Metamodel-Based Refinement of Dynamic Software Architectures

Luciano Baresi
(Politecnico di Milano)

Reiko Heckel
(University of Paderborn)

Sebastian Thone
(Int. Graduate School Paderborn)

Déaniel Varrd
(Budapest University of Technology and Economics)

A UML-Profile
for Service-Oriented Architectures

Paderborn, September 2003

Contact: Sebastian Thone
Int. Graduate School Dynamic Intelligent Systems
University of Paderborn
D-33095 Paderborn, Germany

seb@upb.de
www.upb.de/cs/ag-engels/ag_engl/People/Thoene/MRDSA/

1 Introduction

This document defines a UML-profile as an extension for modelling service-oriented
architectures. It adapts the UML metamodel as defined in the specification document
[OMGO03] by stereotypes for service-oriented architectures.

1.1 Status of this document
This is the first version of this document.

1.2 Overview Service-Oriented Architectures

Service
Description

Discovery
Agencies

Query Publish
Service Service
Requirements Description
Service Interact Service
Requestor Provider

Figure 1: Service-Oriented Architectures

Service-oriented architectures involve three different kinds of actors: service providers,
service requesters and discovery agencies. The service provider exposes some software
functionality as a service over a network to its clients. In order to allow requesters to access
this service, the provider has to publish a service description.

Since service provider and service requester usually do not know each other in advance, the
service descriptions are published via specialized discovery agencies. They categorize the
service descriptions and deliver them in response to queries issued by service requesters. As
soon as the service requester has retrieved a service description meeting its service
requirements, it can use it to interact with the service.

Service-oriented architectures are typically highly dynamic and flexible: Components and
services are only loosely coupled and communicate according to standardized protocols;
interface specifications are exchanged at run-time and, thus, clients can replace services at
run-time. This might be advantageous if a new service provides a better alternative to the
former one concerning functionality or quality of service. Or, it might become necessary for
self-healing purposes, e.g., if a service is not reachable any longer because of network
problems.

2 Stereotype Definitions

Stereotypes define how existing metaclasses are extended and enable the use of platform
specific elements and notations in the extended models. The following figure defines the
stereotypes of the SOA profile including the metaclasses they extend.

«profile» SOA
«metaclass» «stereotype» «stereotype»
Class PortType PublishPortType
«metaclass» P «stereotype» «stereotype»
Association - ConnectorType FindPortType
«metaclass»
Component
«metaclass» P «stereotype» :] «stereotype»
InstanceSpecification [Service DiscoveryService
«metaclass» «stereotype»
Property ServiceDescription ametaclass»
Dependency
«metaclass» «stereotype» 'y
Avrtifact — | ServiceRequirements
tereotype»
«metaclass» «stereotype» «stereotype» (.(S
Port Na— PublishPort KnowsDependency RequiresDependency
«stereotyper «stereotype» «stereotype»
FindPort SatisfiesDependency DescribesDependency

Figure 2: Stereotypes and their base classes

3 Stereotype Notations

The following table assigns appropriate notations to the above defined stereotypes. In the

default case, the stereotype label is attached to the notation of its base class.

Stereotype from SOA profile

Notation

PortType

«portType»

PublishPortType

«publishPT»

FindPortType «findPT»
ConnectorType «connectorType»
Service «service»

DiscoveryService

«discovery»

ServiceRequirements

Name @

ServiceDescription Ei
Name U

PublishPort IE

FindPort E

KnowsDependency «know»

SatisfiesDependency «satisfy»

DescribesDependency «describe»

RequiresDependency

«require»

Figure 3: Stereotypes and their notation

4 Relation to the SOA-Architectural Style

The above defined profile can be used to provide a concrete syntax to architectural models
that follow the SOA-specific architectural style defined in [BHTVO03].

In order to define the relationship between syntax and semantics, the following tables

enumerate all elements defined in the type graph of the architectural style and assign a class

of the UML 2.0 metamodel plus the UML profile for SOA to each element.

Since UML distinguishes between instance-level and prototypical-level models, while the

architectural style does not, there are in some cases two slightly different options for the UML

element.

The third column of the tables exemplifies how to depict the chosen UML element.

Element of Notation defined by element of UML 2.0 | Example
Architectural Style | metamodel plus UML Profile for SOA
Component BasicComponents::Component
Client =l

Componentinstance If used on the instance-level:

Kernel::InstanceSpecification c:Client EI

If used on the prototype-level:

StructuredClassifier::Property c:Client gl

Service

BasicComponents::Component stereotyped by
SOA::Service

«service» =N
TravelAgency

Servicelnstance

If used on the instance-level:
Kernel::InstanceSpecification stereotyped by SOA::Service

«service» =1
t:TravelAgency

If used on the prototype-level:
InternalStructures::Prototype stereotyped by SOA::Service

«service» =1

stereotyped by SOA::DiscoveryService

t:TravelAgency
DiscoveryService BasicComponents::Component stereotyped by
SOA::DiscoveryService «discovery» =N
DiscoveryEngine
DiscoveryServicelnstance If used on the instance-level: =]
Kernel::InstanceSpecification <<¢iscovery» -
stereotyped by SOA::DiscoveryService d:DiscoveryEngine
If used on the prototype-level: . =N
InternalStructures::Prototype <<d|scovery>> .
d:DiscoveryEngine

Figure 4: Relating architectural style elements and UML elements (I)

Ports::Port

Element of Notation defined by element of UML 2.0 | Example
Architectural Style | metamodel plus UML Profile for SOA
PortType Kernel::Class stereotyped by SOA::PortType
«portType»
JourneyProvider
PublishPort Kernel::Class stereotyped by SOA::PublishPortType «puinshPT»
PublicationPort
FindPort Kernel::Class stereotyped by SOA::FindPortType «findPT»
QueryPort
Port If self.type.ocllsTypeOf(PortType)

port:PortType

If self.type.ocllsTypeOf(PublishPort)
Ports::Port stereotyped by SOA::PublishPort

port:PortType

If self.type.ocllsTypeOf(FindPort)
Ports::Port stereotyped by SOA::FindPort

port:PortType

&l

Figure S: Relating architectural style elements and UML elements (II)

Element of Notation defined by element of UML 2.0 | Example
Architectural Style | metamodel plus UML Profile for SOA
ConnectorType Kernel::Assocication stereotyped by SOA::ConnectorType
P ypeaby yP «connectorType»
assocName
Connection If used on the instance-level:
-~ e :assocName
Kernel::InstanceSpecification =
If used on the prototype-level:
BasicComponents::Connector :assocName
Interface Interfaces::Interface -
«interface»
BookJourney
findJourney(..)
bookJourney(..)
Operation Kernel::Operation
ServiceSpecification Artifacts::Artifact

ServiceRequirements

Artifacts::Artifact

stereotyped by SOA::ServiceRequirements HoteI-Req @
ServiceDescription Artifacts::Artifact N

stereotyped by SOA::ServiceDescription Hotel-Desc
Message Messages::Message

synchronous(..)

asynchronous

v

Figure 6: Relating architectural style elements and UML elements (III)

-6 -

Relationship of Notation defined by element of UML 2.0 | Example
Architectural Style | metamodel plus UML Profile for SOA

PortType refines PortType Kernel::Generalization <}

ServiceSpecification Artifacts::Manifestation o I'Tla_nl_fgs_t»_ S
manifests Port

Componentinstance Dependencies::Dependency «require»
requiresServiceFor stereotyped by SOA::RequiresDependency ————— >
ServiceRequirements

Componentinstance knows | Dependencies::Dependency «know»
ServiceDescription stereotyped by SOA::KnowsDependency D>
ServiceDescription Dependencies::Dependency d ib

describes Service stereotyped by SOA::DescribesDependency ____Ldescribe» __ >
ServiceDescription satisfies | Dependencies::Dependency «satisfy»
ServiceRequirements stereotyped by SOA::SatisfiesDependency D>

Figure 7: Relating architectural style elements and UML elements (IV)

5 Example Diagrams

Consider a travel agency application that serves as a manager for planning and booking
journeys. For simplicity, we restrict the functionality to booking suitable hotel
accommodation.

For this purpose, the travel software should be able to connect to external hotel information
systems. After a client's request for a journey has arrived, the system has to query these third-
party systems for suitable offers, then chooses the best offer, and books the corresponding
hotel.

These requirements lead to a dynamic, distributed system where new components can be
brought up by hotel companies at execution-time. Thus, the application is a candidate for
being realized as a service oriented architecture, as modelled with the UML profile for SOA
in the following diagrams.

We distinguish between models on the #ype level and on the instance or prototypical level: At
the type level component diagrams are used to show the component types of the application
including the interfaces that are provided and required by their ports (see

Figure 8).

The Client component requests a journey from the TravelAgency component, which then
connects to different HotelSystems. According to SOA (cf. Section 1.2) an additional
component playing the role of a discovery service is required.

py:Service- %:I p,:JourneyRequester

Requester
QueryService Client |
JourneyBooking
QueryService JourneyBooking
Query- p,-Service- p,:JourneyProvider
:QueryPort . 1
| F [P0ery Service Requester |
«discovery»@ «service» E
DiscoveryEngine TravelAgency
'F‘ — Publish- Provider
p,:PublicationPort Senvice p,:Hotel-
, Requester
Publish- RoomBookin
Service
Publish- RoomBooki
i oomBooking
Senvice «service» E

p,:Service
Provider HotelSystem p,:HotelProvider

Figure 8: SOA-specific component diagram

The details of the port types and the provided and required interfaces are defined by class
diagrams (partially shown in

Figure 9). The class diagram also contains stereotyped associations which define types for
connectors that are available to connect different port types.

«interface»
A QueryService
P : R
«se»,”” find(q:ServiceQuery) Y
s :QueryResult \\
/// \\\
«portType» «connectorType» QueryConnector «findPT»
ServiceRequester QueryPort
«interface»
b . .
«use»// PublishService V\
el publish(p:ServicePublication) \\
«portType» «connectorType» PublicationConnector «publishPT»
ServiceProvider PublicationPort

Figure 9: SOA-specific class diagram

The instance or prototypical level comprises configurations of component instances or of
placeholders, which are bound to concrete instances at execution-time. To model such
configurations, we use UML collaboration diagrams like in Figure 10.

If the underlying configuration, modelled as a set of component instances and connections, is
to be changed during execution, we assign {new/, {transient} or {destroyed} labels to the

-8-

affected elements. In our case, reconfiguration operations include the creation of new
connections among the components. The communication aspect is added to the collaboration
diagram by assigning the messages to the connection symbols. Numbers are used to define the
ordering of the messages.

The shown specification artefacts like service descriptions and service requirements are
required to enable the SOA-specific capability of dynamic service discovery.

1: publish(..)
2: publish(..) e > DiSCOVGry-DeSCIE P
3: query(..) B)
4: findAccomodation(..) «descrlbe»\:/
4.2: query(..) .
4.1: checkAvailability(.:) «discovery» E k
d:DiscoveryEngine cknow»
| — — |
al P | publicationPort

/" «know»

J10)08uu0)fIsnp:
—> {uaisuen} [
“UopUONEINqN:

«service» =5 _|
t:-TravelAgency

«service» E
h:HotelSystem

{new}
:JourneyConnector

:HotelConnector

S~ . =7 < ~
<<require>\>\ \\SEQOV‘{’,’;eW} «describes . ~<<knowy A
N ~~. e LN S {new} /«describe»
\Y ~a e «require»™sy S .
Travel-Req @ TraveI-Desc@ Hotel-Req @ = HoteI-Desc@
I\‘ _______ ((Satisfy» ________ g [\‘~ ________ « Sggy_sjyz) _________ o

Figure 10: SOA-specific collaboration diagram

6 References

[OMGO03] Object Management Group
UML 2.0 Superstructure Final Adopted specification
www.omg.org/cgi-bin/doc?ptc/2003-08-02

[BHTVO3]L. Baresi, R. Heckel, S. Thone, and D. Varro
Modeling and Validation of Service-Oriented Architectures: Application vs. Style
Proc. of the European Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE), 2003

-9.-

