
[image: image1.png]

Guidelines for using XML Signatures with the OASIS Security Assertion Markup Language (SAML)

Draft 01, 21 September 2002

Document identifier:

draft-sstc-xmlsig-guidelines-01
Location:

http://www.oasis-open.org/committees/security/docs/
Editor:

Scott Cantor, The Ohio State University and Internet2 (cantor.2@osu.edu)
Contributors:

Phillip Hallam-Baker, Verisign
Christian Geuer-Pollmann, Apache XML Security
Abstract:

This document provides suggestions and best practices for using the XML Signature standard with SAML messages to fulfill the requirements of existing and future SAML profiles and bindings.
Status:

This is a draft document that supplements the SAML 1.0 committee specification and does not supersede or override it.
If you are on the security-services@lists.oasis-open.org list for committee members, send comments there. If you are not on that list, subscribe to the security-services-comment@lists.oasis-open.org list and send comments there. To subscribe, send an email message to security-services-comment-request@lists.oasis-open.org with the word "subscribe" as the body of the message.

For information on whether any patents have been disclosed that may be essential to implementing this specification, and any offers of patent licensing terms, please refer to the Intellectual Property Rights section of the Security Services TC web page (http://www.oasis-open.org/committees/security/).

Copyright © 2002 The Organization for the Advancement of Structured Information Standards [OASIS]
Table of Contents
41
Introduction

52
Canonicalization

52.1 Best Practices

63
Signature Coverage

63.1 References

63.2 Transforms

73.3 Best Practices

84
Signature Verification

84.1 Parse the Octet Stream

84.2 Node Set Comparison

94.3 Profiling Transforms

94.4 Best Practices

105
References

11Appendix A. Acknowledgments

13Appendix B. Notices

1 Introduction

This non-normative document describes the issues that one must consider when attaching digital signatures to SAML messages using the XML Signature standard [XMLSig], and provides suggested best practices for the application of the standard to SAML 1.0 bindings and profiles, based on SAML and XML Signature implementation experience.

While this document does not supersede or contradict section 5 of the core SAML specification [SAMLCore], section 5 lacks guidance in certain aspects of signature processing that insure interoperability, and was written in advance of the completion of new standards for signature formation that improve the robustness and efficiency of signature processing in SAML applications.

To the extent that SAML 1.0 implementations follow the guidelines in this document, future revisions of the SAML specification will be able to incorporate them normatively without sacrificing backward compatibility.
The following signature processing issues are discussed:
· Canonicalization
· Signature Coverage
· Signature Verification
Note that terms used in this document are as defined in the SAML glossary [SAMLGloss] unless otherwise noted.

2 Canonicalization
In XML Signature, canonicalization is the process of transforming a piece of content (formally, an octet stream or an XML node set) into an octet stream for input into a digest algorithm. The SAML 1.0 specification recommends, but does not require the use of Inclusive Canonicalization (http://www.w3.org/TR/xml-c14n), the algorithm that is required of XML Signature implementations to support.
During the SAML specification process, a new Exclusive Canonicalization algorithm (http://www.w3.org/TR/xml-exc-c14n) was under development by the W3C Signature working group, and has since moved to Recommendation status. The purpose of the new algorithm is to correct certain deficiencies in namespace processing that arise when a signed XML fragment is placed within an XML context, such as a SOAP envelope, and then verified by a relying party while within that context. When the standard algorithm is used, namespaces from the surrounding context "bleed into" the canonicalized XML of the signed fragment, and invalidate the signature.
Since SAML assertions, responses, and requests are by their nature designed to be embeddable in other XML messages, the use of Exclusive Canonicalization is highly advantageous for SAML applications, and this algorithm is therefore strongly suggested for use when signing SAML content.
Note that a canonicalization algorithm can be applied to an XML Signature in two ways. It can be specified as the CanonicalizationMethod for an entire Signature element (within SignedInfo). It can also be applied as a Transform within a Reference, with the same effect. If used as a transform, the SAML 1.0 recommendation for Inclusive Canonicalization can be followed while avoiding the namespace problems discussed above. See section 3, Signature Coverage, for more information on transforms.
2.1 Best Practices
· Use the Exclusive Canonicalization algorithm when signing SAML assertions, requests, or responses.

· The algorithm may be applied either at the Signature-wide level, or as a Transform within a Reference.
3 Signature Coverage
The XML Signature specification provides a plethora of techniques for embedding signatures in XML documents and for specifying what content (XML and otherwise) is to be signed. The SAML 1.0 specification mandates the use of the "enveloped signature" syntax, in which the Signature element is placed within the XML fragment that is being signed; the SAML 1.0 schema provides for the placement of optional Signature elements within the Assertion, Request and Response elements. The SAML 1.0 specification also makes explicit that such a signature must cover (thus include in its SignedInfo) all of the attributes and elements within the SAML element being signed, including any nested assertions and their Signatures.
The SAML specification does not, however, specify in detail how that signature coverage is to be expressed in the Signature element. As section 4 describes, one of the ways that an application can determine the content being signed is to check for specific transforms in the Signature; this makes it advantageous for SAML implementations to be consistent in their use of such transforms to express what is being signed. There are also efficiency advantages to certain approaches as well.
3.1 References
The first step in specifying coverage with an enveloped signature is to include a single Reference element with a URI that directs the signature processor to include XML content from within the document containing the signature. This can be accomplished either with an empty URI ("") or with an XPointer expression. Using XPointer requires that it be possible to include special ID attributes in the signed element content, but SAML 1.0 does not permit this. Therefore a reference URI of "" should be used to indicate the "current document" as the source of data.

3.2 Transforms
The second step in specifying coverage, with any signature, is to include zero or more Transform elements that specify how to turn the results of evaluating the Reference URI into a final node set or octet stream for input into canonicalization and digest computation. For example, a special transform (http://www.w3.org/2000/09/xmldsig#enveloped-signature) is provided for specifying that a signature is enveloped, and is thus excluded from the node set containing it.
While on the surface it may seem that this is the only transform needed for SAML signatures, this is not the case in general. If a specific SAML message being signed is taken in isolation, then a URI of "" together with the enveloped transform is sufficient; however, if that message is placed within another document (e.g. a SOAP envelope), an empty reference is no longer valid. Furthermore, a SAML assertion may be signed and placed within a SAML response message, which also invalidates that assumption.

In the general case, any SAML signature should explicitly specify the containing SAML element (Assertion, Response, or Request) being signed. An XPath expression can be used to identify the specific element in the document. There are currently two XPath transforms defined for use with XML Signatures, the original XPath Filter Transform described in http://www.w3.org/TR/xmldsig-core/#sec-XPath and the new version 2.0 transform defined in [XPath2].
While the version 2.0 specification is currently only a proposed recommendation by the W3C, it offers a tremendous advantage over the original in terms of both performance and clarity, and is highly suggested for use with SAML. The original transform is complex to implement efficiently, and forming accurate filter expressions with it is somewhat difficult, even for experienced developers. The new version is more straightforward to understand and is typically much faster to process, both important for a typical SAML application. The enveloped signature transform can also be carried out as part of a single compound XPath Filter 2 expression set, which further improves efficiency.
It is therefore suggested that signature coverage for SAML signatures be specified using a single XPath Filter 2.0 Transform element containing two XPath filter expressions:

<ds:Transform Algorithm="http://www.w3.org/2002/06/xmldsig-filter2">

 <dsig-xpath:XPath Filter="intersect">
 here()/ancestor::samlp:Response[1]

 </dsig-xpath:XPath>

 <dsig-xpath:XPath Filter="subtract">
 here()/ancestor::ds:Signature[1]

 </dsig-xpath:XPath>

</ds:Transform>
The example above would apply when signing a Response. Requests and Assertions would be identical but for the substitution of "samlp:Request" or "saml:Assertion" in the first expression.

Finally, if the use of Exclusive Canonicalization is desired (see section 2), but the XML Signature implementation does not support using it as a CanonicalizationMethod, it may be possible to use it as a transform instead. This has the same effect in supporting context-independent signature verification, provided it appears as the final Transform.

3.3 Best Practices

· SAML signatures should include a single Reference element with a URI of ""
· Use of a compound XPath Filter 2.0 Transform, as described above, is the most efficient way to isolate the containing element for signature input and exclude the enveloped signature.

· Exclusive Canonicalization may be used as a Transform, if it cannot be used as the SignedInfo's CanonicalizationMethod.
4 Signature Verification
When a signed message is received by a relying party, there are three main steps in the verification process: verifying that the message has not been tampered with in transit, evaluating the legitimacy of the signer (via certificate validation or other key verification techniques), and determining what portions of the message have been signed. The first two steps are well-defined by [XMLSig] and out of scope for SAML, respectively. The latter step is a subtle consideration that is expressed as "only what is signed is secure", and simply means that because an XML Signature can expressively exclude portions of a message using transforms, and without examining those transforms (or at least their output), a signer can trick a relying party into trusting data that has not been signed.
There are three primary methods an application can use to determine what has been signed, discussed in the following sections.

4.1 Parse the Octet Stream
The input to the digest algorithm is an octet stream derived by dereferencing the Reference URI, applying the Transforms, and performing canonicalization. While in general those bytes do not have to consist of well-formed or valid XML, in the case of SAML, they should represent exactly the containing element being signed, minus the enveloped signature. Therefore, the bytes can be fed back into a parser for reconstruction of the unsigned message. The message can then be validated (via the parser or by hand), insuring that only the signed data is consumed by the SAML application.

This method has the advantage of being easy to implement in most cases, provided the XML Signature implementation provides access to the octet stream that is the result of digest input processing. The disadvantage is that it may result in extra parsing if the application has already parsed the message to locate the Signature in the first place.
4.2 Node Set Comparison
When the input to canonicalization is an XML node set, as it is in SAML, the relying party can apply the Transforms to the source material, and then compare the resulting node set against the nodes that are to be viewed as "secure". This can be a one time comparison or an ongoing filtering process.
The advantage to this approach is that it doesn't require a full reparse of the resulting data, but the disadvantage is a certain degree of complexity above and beyond typical XML processing requirements.

4.3 Profiling Transforms

The final method requires that a pair of cooperating implementations at the sending and receiving ends agree on the set of Transforms to be used. This allows a relying party to examine the Transform elements in the document after parsing, and compare its expectations to what the signer has provided.
This method is by far the most efficient, since no extra parsing is involved, but it requires agreement on the transforms to be used, which compromises interoperability if the specification does not mandate a specific profile be used. This is may be an acceptable tradeoff if performance trumps interoperability for an application. Since the SAML 1.0 specification does not outline conformance requirements in the area of digital signature interoperability, this method does not preclude conformance, though it does compromise interoperability.

4.4 Best Practices

· As a matter of security, relying parties must determine that the correct portions of a signed SAML message have been included in the digested bytes.

· If interoperability is the paramount concern, then one of the methods described in sections 4.1 and 4.2 can be used to make this determination and can be assured that it will work, given a common interpretation by the sender and receiver on what should be signed.

· If performance is critical and interoperability is not a consideration, then the Transforms described in section 3.2 can form the basis of an efficient profile.
5 References

The following are cited in the text of this document:

[SAMLCore]
Phillip Hallam-Baker et al., Assertions and Protocol for the OASIS Security Assertion Markup Language (SAML), http://www.oasis-open.org/committees/security/

, OASIS, May 2002.

[SAMLGloss]
Jeff Hodges et al., Glossary for the OASIS Security Assertion Markup Language (SAML), http://www.oasis-open.org/committees/security/

, OASIS, May 2002.

[XMLSig]
Donald Eastlake et al., XML-Signature Syntax and Processing, http://www.w3.org/TR/xmldsig-core/, World Wide Web Consortium.

[XPath2]
Joseph Reagle et al., XML-Signature XPath Filter 2.0, http://www.w3.org/2002/06/xmldsig-filter2/, World Wide Web Consortium.

Appendix A. Acknowledgments

The editors would like to acknowledge the contributions of the OASIS SAML Technical Committee, whose voting members at the time of publication were:

Allen Rogers, Authentica

Irving Reid, Baltimore Technologies

Krishna Sankar, Cisco Systems

Ronald Jacobson, Computer Associates

Hal Lockhart, Entegrity

Carlisle Adams, Entrust Inc.

Robert Griffin, Entrust Inc.

Robert Zuccherato, Entrust Inc.

Don Flinn, Hitachi

Joe Pato, Hewlett-Packard (co-chair)

Jason Rouault, Hewlett-Packard

Marc Chanliau, Netegrity

Chris McLaren, Netegrity

Prateek Mishra, Netegrity

Charles Knouse, Oblix

Steve Anderson, OpenNetwork

Rob Philpott, RSA Security

Jahan Moreh, Sigaba

Bhavna Bhatnagar, Sun Microsystems

Jeff Hodges, Sun Microsystems (co-chair)

Eve Maler, Sun Microsystems (former chair)

Aravindan Ranganathan, Sun Microsystems

Emily Xu, Sun Microsystems

Bob Morgan, University of Washington and Internet2

Phillip Hallam-Baker, VeriSign

Appendix B. Notices

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright © The Organization for the Advancement of Structured Information Standards [OASIS] 2001, 2002. All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an “AS IS” basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

draft-sstc-xmlsig-guidelines-01
11
21 September 2002

