
“Credentials Collection”

A Proposal for SAML 2.0

Carlisle Adams

March 11, 2003

1. Introduction

[image: image1.wmf]

Authentication

Authority

Attribute

Authority

Policy

Decision

Point

Policy

Enforcement

Point

Credentials

Authentication

Assertion

System

Entity

Attribute

Assertion

Auth

orization

Decision

Assertion

SAML v1.0

Policy

Policy

Policy

Policy

Policy

Credentials

Collector

Credentials

Assertion

Application

Request

The Security Assertion Markup Language (SAML) is an XML-based framework for exchanging security information [SAML]. As demonstrated in Figure 1 below [HL], the scope for SAML 1.0 addressed the syntax and distribution of various types of assertions; initial assertion creation was not considered in 1.0 (the defined SAML protocols simply assume the prior existence of, for example, an authentication assertion).

Figure 1: The SAML Domain Model with Credentials Collection

There is a need to standardize the collection of credentials for the purpose of creating an initial assertion. Indeed, this task is included in the “To-Do” list for SAML 2.0 [TODO].

2. System Model and Protocols

As suggested above in Figure 1, the collection of credentials will involve interaction between a System Entity (SE) and a Credentials Collector (CC), and between a Credentials Collector and the Authentication Authority (AA). These interactions may be viewed conceptually in three different architectures; see Figure 2, Figure 3, and Figure 4, as well as the discussion in the following subsections.

2.1 Combined CC and AA

[image: image2.wmf]

System

Entity

Authentication

Authority

& CC

2

1

{TYPE 1}

Figure 2: Combined Credentials Collector and Authentication Authority

In Figure 2, the functionality of the Credentials Collector is logically incorporated into the Authentication Authority. The SE sends any of several different credentials to the CC/AA, which authenticates the credentials (perhaps using a challenge/response protocol with the SE) and issues a new SAML assertion containing an authentication statement. See Section 2.4.2 for the definition of a {TYPE 1} message.

2.2 CC as Translator

[image: image3.wmf]

Credentials

Collector

System

Entity

Authentication

Authority

1

4

3

{TYPE

1}

 2

{TYPE 2}

Figure 3: Credentials Collector for Message Standardization

In Figure 3, the CC is logically separate from the AA and acts as an intermediary between the SE and the AA. Recognizing that there are not only several different credential formats, but also potentially several different request/response protocols for each credential format, the CC plays the role of a translator. The CC translates from any of several standard or proprietary credential formats for each credential type to a single standard format for each type, and from any of several standard or proprietary request/response protocols to a single standard request/response protocol. This task simplifies the AA by greatly reducing the number of formats and protocols that the AA must support. A CC can be created and deployed in any given environment to deal with the requests of the set of SEs in that environment, thus facilitating the communication between these SEs and a commercial off-the-shelf (COTS) AA without having to modify any of the SEs.

In this model, the CC collects credentials from the SE and packages them together into a request protocol message for the AA. The AA authenticates the credentials (perhaps using a challenge/response protocol with the SE, as appropriately translated by the CC) and issues a new SAML assertion containing an authentication statement. See Section 2.4.2 for the definition of {TYPE 1} and {TYPE 2} messages.

2.3 CC as Local Authenticator

[image: image4.wmf]

Credentials

Collector

System

Entity

Authentication

Authority

1

4

3

{TYPE 3}

2

{TYPE 1 or TYPE 2}

Figure 4: Credentials Collector for Local Entity Authentication

In Figure 4, as in Figure 3, the CC is logically separate from the AA. However, in this model the CC plays more than a simple translation role. In particular, the CC is the entity that actually authenticates the credentials supplied by the SE (perhaps using a challenge/response protocol with the SE). This may be done with reference to authenticating data stored locally and privately at the CC. Once the authentication step is complete, the CC issues a request to the AA to have a new SAML assertion created.

In this model, the CC is an entity that operates in a local domain with a set of SEs; the SEs know the CC and it is reasonable for the CC to share secret authenticating data with each SE. For example, the CC may be a local authenticating entity within a given company or other organization, and SEs will go to this entity first (or will be redirected there) to log in and obtain credentials (i.e., a SAML assertion) that can then be used at other sites. On the other hand, the CC is not known to a wider community – this is the role of the Authentication Authority, who issues assertions that can be relied upon in domains remote from the SEs and CC. The AA trusts the CC to do local authentication correctly and will issue an assertion at the CC’s request, but the CC need not be trusted by any other entity in any other domain. See Section 2.4.2 for the definition of {TYPE 1}, {TYPE 2}, and {TYPE 3} messages.

An interesting feature of this model is that SEs need never know that there is an AA “behind” the CC with which they interact, and relying parties (RPs) need never know that there was a CC “in front of” the AA upon whose assertions they rely. Of course, both SEs and RPs can know this information (SEs can see that assertions are signed by an entity other than the CC, and RPs can familiarize themselves with the operational policies and procedures of the AA), but they do not need to know this information in order to function. In essence, SEs trust the CC, RPs trust the AA, and the model works because the CC and AA trust each other. This may be compared to the model described by Figure 3, in which SEs and RPs both trust the AA, and the CC’s translation service does not require any extension or augmentation of those trust relationships.

2.4 Discussion

This section discusses the three architectural models presented above.

2.4.1 Entity Responsibilities

The responsibility of each of the entities identified in Figures 2, 3, and 4 is as follows.

The Authentication Authority (AA) maintains its current role as much as possible, with most additional tasks assigned to the Credentials Collector (CC). In its current role in SAML 1.0 [SAML], the AA is responsible for responding to queries (including queries that incorporate an artifact) with the corresponding authentication assertion. It is the AA that is trusted for providing a trustworthy assertion. To support a logically separate CC (or to incorporate the CC functionality), the AA is additionally required to create an assertion based on a request from a CC (perhaps only a CC with which it has established an a priori trust relationship). The interaction between the CC and the AA is described in Section 2.5 below.

The Credentials Collector (CC) can play one of two roles, as described above (i.e., either a translator or a local authenticator). The “local authenticator” role requires not only authentication of the SE, but also mapping of the SE authentication name to a name recognized by the AA (and ultimately, by other RPs) for inclusion in an authentication assertion. The authentication of the system entity is performed by consulting the appropriate resources for confirmation of the credentials provided by the SE (for example, the CC may consult a password database for the purpose of confirming the correctness of the supplied password). The mapping of local SE names to multi-domain names is performed by consulting an appropriate, secured data store. The establishment of verification information for allowing authentication of the SE is out-of-scope for SAML, as is the establishment of a name-mapping data store. Furthermore, the establishment of a trust relationship between the CC and the AA is out-of-scope for SAML.

The “translator” role is conceptually simpler, requiring only that the CC is able to map from some formats and protocol messages to other formats and protocol messages. Shared secret data and name mapping tables are stored and protected at the AA, rather than at the CC, and a trust relationship between the CC and the AA may not be necessary (it depends on whether or not the CC has to translate a credential from one format to another, effectively re-issuing the credential). As well, SEs need not be immediately upgraded to the SAML-defined request/response protocol; they can continue to use their existing protocols, whether or not these protocols are proprietary. As time progresses and SEs migrate to the standard protocol, Figure 3 can collapse to Figure 2 (i.e., SEs may be able to communicate directly with the AA to request the creation of SAML assertions).

2.4.2 Protocols

The architectural models above suggest three possible types of request protocol message.

In Section 2.1 (combined CC and AA), there is a standardized message {TYPE 1}, supported by both SEs and the AA, that carries one or more credential types (each represented in a standard format) and requests the creation of a SAML assertion containing an authentication statement.

In Section 2.2 (CC as translator), there is a standardized message {TYPE 1}, supported by both the CC and the AA, that carries one or more credential types (each represented in a standard format) and requests the creation of a SAML assertion containing an authentication statement. In addition, there is potentially a collection of messages {TYPE 2}, supported by SEs and the CC, that carries one or more credential types (each represented in some format) and requests the creation of a SAML assertion containing an authentication statement. These SE-CC messages may be standardized by the Security Services TC at some point in the future, may be standardized by some other body but not officially endorsed by the SS TC, or may be entirely proprietary to a local domain.

In Section 2.3 (CC as local authenticator), the SE-CC request may be either of the types described in the previous paragraph {TYPE 1 or TYPE 2}. In addition, there is a standardized message {TYPE 3}, supported by both the CC and the AA, that requests the creation of a SAML assertion containing an authentication statement. This request does not contain any credentials, but the AA must be able to verify that the request was created by the CC and is not a replay of a previous CC message. It is possible that this message type could be a simple extension of the existing SAML AuthenticationQuery protocol message.

To summarize,

· TYPE 1 is a standard message containing standard credential formats,

· TYPE 2 is a non-standard message, or contains non-standard credential formats, or both, and

· TYPE 3 is a standard message containing no credentials.

In this context, the word “standard” means either (1) defined by the SS TC in a specification approved as an OASIS Standard, or (2) defined in another specification and referenced and endorsed by the SS TC in a specification approved as an OASIS Standard.

In all cases, the response message from the AA (to the SE in Section 2.1, and to the CC in Sections 2.2 and 2.3) is a protocol message that contains either the newly created SAML assertion, or an artifact that refers to the newly created assertion. It is possible that this could be a simple extension of the existing SAML AuthenticationResponse protocol message, although another message syntax may be more appropriate. In Sections 2.2 and 2.3, the response message from the CC to the SEs may be standardized or proprietary and, if standardized, may be standardized in SS TC or elsewhere.

2.4.3 Recommendation

Although there may be a desire in some environments for the architectural model described in Section 2.3, it is recommended that the SS TC begin by defining the CC-to-AA request and response protocol messages for the model of Section 2.2 (TYPE 1, above). As discussed above, this model is conceptually simpler in some ways and has the advantage that it may be deployed in existing environments without requiring an upgrade to SEs. Furthermore, the model can migrate to the one presented in Section 2.1 over time so that when SEs have been upgraded there is no processing delay imposed by an intermediate CC. Having the AA do authentication of the SEs significantly reduces the need for the CC to go through any kind of software certification process, along with the corresponding periodic formal audits of its code. As well, because there is currently no mechanism in SAML assertions analogous to the CP/CPS pointer in X.509 public-key certificates, there is no way to reliably inform relying parties that the authentication was actually performed by an entity other than the AA, and so the model of Section 2.2 potentially reduces liability issues for the AA.

The Web Services Trust Language (WS-Trust) Version 1.0 specification (published by Microsoft, IBM, VeriSign, and RSA Security on December 18, 2002 [WST]) defines extensions that build on WS-Security to request, issue, and exchange security tokens. In particular, the <RequestSecurityToken> and <RequestSecurityTokenResponse> elements are defined to be passed as payload in a SOAP message in order to request the creation of a security token based on ownership of a different security token, or to exchange one security token for another. It is recommended that the SS TC create a profile of WS-Trust in which a number of security token types are specified for carriage in the request message, and a SAML artifact, or a SAML assertion containing an authentication statement, is specified for carriage in the response message. The requesting entity is the Credentials Collector in the model of Section 2.2, and the responding entity is the SAML Authentication Authority.

2.5 Protocol Details

This section provides the details for the CC-AA protocols identified in Figure 3. In the past, SAML request/response protocols have been defined and separately a binding has been specified to various transports (SOAP, HTTP, etc.). The same is true here: WS-Trust is used as the request/response protocol, and the default binding is to WS-Security / SOAP, although other bindings could conceivably be defined.

For the request message, the <RequestSecurityToken> element is used to support the transfer of authentication information (e.g., credentials) from the CC to the AA. The credentials types allowed in this profile include the following:

· UsernameToken [WSSE]

· X509v3 [WSSE]

· Proof-of-possession token appropriate for supplied credentials (e.g., the password or hash of password that corresponds to the username, or a message or digest and a signature over that message or digest)

The request message also specifies the type of credential desired in the response. For this profile, the only types that can be specified are the following:

· SAMLAssertion [WSSE]

· Artifact

If the AA needs to engage in a challenge/response protocol in order to verify ownership of the submitted credentials, repeated <RequestSecurityToken> and <RequestSecurityTokenResponse> messages are exchanged that include elements describing the type of challenge and response involved (e.g., <SignChallenge> and <SignChallengeResponse>). See Section 4.8 of [WST].

An example request message (containing a username/password security token and requesting a SAML assertion) is given below.

<?xml version="1.0" encoding="UTF-8" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://schemas.xmlsoap.org/soap/…">
 <S:Header>
<wsse:Security xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext">
<UsernameToken Id="Token_FD98DKREI">
 <Username>jbloggins</Username>

 <Password>OU812?CUL8R!</Password>

</UsernameToken>
</wsse:Security>
 </S:Header>
 <S:Body>
<wsse:RequestSecurityToken xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext" xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">
 <TokenType>saml:Assertion</TokenType>

 <RequestType>ReqIssue</RequestType>

 <Base>
 <Reference URI="#Token_FD98DKREI" />

 </Base>
 </wsse:RequestSecurityToken>
</S:Body>
</S:Envelope>
For the response message, the <RequestSecurityTokenResponse> element is used to support the transfer of the newly created security token (i.e., the SAML assertion) from the AA to the CC.

An example response message is given below.

<?xml version="1.0" encoding="UTF-8" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion" xsi:schemaLocation="http://schemas.xmlsoap.org/soap/… ">
<S:Body>
<wsse:RequestSecurityTokenResponse xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext">
 <TokenType>saml:Assertion</TokenType>

<RequestedSecurityToken>
<saml:Assertion MajorVersion="1" MinorVersion="0" AssertionID="SecurityToken_ABCD001" Issuer="urn:acme:aa" IssueInstant="2002-09-26T13:00:00-05:00">
<saml:AuthenticationStatement xsi:type="saml:AuthenticationStatementType" AuthenticationInstant="2002-09-26T13:00:00-05:00" AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">
<saml:Subject>
 <saml:NameIdentifier Format="http://…/emailAddress">Joe.Bloggins@acme.com</saml:NameIdentifier>

<saml:SubjectConfirmation>
 <saml:ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:sender-vouches</saml:ConfirmationMethod>

</saml:SubjectConfirmation>
</saml:Subject>
</saml:AuthenticationStatement>
</saml:Assertion>
</RequestedSecurityToken>
</wsse:RequestSecurityTokenResponse>
</S:Body>
</S:Envelope>
3. Issues

The following issues need to be discussed and decided within the SS TC.

1. As part of the request for creation of an authentication assertion, what other elements within the assertion should be specified?

2. <RequestSecurityTokenResponse> allows the specification of security tokens as defined in WS-Security Extensions to be returned. An addition may need to be made to allow a request for the return of a SAML artifact.

3. What types of challenge/response messages need to be defined? (Note that this is independent of the WS-SecureConversation effort [WSSC], since the purpose of that work is to establish a context/session within which subsequent messages may be securely sent, whereas this challenge-response protocol is solely for the purpose of authenticating the requester so that an authentication assertion can be created. No continuing context/session is assumed or implied at the conclusion of this challenge-response exchange.)

4. Path Forward

The one snag in this proposal is that WS-Trust, although it is a public document, has not yet been submitted to any formal standards body. This means that there is virtually no chance that the WS-Trust work could become a standard anytime within the next 12 months. This is beyond the projected time frame for completion of SAML 2.0.

There are at least four possible paths forward.

1. Choose an existing protocol other than WS-Trust as the basis for the CC-AA request message. One example that has been raised is SASL, the Simple Authentication and Security Layer. Unfortunately, SASL is not an XML-based protocol, and so may be less convenient to use within the SAML framework than WS-Trust.

2. Effectively adopt the December 18, 2002, WS-Trust draft as a SAML input document and base the TYPE 1 protocol message exclusively on it. The difficulty with this approach is that WS-Trust is currently a copyrighted document and the SS TC may not have the freedom to adopt and use it without one or more of the authors officially submitting it to the SS TC for this purpose.

3. Participate actively in WS-Trust progression after it has been submitted to a standards body, and adopt/profile the most stable version available when the time for OASIS ratification of SAML 2.0 is at hand. The difficulty here is that WS-Trust may continue to evolve after SAML 2.0 is frozen, leading to incompatibilities between the two specifications and interoperability difficulties between compliant implementations.

4. Create a SAML protocol from scratch that does the job of WS-Trust. This approach avoids the difficulties of the previous three alternatives, but results in a protocol that competes directly with one that Microsoft, IBM, RSA Security, and VeriSign are likely to use. Some may see this course of action as unwise.

It is recommended that members of the SS TC that are interested in this work follow approach 3 above. That is, encourage the authors of WS-Trust to submit that work to a standards body as quickly as possible, and then become active within that group to stabilize that specification. In conjunction with this activity, the SS TC can progress a profile of WS-Trust (along the lines suggested in Section 3 above) that is suitable for SAML 2.0.

Further, it is recommended that the WS-Trust profiling activity within the SS TC should be independent of the other SAML 2.0 work. This would allow this activity to progress at whatever pace is possible (i.e., tied in some way with the rate of progression of any WS-Trust standardization activity) without holding up, or being held up by, other 2.0 projects. Thus, the “SAML Profile of WS-Trust” would be a separate document for the time being. This document could possibly be merged with the rest of SAML 2.0 later, if the two efforts are close to completion at roughly the same time.

5. References

[HL]
Lockhart, H., “Adding a Credentials Collector (Proxy Login) to SAML – A Position Paper”, 11 June 2002.

http://lists.oasis-open.org/archives/security-services/200206/msg00007.html
[SAML]
OASIS Security Services Technical Committee, “Assertions and Protocol for the OASIS Security Assertion Markup Language (SAML)”, Committee Specification 01, 31 May 2002. http://www.oasis-open.org/committees/security/docs/cs-sstc-core-01.pdf
[TODO]
Hodges, J., “Proposed, categorized TO-DO list for SAML 1.x and 2.0”, 16 August 2002.

http://lists.oasis-open.org/archives/security-services/200208/msg00010.html
[WSSC]
Della-Libera, G., et al., “Web Services Secure Conversation Language (WS-SecureConversation) Version 1.0”, December 18, 2002.

ftp://www6.software.ibm.com/software/developer/library/ws-secureconversation.pdf
[WSSE]
Microsoft, IBM, RSA Security, and VeriSign, “Web Services Security Extensions (WS-Security Extensions) Version 1.0”, December 2002.

http://schemas.xmlsoap.org/ws/2002/12/secext
[WST]
Della-Libera, G., et al., “Web Services Trust Language (WS-Trust) Version 1.0”, December 18, 2002.

ftp://www6.software.ibm.com/software/developer/library/ws-trust.pdf
� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

PAGE
11

[image: image5.wmf]

Authentication

Authority

Attribute

Authority

Policy

Decision

Point

Policy

Enforcement

Point

Credentials

Authentication

Assertion

System

Entity

Attribute

Assertion

Auth

orization

Decision

Assertion

SAML v1.0

Policy

Policy

Policy

Policy

Policy

Credentials

Collector

Credentials

Assertion

Application

Request

[image: image6.wmf]

Credentials

Collector

System

Entity

Authentication

Authority

1

4

3

{TYPE

1}

 2

{TYPE 2}

[image: image7.wmf]

System

Entity

Authentication

Authority

& CC

2

1

{TYPE 1}

[image: image8.wmf]

Credentials

Collector

System

Entity

Authentication

Authority

1

4

3

{TYPE 3}

2

{TYPE 1 or TYPE 2}

_1107941333.doc

System

Entity

Authentication

Authority & CC

{TYPE 1}

1

2

_1107942023.doc

Credentials

Collector

System

Entity

Authentication

Authority

1

4

3

{TYPE 1} 2

{TYPE 2}

_1107942039.doc

Credentials

Collector

System

Entity

Authentication

Authority

1

4

3

{TYPE 3} 2

{TYPE 1 or TYPE 2}

_1093428868.doc
[image: image1.bmp][image: image2.bmp]

Authentication

Authority

Attribute

Authority

Policy

Decision

Point

Policy

Enforcement

Point

Credentials

Authentication

Assertion

System

Entity

Attribute

Assertion

Authorization

Decision

Assertion

SAML v1.0

Policy

Policy

Policy

Policy

Policy

Credentials

Collector

Credentials

Assertion

Application

Request

