Smart Browser Profile

This profile is based on the Needham and Schroedar protocol [ref 1] that is the basis for the Kerberos protocol [ref. 2 , 3 and 4]. The smart client profile uses the authentication paradigm and symmetric key transfer of the aforementioned protocols while using HTTP for transport. This protocol also does not use the definition of the data structures as defined in the Kerberos protocol.

More detailed work needs to be done on this protocol if the TC deems it to be worth pursuing.

There are three parts to this profile write-up.

1. Installation of a browser plugin that will support the proposed profile. The plugin is needed only in browsers that do not support the Kerberos protocol.

2. The profile itself and

3. The plugin functionality

Plugin Installation

When the browser calls on the target (RP), the RP will check whether the Browser is a smart browser, i.e. able to support this profile. This check is implementation specific. For example the RP could assume a smart browser. If the browser could not complete the protocol the RP could attempt to install a smart browser plugin in the browser or alternately the RP could redirect the browser to the source site that would attempt to install the smart browser plugin.

The installation of the plugin would follow the procedure for that browser’s plugin installation procedure.

Smart Browser Profile

This smart browser profile will support a Kerberos-like protocol.

Overview of the Smart Browser’s Use of Kerberos

The following is an overview of Kerberos as applied to the smart browser profile. Details of the Kerberos protocol can be found at [ref. 2 , 3 and 4] as well as a number of other references.

The browser plugin will contact the source site and request a ticket granting ticket (TGT). This may be the result of a redirect from the RP. The source site will create the TGT, which contains a conversation key for use between the source site and the browser encrypted in the source site’s secret key and the conversation key encrypted in the browser user’s secret key derived from the user’s password. The TGT has a relatively long life, which is set by the source site. Obtaining a new TGT is the only time that a client is required to login, i.e. that the user will be asked for their password.

When the browser client wants to talk to a particular server the smart browser plugin requests a ticket for that server from the source site by passing the TGT and the name of the server it wishes to talk to. This request may be the result of a redirect from the RP, i.e. if the client does not have a ticket when it attempts to access the RP, the RP redirects the client to the source site to obtain a ticket.

The source site creates a credential for the client to talk to the particular RP. This credential consists of an authenticator and a ticket for that particular server. The ticket consists of the client (browser user’s) name, the client’s network address, the validity time for the ticket and the symmetric, session key to be used in the conversation, all encrypted with the servers secret key, and the unencrypted server name. The authenticator consists of the client name, a time stamp and an optional, additional session key all encrypted in the session key.

The ticket can be used until it times out. The time out is set by the source site. The authenticator is generated anew for each session. Note that the authenticator is constructed by the plugin without the help of the browser user.

There is a proposed IETF extension to the Kerberos profile that supports the use of a public key for the TGT request, [ref. 5]. The use of public key relieves the source site from obtaining and storing the passwords of each party that it supports. Of course the source site must obtain the public key of each party but obtaining public keys is somewhat easier and there is no danger of compromising the public key as there would be with the password.

Messages between the browser and the RP may be encrypted using the symmetric key that has been exchanged between the browser and the RP with this protocol. That is, there is no need for SSL in this protocol.

There must be time synchronization between the source site and the RP’s to some delta time to prevent replay. There could be a requirement for a delta time skew, which could be of the order of a minute or so. There is a potential replay attack during the time skew.

Pros of using a Kerberos like protocol in this profile

The client (browser user) only has to login once during the lifetime of the TGT and can access any server that is known to the source site, i.e. the source site has the server’s password as well as the client’s password.

The client is authenticated to the RP and the RP is authenticated to the client by each knowing the session symmetric key, which can only be known by each knowing its own password.

No passwords are passed over the wire.

No special action is taken by the browser user. The protocol is carried out by the plugin.

The Kerberos protocol has been subjected to cryptanalysis over time and deemed to be strong. Implementations of the Kerberos protocol are readily available

Cons of using a Kerberos-like protocol in this profile

The source site must obtain and store the passwords, or public keys, of each browser user and RP that the source site supports.

A plugin must be installed in each browser that wishes to use this protocol.

Plugin Functionality

A browser plugin is required to:

· Request a TGT

· Capture the Browser user’s password

· Use that password to decrypt the TGT and obtain the session key for use with the Ticket service of the source site

· Request a ticket for use with an RP

· Decrypt the ticket with the browser user’s password

· Create an Authenticator and pass it and the server ticket to the RP

· Optionally encrypt messages with the session key, if required.

· Delete the password, tickets, authentications and TGT’s when the user quits the browser.

References:

1. R. Needham and M. Schroeder, “Using Encryption for Authentication in Large Networks of Computers”, Communications of the ACM, Dec. 1978, vol. 21, Num. 12.

2. J.T. Kohl, “The Evolution of the Kerberos Authentication Service.”, EurOpen Conference Proceedings, May 1991, pp. 295-313.

3. J.T. Kohl and B.C. Neuman “ The Kerberos Network Authentication Service.” RFC 1510, Sep 1993.

4. J.T. Kohl, B.C. Neuman and T. Ts’o “ The Evolution of the Kerberos Authentication System.” Distributed Open Systems, IEEE Computer Society Press, 1994, pp. 78-94.

5. B. Tung, C. Neuman, M. Hur, Medvinsky, Ari, J. Wray and J. Trostle ” Public Key Cryptography for Initial Authentication in Kerberos”, draft-ietf-cat-kerberos-pk-init-14.txt”, IETF Internet Draft.

