173.2.2 RootLIU

173.2.3 RootCU

173.2.4 RootSIU

183.2.5 WrapperIU

183.3 Groups

183.4 Features

183.5 Requisites

194
Shared Types and Groups (normative)

194.1 DisplayElementGroup

194.2 DisplayTextType

194.3 VersionStringType

194.4 BuildInfoGroup

204.5 ds:Signature

204.6 IUContentListGroup

204.6.1 SIU

204.6.2 SCU

204.6.3 CompositeIU

204.6.4 ContainedPackage

214.7 LIUListGroup

214.8 SmallestInstallableUnitType

214.9 LanguageInstallableUnitType

214.10 SmallestConfigurationUnitType

214.11 CompositeIUType

224.12 InstallableUnitType

224.13 UnitBaseType

234.14 ResultingResourceDefinitionType

234.15 ResourceReferenceType

234.16 ResultingResourceSpecificationGroup

244.17 ResourceIDRefType

244.18 ResourceTypeNameType

244.19 VariablesGroup

244.20 VariableGroup

254.21 VariableExpressionType

254.22 UnitRequirementsGroup

265
Requirements on Infrastructure (normative)

276
Software Support for Solution Deployment with SDDs (non-normative)

28A.
Schema File List

30B.
Acknowledgements

31C.
Revision History

1 Introduction
The Solution Deployment Architecture defines a schema for XML documents called Solution Deployment Descriptors, or SDDs. SDDs define the characteristics of resources that are relevant for their creation, configuration, and maintenance.
SDDs also define external metadata that is common across all resource types.
 The Solution Deployment Architecture defines the required characteristics of the context in which these XML documents are used.

1.1 Purpose

The purpose of this document is to provide an outline of the concepts and constructs of the Solution Deployment Architecture.

1.2 Scope

This is not a completed document. It is an outline of a full specification of the Solution Deployment Architecture. Some sections of the outline have been extensively augmented with diagrams and examples. The only text is the captions for these diagrams.

The document outline is intended to facilitate an understanding of the SDD schema. It can be used as a guide to understanding the schema with the caveat that it is not a full specification.

1.3 Audience

This document is intended to assist those who require an understanding of the nature and details of the Solution Deployment Architecture. This includes architects and developers who will use SDDs or develop tooling and applications for constructing and deploying SDDs. This document is not intended to be a tutorial.
1.4 Notation
1.4.1 Normative Sections

Normative sections of this specification are labeled as such. The title of a normative section will contain the word “normative” in parentheses, as in “Solution Package Descriptor (normative)”.

1.4.2 Normative Terms

This specification contains a schema that conforms to the W3C XML Schema and contains normative text that describes the syntax and semantics of XML-encoded policy statements.
The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in [RFC2119].
These keywords are capitalized when used unambiguously to specify requirements or application features and behavior. When these words are not capitalized, they are meant in their natural-language sense.

1.4.3 Namespaces

Conventional XML namespace prefixes are used throughout the listings in this specification to stand for their respective namespaces as follows, regardless of whether a namespace declaration is present in the example:

· The prefix xsd: stands for the W3C XML Schema namespace [XSD].
· The prefix ds: stands for the digital signature namespace [XMLDSIG-CORE].
1.5 Diagram Conventions

This document contains graphs that illustrate types, elements, and groups in the SDD specification schema. These diagrams are literal, design-level representations of the schema. To emphasize different types and elements in the schema and to avoid undue repetition, different graphs expand the schema to different levels of detail. Where necessary, references to the definitions of shared data types are provided.

The following figure is an example of this type of schema graph.

[image: image2.png]Requirement

isplayElement

type = cons ResourceChect

check
type

alternal

e @

e
P

<anonymous>

resource @

@

A second type of figure used in this document is a table showing optional and required schema attributes and elements as they might appear when using an XML editor to design a specific XML file that follows the SDD schema. This type of figure is provided to illustrate how the types defined in the schema translate to an actual collection of elements in an example SDD.

The following table is an example of this type of figure. As in the following figure, elements are displayed without values in order to emphasize the structure, as opposed to sample contents, of the attribute or element.

[image: image3.png][¢] topology
(2] resource
¥ (&) resource

Design | Source

A third type of figure used in this diagram is an XML fragment, used to illustrate a specific usage of the schema in a sample XML file. The following figure is an example of this type of XML fragment.
<capacity>
 <propertyName>processorSpeed</propertyName>
 <value>1Gig</value>
</capacity>
The schema files (enumerated in Appendix A) are accompanied by several example XML files that illustrate various uses of the schema. When appropriate, the name of the example XML file is provided in brackets.

All diagrams were created with IBM Rational Software Architect.

1.6 Normative References

[RFC2119]
S. Bradner, Key words for use in RFCs to Indicate Requirement Levels, http://www.ietf.org/rfc/rfc2119.txt, IETF RFC 2119, March 1997.

[XMLDSIG-CORE]
Bartel et al., XML-Signature Syntax and Processing, http://www.w3.org/TR/xmldsig-core/, W3C Recommendation, February 2002.

[XSD]
W3C Schema Working Group, XML Schema, http://www.w3.org/TR/xmlschema‑1/, W3C Recommendation, October 2004.

[ISO639.2]
Library of Congress, Codes for the Representation of Names of Languages, http://www.loc.gov/standards/iso639-2/englangn.html.

[ISO3166]
International Organization for Standardization, English Country Names and Code Elements, http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html.

[XPATH]
Clark et al., XML Path Language (XPath) Version 1.0, http://www.w3.org/TR/xpath, W3C Recommendation, November 1999.

1.7 Non-Normative References

 MACROBUTTON NoMacro [Reference]
 MACROBUTTON NoMacro [Full reference citation]
2
Solution Package Descriptor (normative)
A Solution Package Descriptor (SPD) describes the characteristics of a solution package. The following information can be provided. The root element of an SPD is named PackageDescriptor. It is an instance of PackageDescriptorType. The following attributes and elements can be defined in PackageDescriptor.
Required attributes and elements
· The SPD conforms to the level of the SDD architecture identified in the schemaVersion attribute. schemaVersion is an instance of xsd:string with a fixed value of “1.0”. The schemaVersion attribute is included as a convenience.
· The PackageIdentity element provides identity information about the package. See section 2.1 for a complete description.
· The files element defines a list of all files that are part of the package. See section 2.2 for a complete description.
Optional attributes and elements
· The descriptorID attribute is used to define a unique identifier for the package descriptor. This value must be unique within the scope that this package will be used. The size of this attribute enables use of a 128-bit IETF UUID. This allows the descriptor to be identified for updates (e.g., if the descriptor contains errors it may be replaced by an error-free version using the same descriptorID but different build information). descriptorID is an instance of xsd:hexbinary with length=16.
· The size attribute specifies the size of the descriptor in bytes. It is an instance of xsd:integer.
· A bundle file containing translations of human-readable text in the SPD itself can be specified in the language_bundle attribute. language_bundle is an instance of xsd:token. Language bundles are associated with specific locales at run time using Java-style resource bundle resolution: BundleName_locale, where locale consists of optional language, location (country), and variant codes, separated by an underscore character. Language codes consist of two lowercase letters ([ISO639.2]) and location codes consist of two uppercase letters ([ISO3166]). For example, “SampleStrings_en_US” refers to the United States English version of the SampleStrings bundle, and “SampleStrings_ja” identifies the Japanese version of the same bundle.
· The buildID attribute is a qualifier meaningful to developers that can be used to distinguish between versions of the descriptor. There may be multiple pre-ship versions and multiple shipped versions. Multiple shipped versions would indicate that errors in a shipped descriptor were fixed and the descriptor replaced without any other changes to the package. buildID is an instance of xsd:token.
· An instance of xsd:dateTime defines the buildDate attribute of the descriptor.

· The buildOrigin attribute is a reference to the build process that was used to create the descriptor. buildOrigin is an instance of xsd:anyURI.
· The ds:Signature element can be used to sign the package. ds:Signature is an instance of ds:SignatureType, which is defined in [XMLDSIG-CORE]. More detail on the use of ds:Signature in the SDD specification can be found in section 4.5.
· The DeploymentDescriptor element references a file element within the SPD which identifies a deployment descriptor for the solution. The document referenced SHOULD be compliant with the deployment descriptor specification described in this specification.
The DeploymentDescriptor element is an instance of xsd:anyURI.
· The SPD can be extended by including zero or more elements of any type.
2.1 PackageIdentity (normative)
The following information can be provided in the PackageIdentity element to describe the solution package.

Required attributes and elements
· The name element identifies the package. The package name MAY be the same as the name of the top-level resource created by the solution package
. name is an instance of type xsd:NMTOKEN.
Optional attributes and elements
· A DisplayElementGroup can be included. DisplayElementGroup is defined in section 4.1. When the DisplayName element is used, it SHOULD provide the manufacturer’s official name for the package . This is a translatable element
. When the Description element is used, it SHOULD provide a verbose description of the package. This is a translatable element. When the ShortDescription element is used, it SHOULD provide a limited description of the package that can be used by tools where limited text is allowed, e.g., fly-over help. This is a translatable element.
· The level of this package can be described by the Version element. If this package represents a fix to software, then the Fix element is used in lieu of the version. The Version element is an instance of VersionStringType which is described in section 4.3. The Fix element consists of a required name attribute that is an instance of xsd:NMTOKEN; and an optional type attribute that is an instance of xsd:NCNAME. name is the name of the fix. type is a potentially vendor-specific value intended only to be understood by that vendor and its customers. Examples of possible values for type are “interim fix” and “emergency fix”.
· Information about the manufacturer of this package can be provided in the Manufacturer element. If defined, the Manufacturer element must include a DisplayElementGroup which must contain a DisplayName which SHOULD be used to provide a translatable name of the manufacturer. It may optionally contain a Description and ShortDescription which SHOULD describe the manufacturer. The country and address of the manufacturer can also be defined in human-readable, translatable text by including the Country and Address elements, each of which allows inclusion of a DisplayElementGroup. DisplayElementGroup is defined in section 4.1.
· The content of the solution package is associated with a manufacturer’s identification number described by the softwareID attribute. softwareID is an instance of xsd:string with a maximum length of 32.
· The contentType attribute is an instance of xsd:NCName. Its value is a potentially vendor-specific indication of the nature of the package content. Examples of possible values for contentType include “component” and “offering”.
· The packageType attribute is an instance of xsd:NCNAME. Its value is potentially vendor-specific. Examples of possible values for packageType are “base install” and “manufacturing refresh”.
· Build information about this package can be provided using the attributes of the BuildInfoGroup described in section 4.4.
· PackageIdentity can be extended by including zero or more elements of any type.

2.2 Files (normative)
A PackageDescriptor always contains a Files element that is a list of one or more File elements. Each File element defines the following information.
Required attributes and elements
· The pathname attribute is an instance of xsd:anyURI that specifies the path of the file. This can be an absolute path or relative to the root of the package.
Optional attributes and elements
· The length attribute is an instance of xsd:integer that specifies the length of the file in bytes.

· A true value in the compression attribute indicates that the file is compressed. It is an instance of type xsd:boolean.
· The charEncoding attribute is used to specify the character encoding of the contents of the file. It is an instance of xsd:string with a maximum length of 40.
· The purpose attribute enables the manufacturer to associate a classification with a file, which identifies it as having a specific purpose.
 Examples include deploymentDescriptor, ReadMe, EULA, and ResponseFile. The values for this attribute are not defined by this specification. It is an instance of xsd:NCNAME.
· The element ds:DigestMethod specifies the digest method applied to the file. The element ds:DigestValue specifies the Base64-encoded value of the digest of the file. The types ds:DigestMethodType and ds:DigestValueType are defined in [XMLDSIG-CORE].
3
Solution Deployment Descriptor (normative)
A Solution Deployment Descriptor (SDD) provides the necessary information for one to make the necessary decisions in order to deploy the contents of the package. The following information can be provided:
Required attributes and elements
· The SDD conforms to the level of the SDD architecture identified in the schemaVersion attribute. schemaVersion is an instance of xsd:string with a fixed value of “1.0”. The schemaVersion attribute is included as a convenience.
· Every SDD defines the resources that may play a role in deployment in its topology element. See section 3.1 for the details of topology definition.
· Every SDD defines the installable units, configuration units, and artifacts that are used to deploy the solution in the content element. See section 3.2 for details of content definition.
Optional attributes and elements
· The descriptorID attribute is used to define a unique identifier for the package descriptor. This value must be unique within the scope that this package will be used. The size of this attribute enables use of a 128-bit IETF UUID. This allows the descriptor to be identified for updates (e.g., if the descriptor contains errors it may be replaced by an error-free version using the same descriptorID but different build information). descriptorID is an instance of xsd:hexbinary with length=16.
· The size attribute is an instance of xsd:integer that specifies the size of the descriptor in bytes.

· A bundle file containing translations of human-readable text in the SDD can be specified in the language_bundle attribute. language_bundle is an instance of xsd:token.

· Build information about this descriptor can be provided by supplying the date of the build, buildDate; a unique identification of the build, buildID; and a unique reference into the build system, buildOrigin.

· The groups element defines useful groupings of features. See section 3.3 for details of groups definition.
· The features element defines selection choices when the SDD contains selectable content. See section 3.4 for details of features definition.
· The requisites element. See section 3.5 for details of requisites definition.
3.1
Topology (normative)
Topology declares a set of resource types that play a role in solution deployment. In addition to the type of resource, the resource specifications in Topology can declare constraints such as name, version, and resources that will be hosted by or components of the defining resource. Additional constraints can be included in the resource declaration under Topology or in Content elements. The resources declared in Topology include those that may be required for solution deployment. Constraints on required resources must be met before deployment. Topology may also declare resources that result from solution deployment. Constraints specified on resulting resources are satisfied as a result of deployment. A resource defined in Topology may result from some portion of the content and also be required by another portion. In this case, constraints declared in topology result from deployment of some portion of the content and must be met for deployment of another portion of the content.

The declaration of resources in topology does not include an indication of whether that resource is required, resulting, or both. The content declared in the SDD identifies specific resources as required or resulting for specific parts of the content. Because content can be selectable, not all resources declared in Topology will necessarily participate in a particular deployment. When a resource results from optional content it SHALL NOT be required by required content.

Resource constraints declared in topology apply to the resource in all cases. Resource constraints declared in content apply to the resource only when the part of the content making the declaration is deployed.
Required attributes and elements
· A list of one or more Resource elements. See section 3.1.1 for a complete description of resource.
3.1.1 Resource (normative)
The Resource element declares the resource type of one resource that may participate in the solution deployment. In addition to type, the Resource element may specify hosted and component resources, name, version, and other constraints used to identify real resources in the environment. The following attributes and elements make up the Resource element:
Required attributes and elements
· The id attribute uniquely identifies the resource element within the SDD. This id value is used by other elements in the SDD to refer to this resource. This value must be unique within the SDD.
· The type
attribute defines the class of resource. The values for type are not defined by this specification. A shared understanding of resource types and all their characteristics is essential is a core assumption of this specification. Creators of SDDs must use resource types that are understood by supporting infrastructure in the target environment. The deploying infrastructure must be able to discover the existence of resources of a given type used in the SDD; the values of the resource’s properties; and the existence and type of resource relationships. It must understand how to use the artifact types associated with the resource type to create, modify, and delete the resource.
Optional attributes and elements
· DisplayElement, displayName, description, shortDescription refer to the resource.

· scope attribute –
PROPOSAL: NOT IN FIRST CONFORMANCE LEVEL.
· selections attribute – PROPOSAL: NOT IN FIRST CONFORMANCE LEVEL
.
· singleton attribute – PROPOSAL: NOT IN FIRST CONFORMANCE LEVEL
.
· dedicated attribute – PROPOSAL: NOT IN FIRST CONFORMANCE LEVEL
.
· full attribute – PROPOSAL: NOT IN FIRST CONFORMANCE LEVEL.
·

name
· A Resource can define zero or more component resources in ComponentResource elements. Like the Resource element, each ComponentResource element is an instance of ResourceType
and so is identical to the top-level Resource elements. If both the resource and its declared component resource participate in a given solution deployment, then they must have a component relationship. (Participating in a solution means the resource is either required for or results from solution deployment. The content elements of the SDD determine whether or not a given resource will participate in a given solution deployment.) If only the parent resource is identified by the SDD content as participating in the solution, there is no assumption that the component resource must also participate. If only the component resource is identified as participating, it is assumed that the parent resource will also participate as a required resource even though no content element has explicitly identified it as required.

· Some resources are of a type capable of hosting resources of other types. A Resource can define zero or more hosted resources in HostedResource elements. Like the Resource element, each HostedResource element is an instance of ResourceType
and so is identical to the top level Resource elements. If both the resource and its declared hosted resource participate in a given solution deployment, then they must have a host relationship. If only the host resource is identified by the SDD content as participating in the solution, there is no assumption that the hosted resource must also participate. If only the hosted resource is identified as participating, it is assumed that the host resource will also participate as a required resource even though no Content element has explicitly identified it as required.

· A Resource can define one or more Capacity constraint elements. A Capacity constraint tests a numeric value representing a bound on a quantifiable property of the resource, such as processor speed. The test may be for a lower (minimum) or upper (maximum) bound. This constraint differs from a Consumption constraint in that it is comparative, not cumulative. When multiple Capacity constraints apply to the same property, the most restrictive constraint must be met. The Capacity constraint element contains a required Property element, which is an instance of xsd:string. This names the property to be tested. It also contains a required Value element of type VariableExpression,
which specifies the bound on the property. A Type attribute on capacity constraint indicates whether Value represents an upper or lower bound. Type is a restricted instance of xsd:NCNAME with enumerated values of “minimum” and “maximum”. Optional DisplayName, Description, and ShortDescription
elements can be included in a capacity constraint to provide human-readable information about the constraint. Additional details about these display elements can be found in section 4.1.
· One or more consumption constraints can be defined to indicate a required quantity of a consumable resource property. An example of a consumable resource property is the disk space property of a file system resource. The consumption constraint is cumulative rather than comparative. When multiple consumption constraints are defined for the same resource, the total of all requirements must be met by the resource. A consumption constraint includes an instance of xsd:string named property, which contains the name of the property to be tested, and an instance of VariableExpression
named value, which contains the required numeric value.
· One or more property constraints can be defined to indicate that specific resource properties must have specific values. Each property constraint contains a propertyName element, which is an instance of xsd:string. The value of propertyName is the name of the resource property being constrained. A property constraint also contains either a value element or a listOfValues element. These elements specify the required value or values of the property. A value is an instance of PatternOrValue
, which resolves to xsd:string. A listOfValues is a sequence of value elements. The value elements in listOfValues are instances of VariableExpression.

· A version constraint defines a required resource version or a range of versions. version contains an optional propertyName element, an instance of xsd:string, which contains the name of the resource property that holds the resource’s version. version also contains an optional value element used to specify a version or range of versions. version can be an instance of VariableExpression
or a sequence containing optional minVersion and maxVersion elements. minVersion and maxVersion are also instances of VariableExpression
. The resource version must be equal to or greater than the value of minVersion and equal to or less than the value of maxVersion. When minVersion is not defined, there is no lower bound to the version range. When maxVersion is not defined, there is no upper bound to the version range.
Standard versions are of the form V.R.M.L, with each part being numeric. Generic versions may include alphabetic characters in the version parts. Equality is tested by testing the equality of each part. Least significant parts may be omitted if they are “0”, e.g., 1.1 is equivalent to 1.1.0.0; 4a.1.2 is equivalent to 4a.1.2.0.
To compare versions, each version part is evaluated from left to right using either numeric or alphabetic comparison (alphabetic comparison MUST use a non-Unicode
, locale-insensitive, case-insensitive collating sequence). For version parts that consist of a number followed by a letter, the numeric part is compared first: a version part “4a” is greater than a version part “4”; a version part of “40” is greater than “4a”. Comparison stops when the version parts are different (in this case, the greater version is the one with the greater version part), when no corresponding version part exists in one of the versions being compared (in this case, the greater version is the one with remaining non-zero version part(s)) or when the versions are equal.
exactRange element of version - PROPOSAL: NOT IN FIRST CONFORMANCE LEVEL.

· One or more relationship constraints can be included to define the specific relationships that must exist between the declaring resource and other resources defined in the topology. The required type attribute specifies the relationship type. It is an instance of RelationshipTypes
. The optional relatedResourceRef attribute provides a reference to the other resource element that participates in the relationship. If relatedResourceRef is not defined, then the required relationship can be to an arbitrary resource. relatedResourceRef is an instance of ResourceIDRef
.
· One or more connectivity constraints can be included to define the required connectivity between resources. The direction of the connectivity – inbound, outbound, or both
– is specified by the required attribute direction, which is an instance of ConnectionDirection
. The declaring resource is at one end of the connection. The optional attribute connectionTargetRef identifies the resource that is at the other end of the connection. If connectionTargetRef is not specified, the connection can be with an arbitrary resource. connectionTargetRef is an instance of ResourceIDRef
. A connection may have protocol-specific properties, such as the protocol version and port. Zero or more constraints on connection properties can be included in the connectivity constraint by including zero or more property elements. A property is an instance of NameValuePair
.

·
 Custom
 constraint
· Instead of defining constraints directly, a resource element can include a set of two or more alternative elements. Each alternative element can define zero or more of the constraints defined in ConstraintSet
. In addition to constraint definitions, each alternative can define a DisplayElement
describing the alternative.

· Checks - PROPOSAL: NOT IN FIRST CONFORMANCE LEVEL.

3.2
Content (normative)

The Content element is an instance of the abstract type
, ContentType which is instantiated in particular SDDs concrete types that define various root content elements. There are five content types defined by the SDD schema. RootIUContentType supports the definition of solution content with potentially complex internal structure. RootSIUContentType supports the definition of solution content with very simple internal structure. RootCUContentType supports the definition of configuration content for one or more resources. RootLIUContentType supports the definition of localization content for one or more resources. WrapperIUContentType allows a complex install program to be wrapped with an SDD in a way that exposes selectable content and internal structure.
3.2.1
RootIU

The RootIU element represents the solution to be deployed. The RootIU defines characteristics of the root solution resource, if there is one. It also defines a hierarchiy of installable units (IUs) including smallest installable units (SIU elements), composite installable units (CompositeIU elements), smallest configuration units (SCU elements) and contained packages (ContainedPackage elements). This hierarchy of IUs defines which of the resources specified in Topology are created or modified by the solution; specific requirements on resources levied by specific parts of the resource content
; and the artifacts that will be used by hosting environments to create and modify resources. The IU hierarchy structure within the RootIU SHOULD reflect the solution structure, although the IU structure MAY also include internal structure elements that do not result in the creation or modification of resources.

The RootIU element is defined by RootIUContentType. It is an instance of RootIUType.
 Many of the attributes and elements described here in terms of their use in the RootIU are inherited from InstallableUnitType. Those attributes and elements are described at a lower level of detail in sections 4.12 and 4.13.
Required attributes and elements

· The id attribute uniquely identifies the RootIU within the scope of the descriptor. While no SDD elements or attributes would ever refer to this id, it is provided as a potential aid to tooling.
Optional attributes and elements
· The resultingResourceRef attribute is a reference to the Topology specification of the top-level solution resource
 created or modified as a result of deploying the resources created or modified by the RootIU’s child IUs. If the RootIU deploys a set of resources that are not part of a recognized top-level resource, then this attribute would not be used.
This attribute MAY refer to a resource that is also refered to in a ResultingResource element of the RootIU. If more than one ResultingResource element is defined for the RootIU, this attribute MUST be used.

·
The targetRef attribute is a reference to a resource specification in Topology which is the target of all the RootIU’s content.
The target of a content unit is the resource which knows how to act on the unit’s artifacts to deploy a resource. The target resource may or may not be the same as the host resource. RootIUs do not directly define artifacts. They are defined in SIUs and SCUs within the RootIU’s hierarchy. A child content unit inherits and cannot override the target of its parent. When a RootIU specifies targetRef, all of the IUs in its IU hierarchy inherit this target. A RootIU would only define targetRef in the case where every artifact in its IU hierarchy can be processed by
the same resource.

· The condition attribute is inherited from InstallableUnitType and MUST not be used by the RootIU. The condition attribute of an IU is used to condition inclusion of that IU in the solution deployment on environmental factors. The condition attribute is described in section 4.13.
· The targetTypeCondition attribute, like the condition attribute, MUST not be used by the RootIU. The targetTypeCondition attribute is a specialized condition that bases inclusion of an IU on the specific type of a target resource. Additional detail about targetTypeCondition attribute can be found in section 4.13.

· The RootIU’s Identity element defines information that reflects the identity of the solution as understood by the end user of the solution. If the RootIU defines a resulting resource, then the identity of the RootIU SHOULD reflect the identity of the resulting resource. The RootIU identity has elements that are common with elements in the corresponding PackageDescriptor’s PackageIdentity element. (For example, Name and Version). The values of these common elements MAY be the same as the corresponding PackageIdentity element values. For example, this may occur in the case where the package is known by the same name as the top-level solution resource. The details of the Identity element are defined in section x.x.
· The RootIU can define zero or more ResultingResource elements. Each ResultingResource element contains a reference to a resource defined in Topology. If a ResultingResource element is defined then the resultingResourceRef attribute must also be defined.
The ResultingResource elements define information that is not, or cannot be, included in the referenced resource in Topology. This includes information about backward compatibility and the values of properties that will be set when the resource is deployed. See section 4.14, ResultingResourceDefinitionType, for a detailed description of the information that can be specified for resulting resources.
One of the defined ResultingResource elements MAY refer to the same resource that is refered to by the resultingResourceRef attribute. When one or more ResultingResource elements refer to resources which are not the one refered to by resultingResourceRef, those resources are additional key resources that will be created or updated as a result of deploying the resources created or modified by the RootIU’s child IUs.
· The Variables element in the RootIU defines variables that can be referred to in any element beneath the RootIU. See section 4.19 for a description of the VariablesGroup which defines the Variables element.
·
RequiredBase element identifies a resource in Topology to which the update described in the RootIU will be applied. See section 4.12 for a full description of RequiredBase.
· The SupersededFixes element is a list of fixes to the RootIUs resulting resource that will be superseded when the RootIU is applied. See section 4.12 for a full description of SupersededFixes.
· Any number of ObsoletedResource elements can be defined in the RootIU. Each ObsoletedResource element contains a reference to a resource in Topology that will no longer participate in the solution after application of the RootIU. See section 4.12 for a full description of ObsoletedResource.
· The Requirements element specifies requirements for deployment of the solution represented by the RootIU. See section 4.22 for full details of the Requirements element.
· The Dependencies element MUST not be used in the RootIU.
· The RootIU can include a list of zero or more SIU, SCU, CompositeIU, and/or ContainedPackage elements as defined in IUContentListGroup. These elements represent the base content of the solution deployed by the RootIU. The base content is not selectable via Features or Dependencies although it MAY be conditionally deployed based on environmental conditions. See section 4.6 for a full explanation of the IUContentListGroup elements.
· SelectableContent element of the RootIU also can include a list of zero or more SIU, SCU, CompositeIU, and/or ContainedPackage elements as defined in IUContentListGroup. These elements deploy solution content that is selectable via Features or Dependencies. Content selected via Features or Dependencies MUST be top-level SIUs, SCUs, CompositeIUs or ContainedPackages defined directly below SelectableContent. The content nested below the selected element is automatically selected. The content elements in SelectableContent MAY also be conditionally deployed based on environmental conditions. See section 4.6 for a full explanation of the IUContentListGroup elements.
· The Localization element identifies languages supported by the RootIU as well as the localization installable units (LIUs) and referenced packages that contain translated materials. The Localization element pulls the elements defined in LIUListGroup into the RootIU. See section x.x for full details of the LIUListGroup elements.
3.2.2 RootLIU

Required attributes and elements

Optional attributes and elements
3.2.3 RootCU

Required attributes and elements

Optional attributes and elements
3.2.4 RootSIU

The RootSIU element is used when Content is instantiated as RootSIUContentType. RootSIU is an instance of SmallestInstallableUnit.

Required attributes and elements

· id attribute … instance of xsd:ID. A unique ID used to reference this content within the scope of this descriptor.
· Unit element

Optional attributes and elements
· targetRef attribute … instance of ResourceIDRefType.
The overall target for the contents of the package, if single-targeted.
· condition attribute … instance of VariableExpressionType.
If the condition evaluates to false, the contents of the package will not be installed, nor will any requirements in the package be evaluated.
· targetTypeCondition attribute … instance of ResourceTypeNameType.
If specified, this attribute defines a condition based on target resource type. If the target is not of the given resource type, the content unit is not installed or applied.
· RequiredBase element

· SupersededFixes element

· ObsoletedResources element

· Requirements element from UnitRequirementsGroup

· Dependencies element from UnitRequirementsGroup

· resultingResourceRef attribute
· Identity element
· ResultingResource element … an instance of ResultingResourceRefType.
The map from resulting resources in the referenced package to resources in the topology of this SDD. This indicates that the specified resource will be created or updated (subject to optional content selections) if the referenced package is installed. Parameter maps, required resource maps, and default feature selections have been correctly set up to make this happen. Resulting resources in requisite packages may be used to satisfy requirements on resources in this SDD. Note that multiple requisites may be needed to completely satisfy the requirement (e.g., installation of a base, a set of updates, and configuration).
· Variables element from VariablesGroup

3.2.5 WrapperIU

Required attributes and elements

Optional attributes and elements
3.3 Groups
3.4 Features

3.5 Requisites

4
Shared Types and Groups (normative)
Many groups and simple and complex types defined by the SDD schema are used in many places throughout the schema definition. These frequently-shared elements are described here in general terms. Specifics of their use can vary based on where they are used in the schema. Those specific uses are described in this specification at the place where these shared elements are used.

4.1 DisplayElementGroup
The DisplayElement group is used throughout the SDD to provide human-readable text associated with various elements of the SDD.
Required attributes and elements

· displayName provides a human-readable name that is an instance of DisplayTextType.
Optional attributes and elements

· description provides an extended human-readable description. It is an instance of DisplayTextType.

· shortDescription provides a short human-readable description, suitable for “hover” text, for example. It is an instance of DisplayTextType.
4.2 DisplayTextType
DisplayTextType provides access to translations of DisplayElement elements.
Required attributes and elements

· The key attribute is an instance of xsd:NCName containing a value that can be used to retrieve the associated text from a resource bundle.

· The default attribute is an instance of xsd:string containing default text that can be used if translated text is not available.

4.3 VersionStringType

VersionStringType is a simple type defining a string restricted to following a pattern of “([0-9]{1,9})(\.[0-9]{1,9}){1,3}”. This pattern supports a V.R.M.L format. The ‘V’ in ‘V.R.M.L.’ refers to the version number. Version indicates a distinct deliverable that usually has significant new code or new functionality. For a new product, ‘V’ typically starts with 1 and increments as new versions are delivered. The ‘R’ in ‘V.R.M.L.’ refers to the release number. Each version potentially has multiple releases. Each release makes available major new function ‘R’ typically begins with ‘0’ or ‘1’ and increments as new releases are delivered. V and R are required in the version string.

The ‘M’ in ‘V.R.M.L’ refers to the modification level. Delivery of a release modification indicates new function is included in the deliverable. A release modification is delivered outside a V.R delivery. ‘M’ is optional. The ‘L’ in ‘V.R.M.L’ refers to the cumulative maintenance level of the release (V.R.M). ‘L’ is optional.

4.4 BuildInfoGroup

BuildInfoGroup is a group of three attributes.
Required attributes and elements

· buildID is an instance of xsd:token which provides unique identification of the build that produced the package.
· buildDate is an instance of xsd:dateTime which gives the time and date of the build.
· buildOrigin can be used to point to something in the build environment that can provide the context for understanding the buildID value, for example, a build server. buildOrigin is an instance of xsd:anyURI.

4.5 ds:Signature

The deployment descriptor and each file in the package can be digitally signed. It is RECOMMENDED that they be digitally signed by means of XML-Signature [XMLDSIG-CORE]. In this case, they MUST be digitally signed in the following two steps:

1. For each File which is to be digitally signed, describe ds:DigestMethod and ds:DigestValue child elements of the corresponding spd:File element . The digest value MUST be calculated over the whole of each File. Any canonicalization MUST NOT be performed on AAD or Application Contents in text format before digest calculation.

2. In SDD, describe ds:Signature child element in spd:PackageDescriptor element which represents the enveloped signature over the SDD. Note that each File above is digitally signed indirectly via the digest information in the corresponding spd:File element.

<aaf:AAD>

...

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<ds:SignedInfo>

<ds:CanonicalizationMethod Algorithm=

"http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

<ds:SignatureMethod Algorithm=

"http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>

<ds:Reference URI="">

<ds:Transforms>

<ds:Transform Algorithm=

"http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>

</ds:Transforms>

<ds:DigestMethod Algorithm=

"http://www.w3.org/2000/09/xmldsig#sha1"/>

<ds:DigestValue>Njc4OTAxMjM...</ds:DigestValue>

</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>NTY3ODkwMTI...</ds:SignatureValue>

</ds:Signature>

<aaf:Contents>

<aaf:Content type="aaf:DeploymentDescriptor">

<aaf:Pathname>deploy/dd.xml</aaf:Pathname>

<ds:DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<ds:DigestValue>MTIzNDU2Nzg...</ds:DigestValue>

</aaf:Content>

Figure 1: Example of ds:Signature definition.
4.6 IUContentListGroup

Required content of the Root IU.

4.6.1 SIU

The SIU element is part of the IUContentListGroup. It is an instance of siu:SmallestInstallableUnit.
4.6.2 SCU

The SCU element is part of the IUContentListGroup. It is an instance of siu:SmallestConfigurationUnit.
4.6.3 CompositeIU

A composite IU composes a set of installable units.

4.6.4 ContainedPackage

A contained package is very similar to a
requisite package, but places more commitment on the solution provider to manage the lifecycle of the package content. The resources created by a contained IU are either dedicated or shared components of the overall solution (as indicated by the “shared” attribute on the resulting resource). During uninstall, a dedicated component (HasComponent relationship) should always be uninstalled, even if it is used by other solutions. Shared components (Federates relationship) should be removed by the last parent. This contrasts with required resources including those created by requisites (Uses relationship), which need not be removed when the solution is uninstalled. A shared component should not be removed while it is federated by other solutions. Update behavior should be similar for both shared and non-shared content, as in either case there is the potential for independent updates of the contained resources.
4.7 LIUListGroup

SupportedLanguages element ... instance of liu:LanguageSet ... This element documents the languages supported for the root IU. This may be a subset of the languages for which there are LIUs or referenced LIUs in the package.
4.8 SmallestInstallableUnitType

SmallestInstallableUnitType defines the most granular IU, and must be targeted at a single hosting environment. It contains the artifact that will create or update resources in the target hosting environment. SmallestInstallableUnitType extends InstallableUnitType.
Required attributes and elements
· The Unit element defines the artifacts used to create, modify, and/or delete the resource(s) associated with the element containing the Unit element. Unit is an instance of InstallArtifactType.
4.9 LanguageInstallableUnitType

An LIU contains the material required to localize a resource or IU for a specified set of languages. If neither a resource nor an IU is specified, then the LIU should always be installed if its language is selected. If a resource or IU is specified but not installed, it is not necessary to install the LIU. If localization content is split into multiple artifacts, multiple LIUs may localize the same IU for the same language.

· localizationBase element ... instance of reqt:RequiredBase ... The resource localized by this LIU.

· localizedIU element ... instance of LocalizedIUReference ... The IU that is localized by this LIU.

· supportedLanguages element ... instance of LanguageSet ... The set of languages that will be enabled by installing this LIU.

· unit element ... instance of ar:InstallArtifactPackage ... The artifact package containing the localization materials.
Required attributes and elements

Optional attributes and elements

4.10 SmallestConfigurationUnitType
A smallest configuration unit (SCU) is the most granular CU, and must be targeted at a single hosting environment. It contains the artifact that will configure resources in the target hosting environment.

· unit element ... instance of ar:ConfigurationArtifactPackage ... This element defines the artifacts associated with the SCU.
Required attributes and elements

Optional attributes and elements

4.11 CompositeIUType
A composite IU composes a set of installable units.
CompositeIUType extends InstallableUnitType ... with IUContentListType group...
Required attributes and elements

Optional attributes and elements

4.12 InstallableUnitType
The purpose of an installable unit (IU) is to provide the content needed to create or update a resource, and perform subsequent lifecycle management of that resource. InstallableUnitType serves as the base of all the installable unit types. Those types are RootIUType, RootLIUType, CompositeIUType, LanguageInstallableUnitType, and SmallestInstallableUnitType.

InstallableUnitType extends UnitBaseType. See section 4.13 for a description of UnitBaseType.
Optional attributes and elements
· The RequiredBase element identifies the installed resource that will be updated by application of the IU. RequiredBase contains a reqiured attribute, ref, which is an instance of xsd:IDREF containing a reference to a resource in Topology. The same resource instance MUST also appear as either in the resultingResourceRef attribute or in an ObsoletedResource element of the IU defining the RequiredBase. RequiredBase can optionally include any of the elements in ConstraintSetGroup. These elements are used to speciify additional constraints on the required base resource. See section 4.23 for an explanation of ConstraintSetGroup.
If RequiredBase is not defined, the IU can be applied if its parent’s required base is satisfied.
· The SupersededFixes element contains an xsd:list of NMTOKENS each identifying one resource fix that will be superseded by application of the IU.
· ObsoletedResource element ... Specifies resources that are obsoleted by installing this installable unit. An example would be an upgrade that splits a previous component into two new components; or that merges two previous components into one.
· Requirements element from UnitRequirementsGroup

· Dependencies element from UnitRequirementsGroup

· resultingResourceRef attribute ... If the IU is associated with a single resource (and has the same name as that resource), the resource should be identified using this attribute. In this case, the resulting resource will have properties (in particular, name and version or fix name) specified in the IU. The resource specified by this attribute is a component of or is federated by its immediate parent resource, as determined by the IU structure.
Note: for fixes, the fix name corresponds to the appliedFix property on the resulting resource.
4.13 UnitBaseType

UnitBaseType is the common base for all content units: Installable Units (IUs), Configuration Units (CUs), and Localization Installable Units (LIUs).
Required attributes and elements

· id attribute … instance of xsd:ID ... The identity for referencing the content unit within the deployment descriptor. It has no significance outside the descriptor, i.e., use of the same ID in two descriptors does not imply a correlation between the two content units.
Optional attributes and elements

· Identity element… The identity of this content unit (IU, CU, or LIU).
· ResultingResource element … an instance of ResultingResourceRefType. ... This element describes the key resources created or updated by this content unit. The resulting resource element only needs to be defined if the IU does not specify the resulting resource in its identity, or if there are additional characteristics to be specified (e.g., relationships or properties). If the content unit is installed, the resource will be created/updated to have the specified values. If multiple content units (e.g., requisites, selectable content) specify the same resulting resource, then each content unit is capable of creating or updating that resource. Example uses of this element are: 1) To determine whether potentially resulting resources will actually be created. 2) To understand whether one IU may satisfy the requirements specified in another IU. 3) To identify the top-level resource (associated with the Root IU) that may be subsequently uninstalled using the uninstall information in this SDD. 4) To discover the components of a logical solution resource previously installed using this SDD. 5) To check whether an IU has already been installed. The name and version of the resulting installed resource are assumed to be the same as those in the installable unit identity, and do not need to be re-specified in the resulting resource definition.
· Variables element from VariablesGroup ... The variables associated with this content unit. These variables should be referenced only within this unit or its child units.
· targetRef attribute … instance of ResourceIDRefType

The target of a content unit is the environment into which it is to be installed or applied. A child content unit inherits and cannot override the target of its parent. If no target is specified, the content unit is multi-targeted, and the targets for its contents must be resolved at a lower level. The target may be a resource that has not yet been created. If so, there is an implied dependency (prereq) on the complete install of the content that will install and configure in that resource.

· condition attribute … instance of VariableExpressionType

If specified, this attribute allows the install of a content unit to be conditional on environmental factors such as the platform type. A content unit selected for install (i.e., it is required content or is selected via features) will be ignored if its condition is false. A condition should not be specified for a Root content unit. The condition is evaluated when the content unit is first used. It is not re-evaluated on successive lifecycle operations. When all the variable substitutions have been made in a condition, the string value the condition must be a valid XPath boolean expression ([XPATH]). The boolean expression to which the condition reduces after variable substitutions should not contain any variable references, node set expressions or function calls.

· targetTypeCondition attribute … instance of ResourceTypeNameType ... If specified, this attribute defines a condition based on the target resource type. If the target is not of the given resource type, the content unit is not installed or applied.
4.14 ResultingResourceDefinitionType

This type references a resulting resource and defines additional characteristics of that resource which will be established in the context of a content unit.
Extends ResourceReferenceType

Optional attributes and elements

· … elements from DisplayElementGroup
· … elements from ResultingResourceSpecificationGroup

4.15 ResourceReferenceType

Type used for element references to resources.

Required attributes and elements

· ref attribute ... an instance of ResourceIDRefType which resolves to xsd:IDREF
4.16 ResultingResourceSpecificationGroup

This group specifies key characteristics of a created or changed resource.
Optional attributes and elements

· One Version element ... an instance of VariableExpressionType ... Version of the resource.
· One BackwardCompatibility element … an instance of ... Defines the set of previous versions with which this version is backwards-compatible (the range from the backward compatibility version to the current version). An installable resource at version X should satisfy a requirement for a prior version Y if it is backwards compatible with Y and the requirement does not specify that an exact match is required. Backwards compatibility can only be declared to an installable resource with the same name.
· Any number of Property elements … an instance of NameValuePairType ... This element declares the values for resource properties that will be set as a result of installing this SDD. Note that, other than for non-changeable creation properties, this element can only declare the value of the property at a specific point in time (completion of the install of the content unit in which it is declared). Other IUs
or CUs (including ones installed as part of the same change plan) may modify these properties, and may not declare the changes. Specific resource properties of importance in dependency checking are as follows: applied fix - identifies a fix that is applied to the resulting resource. This property should be implemented for any software resource that supports fixes. A multi-valued property such as applied fix may have multiple definitions in the resulting resource spec. Note on fixes: When applying an update to a
resource, if there are fixes applied, it is good practice for the hosting environment to undo those fixes before applying the update, unless the integrity of the resource can be guaranteed by other means.
· Any number of Relationship elements … an instance of RelationshipType ... Relationships (other than the component and hosted relationships captured in the topology) that will exist once the IU has been installed.
4.17 ResourceIDRefType

Type used to distinguish references to required or resulting resources.
4.18 ResourceTypeNameType

Simple type defining valid resource type names. For run-time processing, this may allow any QName, to allow for extensibility. For authoring, it would typically be constrained to known valid names.
4.19 VariablesGroup

Required attributes and elements

Optional attributes and elements
· Variables element ... Declaration of a set of variables within a given scope (i.e., the containing content unit). The value of the variables is defined for a given change operation at the point when that operation is initiated on the content unit. Not all declared variables need have defined values during all change operations. A variable need only have a defined value if it is within a content unit that is selected for the change operation, and is used within that change operation.
4.20 VariableGroup

This type defines the different types of variable that are supported in the SDD.
· Parameter element ... A parameter is a variable whose value can be set from user input, calling application or by an aggregating IU.
· ResourceProperty element ... A variable set from a resource property.
· DerivedVariable element ... A derived variable is calculated from other variables.
4.21 VariableExpressionType

A variable expression is one into which variable substitutions can be made. The variables to be substituted are specified in the form “$(XXX)”.
4.22 UnitRequirementsGroup

The requirements and dependencies for this IU.
Required attributes and elements

Optional attributes and elements
· Requirements element ...
· Dependencies element
4.23 ConstraintSetGroup

· A Capacity constraint tests a numeric value representing a bound on a quantifiable property of the resource, such as processor speed. The test may be for a lower (minimum) or upper (maximum) bound. This constraint differs from a Consumption constraint in that it is comparative, not cumulative. When multiple Capacity constraints apply to the same property, the most restrictive constraint must be met. The Capacity constraint element contains a required Property element, which is an instance of xsd:string. This names the property to be tested. It also contains a required Value element of type VariableExpression,
which specifies the bound on the property. A Type attribute on capacity constraint indicates whether Value represents an upper or lower bound. Type is a restricted instance of xsd:NCNAME with enumerated values of “minimum” and “maximum”. Optional DisplayName, Description, and ShortDescription
elements can be included in a capacity constraint to provide human-readable information about the constraint. Additional details about these display elements can be found in section 4.1.
· One or more consumption constraints can be defined to indicate a required quantity of a consumable resource property. An example of a consumable resource property is the disk space property of a file system resource. The consumption constraint is cumulative rather than comparative. When multiple consumption constraints are defined for the same resource, the total of all requirements must be met by the resource. A consumption constraint includes an instance of xsd:string named property, which contains the name of the property to be tested, and an instance of VariableExpression
named value, which contains the required numeric value.

· One or more property constraints can be defined to indicate that specific resource properties must have specific values. Each property constraint contains a propertyName element, which is an instance of xsd:string. The value of propertyName is the name of the resource property being constrained. A property constraint also contains either a value element or a listOfValues element. These elements specify the required value or values of the property. A value is an instance of PatternOrValue
, which resolves to xsd:string. A listOfValues is a sequence of value elements. The value elements in listOfValues are instances of VariableExpression.

· A version constraint defines a required resource version or a range of versions. version contains an optional propertyName element, an instance of xsd:string, which contains the name of the resource property that holds the resource’s version. version also contains an optional value element used to specify a version or range of versions. version can be an instance of VariableExpression
or a sequence containing optional minVersion and maxVersion elements. minVersion and maxVersion are also instances of VariableExpression
. The resource version must be equal to or greater than the value of minVersion and equal to or less than the value of maxVersion. When minVersion is not defined, there is no lower bound to the version range. When maxVersion is not defined, there is no upper bound to the version range.

Standard versions are of the form V.R.M.L, with each part being numeric. Generic versions may include alphabetic characters in the version parts. Equality is tested by testing the equality of each part. Least significant parts may be omitted if they are “0”, e.g., 1.1 is equivalent to 1.1.0.0; 4a.1.2 is equivalent to 4a.1.2.0.
To compare versions, each version part is evaluated from left to right using either numeric or alphabetic comparison (alphabetic comparison MUST use a non-Unicode
, locale-insensitive, case-insensitive collating sequence). For version parts that consist of a number followed by a letter, the numeric part is compared first: a version part “4a” is greater than a version part “4”; a version part of “40” is greater than “4a”. Comparison stops when the version parts are different (in this case, the greater version is the one with the greater version part), when no corresponding version part exists in one of the versions being compared (in this case, the greater version is the one with remaining non-zero version part(s)) or when the versions are equal.
exactRange element of version - PROPOSAL: NOT IN FIRST CONFORMANCE LEVEL.

· One or more relationship constraints can be included to define the specific relationships that must exist between the declaring resource and other resources defined in the topology. The required type attribute specifies the relationship type. It is an instance of RelationshipTypes
. The optional relatedResourceRef attribute provides a reference to the other resource element that participates in the relationship. If relatedResourceRef is not defined, then the required relationship can be to an arbitrary resource. relatedResourceRef is an instance of ResourceIDRef
.

· One or more connectivity constraints can be included to define the required connectivity between resources. The direction of the connectivity – inbound, outbound, or both
– is specified by the required attribute direction, which is an instance of ConnectionDirection
. The declaring resource is at one end of the connection. The optional attribute connectionTargetRef identifies the resource that is at the other end of the connection. If connectionTargetRef is not specified, the connection can be with an arbitrary resource. connectionTargetRef is an instance of ResourceIDRef
. A connection may have protocol-specific properties, such as the protocol version and port. Zero or more constraints on connection properties can be included in the connectivity constraint by including zero or more property elements. A property is an instance of NameValuePair
.

5 Requirements on Infrastructure (normative)

6 Software Support for Solution Deployment with SDDs (non-normative)

Content to be worked into this section later:

Example uses of the RootIU’s ResultingResource elements are: 3) To identify the top-level resource (associated with the Root IU) that may be subsequently uninstalled using the uninstall information in this SDD. 4) To discover the components of a logical solution resource previously installed using this SDD. 5) To check whether an IU has already been installed. The name and version of the resulting installed resource are assumed to be the same as those in the installable unit identity, and do not need to be re-specified in the resulting resource definition

Content to be included in a Best Practices doc:

Best practices use of an IU creates or updates resources only within the target hosting environment, and does not lead to side effects (creation of update of resources in other environments).

The intended use (of SupersededFixes) is to document where a temporary fix is superseded by a published fix.

A. Schema File List

The SDD schema is implemented by twenty
 schema files. Types defined in each file are identified by a specific namespace prefix, as indicated in the following list:
· artifact.xsd (prefix: ar)

Contains definitions for InstallArtifactPackage and Artifact. Note that InstallArtifactPackage includes artifacts for uninstall, config, verify, etc.

· artifactTypes.xsd (prefix: atype)

Provides a definition of artifact type. The enumeration of specific artifact type values is not an integral part of the SDD specification.

· base.xsd (prefix: base)

Contains definitions of basic types, such as identity, variables, and check types, as well as types that are re-used by several derived types.

· constraint.xsd (prefix: cons)

Contains constraint type definitions, including, for example, consumption constraints and version constraints.

· descriptorInfo.xsd (prefix: di)

Contains types that identify descriptors.

· display.xsd (prefix: display)

Contains types and groups that identify display text.

· feature.xsd (prefix: feat)

Contains definitions for features, install groups, and related elements.

· fixTypes.xsd (prefix: fixt)

Provides a definition of fix type. The enumeration of fix type values is not an integral part of the SDD specification.

· identity.xsd (prefix: id)

Contains definitions for base identity, identity, fix identity, and supporting types.

· iu.xsd (prefix: iu)

Defines RootIU, RootCU, RootLIU, CompositeIU, ContainedPackage, and supporting types.

· liu.xsd (prefix: liu)

Defines types supporting localization.

· pkg.xsd
 (prefix: pkg)

Defines types related to package and package content, including the Deployment Descriptor type.

· pkgTypes.xsd (prefix: pkgt)

Contains the definition of package type. The enumeration of package type values is not an integral part of the SDD specification.

· relationships.xsd (prefix: rel)

Contains an enumeration of relationships defined between resources.

· requirement.xsd (prefix: reqt)

Defines requirement and related types. The operation type is also defined here.

· resources.xsd (prefix: res)

Contains type definitions for topology, resource, and other related types. It also defines the topology element.

· resourceTypes.xsd (prefix: rtype)

Contains the definition of resource type names. The enumeration of specific resource type values is not an integral part of the SDD specification.

· sdd.xsd (prefix: dd)
Contains the definition of the DeploymentDescriptor type, along with basic content types: RootIUContent, RootCUContent, LocalizationContent, and RootSIUContent.
· siu.xsd (prefix: siu)

Contains definitions of the CU, IU, SIU, SCU, and supporting types.

· spd.xsd (prefix: spd)

The main schema file. Contains the definition of the PackageDescriptor type.
· version.xsd (prefix: vsn)

Defines normalized string formats for version information.
B. Acknowledgements

The following individuals have participated in the creation of this specification and are gratefully acknowledged:

Participants: MACROBUTTON
 MACROBUTTON NoMacro [Participant Name, Affiliation | Individual Member]
 MACROBUTTON NoMacro [Participant Name, Affiliation | Individual Member]
C. Revision History

 MACROBUTTON NoMacro [optional; should not be included in OASIS Standards]
	Revision
	Date
	Editor
	Changes Made

	 MACROBUTTON NoMacro [Rev number]
	 MACROBUTTON NoMacro [Rev Date]
	 MACROBUTTON NoMacro [Modified By]
	 MACROBUTTON NoMacro [Summary of Changes]

�NOTE TO REVIEWERS: This version (0.0-19)

Comment Flags have been added to identify sections under review and section new this week. Please do not review any section that is not flagged for review.

�READY FOR REVIEW (The front matter down to the TOC)

�Possible reword: SDDs define the characteristics of solution packages which support the creation, configuration and maintenance of the software resources that are part of a solution.

�I’m not sure what the “common across all resource types” means.

�This document is a full specification

�READY FOR REVIEW (All of Section 2)

�Issue 14 - completed

�Issue 15 - completed

�Issue 21 – completed.

�Issue 20 - completed

�READY FOR REVIEW (Here to the beginning of 3.1)

�Don’t we have to say more than this? Its not a single file reference, its actually the root name for potentially a set of files (one per language mapping). It also assumes the files are in a well-known location. It is possible this should be changed into something in the SPD with a defined file type.

Is there an external standard we can point to for the NLS bundles?

�READY FOR REVIEW

�

This is just one “invalid” case. I could come up with scenarios in which it would actually be valid, but not best practice – e.g. “optional content” which is always selected (may even be good practice in an aggregation).

My suggestion would be to replace this with non-normative text pointing out that the SDD author needs to construct the SDD so that valid content selections are made (and that tools could assist in this).

�Issue 32

�Issue 21 – closed.

�Issue 34

�Issue 35

�Issue 36

�Issue 37

�Issue 38

�Issue 16

�Issue 21 – closed.

� ISSUE: Implicit requirements for component and hosted resources

Paraphrased, the parent of a component resource is implicity required if the component (or hosted) resource is required; the reverse cannot be assumed.

However, I don’t think we would require an SDD runtime to check for the parent – simply to check for the component resource. If the runtime wishes to make use of the “characteristic of components” that makes the above true, fine – but I don’t think that is normative SDD spec.

Also, if the component/hosted resource is resulting, then either the parent is also created and should be identified as a resulting resource, OR it should be EXPLICITLY required. We shouldn’t give the expectation it would automatically be required.

My recommendation is we stick to a simple model: requirements that need to be checked must be explicitly identified; resulting resources that are a core part of the solution should be explicitly identified.

�Issue 21

�Issue 21

�Issue 21

� Issue 21

�Issue 21

�Issue 26

�Issue 21

�Issue 21

�Issue 33

�Issue 39

�Issue 21

�Issue 21

�Issue 28

�Issue 21

�Issue 21

�Issue 21

�Issue 29

�Issue 21

�Issue 27

�Issue 21

�Issue 21

�Issue 40

�READY FOR REVIEW (Intro paragraph to 3.2)

�Issue 44

�READY FOR REVIEW (All of 3.2.1)

�Replace “resource content” with “IU content”.

�Think this should be moved to non-normative section.

�I think this could be reworded. RootIUContentType consists of a single RootIU element, of type RootIUType. I misread this to say RootIUContentType was an instance of RootIUType.

�Top-level could be misinterpreted. It does not have to be at the top level in topology – nor does it have to be a parent to all other resulting resources (e.g. may be a peer hosted resource that happens to represent the “suite” or solution). I would drop “top-level” – or move to non-normative discussion of expected use.

�Issue: resultingResourceRef is not required if ResultingResource elements are used.

I thought I commented on this already, but it doesn’t seem to be in the spreadsheet. resultingResourceRef does not have to be used, if there is no single “base” resource to which the IU relates.

�Issue 45

�must be (not just can be)

�See issue above.

�NEW MATERIAL FOR r19 STARTS HERE.

�Editors’ Note: The subsections here need to be organized eventually. Possibilities include alphabetically; or grouped in some logical way.

�Issue 21

�Issue 21

� Issue 21

�Issue 21

�Issue 26

�Issue 21

�Issue 21

�Issue 33

�Issue 39

�Issue 21

�Issue 21

�Issue 28

�Issue 21

�Issue 21

�Issue 21

�Issue 29

�update as needed

�safe to delete?

 MACROBUTTON NoMacro [document identifier]

 MACROBUTTON NoMacro [specification date]
Copyright © OASIS Open 2004.All Rights Reserved.

Page 1 of 9
oasis-sdd-spec-draft-v0.0-r18R.doc

1 August 2006

Copyright © OASIS Open 2005, 2006. All Rights Reserved.

Page 16 of 32

