Adding a Credentials Collector (Proxy Login) to SAML

A Position Paper

Hal Lockhart

Entegrity Solutions

hal.lockhart@entegrity.com

In 2001 the OASIS Security Services TC, which was developing the SAML Specification, voted to defer work on defining assertions and protocols to support a Credentials Collector, as described in the SAML Domain Model. The consensus of opinion was that although such as capability would be very useful, the design was technically challenging and other features were more essential for SAML version 1.0.

This document is an attempt to set the stage to pursuing (or permanently abandoning) this effort. It can also be seen as an explanation of why the TC chose not to tackle the problem for SAML 1.0.

This document proposes a set of requirements for a Credentials Collector design that seem both reasonable and consistent with the SAML Domain Model. It then outlines a series of possible design approaches and shows that each one of them violates at least one of the requirements or is otherwise unworkable. The basic conclusion is that either some of the requirements will have to be modified or the project abandoned. The intention is to stimulate discussion about the best way to proceed.

1 Background

The SAML Glossary defines Credentials as “Data that is transferred to establish a claimed principal identity.” An equivalent definition is “The inputs used to authenticate.” In the context of SAML, there are three ways that Credentials might be used and conveyed via assertions.

1. Credentials can be used to perform an Authentication act as recognized and reported by an Authentication Authority. This use is the subject of this paper.

2. Credentials can be used to securely associate the Subject in a SAML assertion, and thus the asserted facts contained in it, with the party making a request. In SAML this use is called Subject Confirmation.

3. Credentials can be passed along via an Assertion to allow authentication to a backend system, such as a mainframe or database. The appropriate means of doing this would be to encode the credentials as User Attributes in an Attribute Statement. Credentials that are secret would be encrypted. This is the approach taken in X.509/PKIX Attribute Certificates, which have very similar semantics to SAML Attribute Statements.

The SAML domain model, shown in Figure 1, includes a system entity called a Credentials Collector (CC). The idea is that a CC would collect credentials from a party wishing to Authenticate and pass them along to an Authentication Authority. The Authentication Authority would check the credentials and, assuming the authentication was successful, would issue an assertion containing an authentication statement.

[image: image1.wmf]

Authentication

Authority

Attribute

Authority

Policy

Decision

Point

Policy

Enforcement

Point

Credentials

Authentication

Assertion

System

Entity

Attribute

Assertion

Auth

orization

Decision

Assertion

SAM

L

Policy

Policy

Policy

Policy

Policy

Credentials

Collector

Credentials

Assertion

Application

Request

Figure 1 – Credentials Collector in the SAML Domain Model

This capability is common today in access management products. Typically, a component installed as a filter in a Web server acts as a Credentials Collector, forwarding credentials to a central security server. The security server verifies the credentials and orchestrates a distributed session across a pool of Web servers.

2 Requirements

The following seem like a reasonable set of requirements for a Credential Collector.

2.1 All Authentication Methods

The CC scheme should work with all popular authentication methods. Although it is unlikely that the SSTC will actually specify more than a few methods specifically, the range of explicitly supported methods should be sufficiently broad that defining additional methods is a completely straightforward process.

This paper examines the issues with supporting two families of authentication methods: password-based and cryptographic. The author believes that a scheme capable of supporting both of these should be able to be easily adapted to support any other methods in common use.

Password-based methods involve collecting a secret value (password) from the user who is attempting to authenticate and checking it against some backend server. A simple password stored in hashed form in an LDAP directory is a typical example. Usually only one party (the human user) is authenticated.

Cryptographic methods involve a secret key that is used to encrypt some data. Verifying the encryption proves that the party authenticating knows the secret value. Most cryptographic methods involve mutual authentication of the user and the server. Finally, the exchange generally includes agreement of a temporary session key that can be used to associate the messages that follow with the authenticated identities and provide integrity and confidentiality of data, as required. Kerberos and SSL/TLS with client certificates are examples of what is meant by cryptographic authentication methods.

A corollary to supporting all authentication methods is that the scheme should not make certain types of authentication more difficult to deploy, administer or use.

2.1.1 An Aside on Passwords

Everybody agrees that passwords are a much less secure form of authentication than cryptographic methods, however it is not generally recognized that this is true for (at least) six distinct reasons. The significance of this is that some methods that attempt to improve on the security of passwords address some of these issues, but not others. This also applies where cryptographic methods make use of passwords, for example, to generate a Kerberos key or protect a stored SSL/TLS key.

1. A password may be intercepted by an unauthorized party as it moves about the network, either from a communications line or on some intermediate system.

2. A password may be guessed based on knowledge of the subject, for example, because it is the default value or the user’s favorite team.

3. A password may be brute-forced, because the number of possible values is not that large, for example, if the password is known to be six alphabetic characters.

4. A password may be misused by an authorized party to whom it has been legitimately revealed. This mainly happens because users tend to reuse their passwords.

5. Password methods usually do not link the authentication to the rest of the session. This permits an attack called session hijacking.

6. Password methods usually do not authenticate the server, only the user. This makes it easy for a bogus server to receive sensitive data intended for a file server or email server.

As an example, when passwords are used in a Kerberos system, 1, 4, 5 and 6 are addressed. Number 2 is up to the user (but can be enforced by software). Certain features of Kerberos, such as the preauthentication protocols, are designed to make attacks like number 3 more difficult.

2.2 Not Weaken Any

In addition to supporting multiple authentication methods, the use of a credentials collector should not weaken the security properties of any of them. In particular it should not weaken stronger methods in order to make them operate like weaker methods.

2.3 Maintain Trust Relationships

In the SAML Domain model, Asserting Parties issue statements based on information that is directly known to them. Relying parties make use of this information, but Asserting Parties do not depend on them in any way. (It is true that for privacy reasons, the Asserting Parties are allowed to give out different information to different Relying Parties, but this is a matter of suppressing information, not determining its validity.) The use of a Credentials Collector should not force a violation of this principle.

2.4 Stable Roles

A SAML component, such as an Authentication Authority or a Credentials Collector may be implemented as a number of distinct processes and hardware components. However, the Domain Model implies that the boundaries of these entities are stable and do not change depending on the particular information being sent or received. The use of a Credentials Collector should not change this either.

3 Potential Technical Approaches

This section outlines possible strategies that could be used to specify a Credential Collector capability in SAML that meets the requirements given. As mentioned in the preamble, each of them violates at least one of the requirements to some extent. The approaches are intended to be exhaustive, although variants and hybrids are possible. The suggestion of an approach that meets all the requirements would be quite welcome.

3.1 Password Only

One simple approach would be to limit the use of a Credentials Collector to password-like scenarios. In addition to regular passwords, various kinds of one-time passwords and token cards could also be supported. However, cryptographic protocols, is the sense used in this paper, would not be supported.

It would be straightforward to define a new statement type that could contain the subject and password or equivalent data and requested the issuance of an assertion containing an authentication statement. Use of encryption to protect secret values would also be specified. This approach has been implicitly proposed several times in messages to the security-services or saml-dev mailing lists.

It is also interesting to note that this is the approach taken by RADIUS and SASL, which also define Credentials Collector architectures. In fact a possible way of doing this would be to define XML syntax based directly on the SASL specification.

The main objection to this approach is that is violates the requirement in section 2.1. Against that, it could be argued that since cryptographic authentication methods do not require a central password repository (in the case of Kerberos, the protocols to access the KDC are already defined) there is no significant loss from dropping this requirement. If the only purpose of authentication statements is to implement a form of single signon, they it is not required for cryptographic protocols, which inherently provide single signon.

3.2 Collector Verifies

The way Credentials Collectors operate in most Access Management products today is that cryptographic methods are treated as a special case. Passwords are sent over as described previously, but if a cryptographic protocol is used, the Credentials Collector verifies the authentication handshake itself and simply informs the Authentication Authority that the user has successfully authenticated.

This approach is usually fine because the CC and AA are part of the same product and within the same security domain. However, in the context of SAML, the existence of standard protocol for communications implies that the messages will cross technology (product) boundaries and at least in some cases, security domain boundaries.

This approach either violates the requirements in section 2.3 or section 2.4, depending on how you chose to interpret the situation. In effect it means defining a protocol in which the Authentication Authority is willing to issue an authentication statement on the say so of a trusted CC. This creates significant security risks and greatly undermines the value of having an Authentication Authority.

3.3 Pass Through Cryptographic Methods

A simple-minded idea would be to have the CC simply forward messages and responses between the client to be authenticated and the AA. The AA would hold all the secrets and be able to verify for itself that the authentication had succeeded.

The problem with this approach is that the CC would not be able to read any of the traffic, since it would never learn any of the necessary keys, including the session keys. In the typical case, where the CC is imbedded in a Web server filter, the web server would not able to access any of the application data. In order for the CC to be able to access this data, it would in effect have to execute a man-in-the-middle attack, which protocols like Kerberos and SSL/TLS are specifically designed to prevent.

3.4 Shared Secrets

An improvement to this scheme would be to share all the secrets between the CC and the AA. The AA would actually verify the authentication and issue the authentication statement, but the CC would be able to shadow the processing and extract the session keys. Once the authentication had occurred, the AA could drop out.

The main objection to this approach is that it violates the requirement given in section 2.2. Particularly when the CC and AA are geographically and organizationally separated, the process of distributing the keys will add a significant risk. In addition, the CC and the AA would be in a position to impersonate each other. Finally, in the case of Kerberos, the CC would be able to impersonate the user at any future time, although of course this is always true of password-based protocols. (This is not true of a PKI-based protocol like SSL/TLS.)

3.5 Shared Session Key

A variant of the previous approach would be to have only the AA hold the long-term secrets, but to share the session keys with the CC. This would allow the AA to directly verify the authentication, while allowing the CC to continue the session afterwards.

There is more than one way this could be implemented, but here is a possible design.

1. When a cryptographic authentication starts, the CC would forward the requests and responses between the client and the AA without inspecting their contents, as in section 3.3.

2. Once the authentication succeeds, the AA would send the session key back to the CC and the CC would take over the session

3. Additional messages would be designed to handle protocol specific issues, such as re-keying.

This approach would limit the exposure to the current session. It would not permit impersonations using the long-term secrets. However, it still violates the requirement of section 2.2 to some extent.

4 Conclusion

As stated at the beginning, there does not seem to be any way to design a Credentials Collector architecture that does not violate at least one of the requirements. In the opinion of the author, the leading alternatives are:

· Drop the Credentials Collector from SAML and direct interested parties to SASL.

· Choose approach 3.1, Password Only.

· Choose approach 3.5 Shared Session Key.

� EMBED Word.Picture.8 ���

[image: image2.wmf]

Authentication

Authority

Attribute

Authority

Policy

Decision

Point

Policy

Enforcement

Point

Credentials

Authentication

Assertion

System

Entity

Attribute

Assertion

Auth

orization

Decision

Assertion

SAM

L

Policy

Policy

Policy

Policy

Policy

Credentials

Collector

Credentials

Assertion

Application

Request

_1085295810.doc
[image: image1.bmp][image: image2.bmp]

Authentication

Authority

Attribute

Authority

Policy

Decision

Point

Policy

Enforcement

Point

Credentials

Authentication

Assertion

System

Entity

Attribute

Assertion

Authorization

Decision

Assertion

SAML

Policy

Policy

Policy

Policy

Policy

Credentials

Collector

Credentials

Assertion

Application

Request

