
CBDIJournal
2 Editorial

Business Change Matters

4 SOA Industry Analysis Report
SOA Maturity Assessment Survey

In early March I ran a 75 minute workshop at the annual
Architect Insight conference run by Microsoft in the UK.

I introduced the concepts of SOA Adoption Roadmap and
worked with the delegates to develop a high level assessment

of their current maturity. This article provides a brief
introduction to SOA Roadmap and Maturity concepts and

documents the results from the
workshop assessment session.

By David Sprott

11 SOA Best Practice Report
The Architecture Component of the

SAE™ Reference Framework for SOA
There is no “one size fits all” methodology, ours or anyone

else’s, and so best practice in method development calls
for incorporation of a framework of artifacts, tools and
techniques that can be tailored to the nuances of each

organization that wants to implement the methodology.
However, most popular methods don’t tend to focus on

the needs of service lifecycle instead covering a broad
but typically less focused method landscape. CBDI’s
SAE™ Reference Framework is built to remedy that

problem by highlighting aspects of methodology such as
process, techniques and artifacts needed to embrace SOA

concepts in a structured manner. This article provides
an introduction to the Architecture component of the

Reference Framework and the rationale that
went into its creation.

By John Butler

Independent Guidance for
Service Architecture and Engineering

ISSN 1745–1884

march 2007

Editorial

www.cbdiforum.com

Business Change Matters

This month I return to the question of how, when and why to involve the
business in SOA. This is a question that surfaces repeatedly in our work and I
am prompted yet again that this is far from straightforward issue to resolve.

The basic model that I base our advice upon is that in the early stages of SOA adoption
it is highly inadvisable to raise business expectations because there is a significant
amount of learning that needs to happen – and that’s best done in private, behind
closed doors in the IT environment. Creating basic services, breaking up monolithic
architectures, improving and rationalizing application integration contracts, creating
separation based architectures in project development all provide benefit, but in
business terms they are indirect.

What is useful and important is to commence the dialogue with business management
as early as possible around the question of what agility the business needs. Of course
it’s pointless asking business people “what agility do you need?” Generally business
people don’t know. Even if they are aware of impending change, of M&A based
actions for example, they are often unable to communicate this because of business
confidentiality requirements.

But in most businesses change is happening constantly, and one approach is simply to
analyze change and project requests to classify types of change. I did this, admittedly
in a less than formal fashion, a couple of years ago with one of our customers. We
assessed types of change on the basis of peoples’ experience and developed a simple
model that illustrated classes of change and relative incidence. See Table 1.

It’s not rocket science to figure out patterns of change (and the need for agility) and to
see patterns relate to business maturity or vertical sector. Relatively young businesses
will be constantly expanding channels to market. Mature industries will be focused
strongly on process improvement.

The interesting question is not just how to establish architecture that has inherently
agile characteristics, rather how to define the architecture in a manner that reflects
the change characteristics of the specific business and industry sector. It would seem
entirely reasonable that the architect should be able to answer the question – how long
will it take to make certain types of change? Perhaps each layer of the architecture
should be designed specifically to meet a change SLA.

In general terms we may assess that core business and capability services will be
relatively slow moving, and that change cycles of 6 months are adequate. In contrast
process services are generally regarded as fast moving and we might assess a change
cycle time of weeks to be required. However my experience is that this approach is
still way too generalized. The layering approach gives a basic model, but what would
be really useful is for a set of recommended patterns that can be used dependent on
the situation as it’s perceived specific to the particular (or cluster of) service. They
may also have widely different cost and usability considerations.

In our kitbag we should have a set of patterns that have been developed over time
and are well understood, not just in the architect and developer sense, but in terms
of life cycle impact on time to market and cost. With this approach, frankly, we
should be operating more like an architect in other professions. If you commission
a custom build of say a house, the architect will want to know your requirements in
both functional and non functional terms. In my own experience the architect will

IT architects need to
be providing positive

contribution to solving
the business problem in
a manner that offers a

range of choices that puts
the responsibility on the
business people to choose
the appropriate cost, time
and adaptability profile.

cbdi journal © Everware–CBDI Inc, March 2007	 �

come back with positive contribution to the overall design and
provide a range of design options – which of course all have
varying cost, time, quality and quite probably agility impacts.

In the same way IT architects need to be providing the same
level of service to business customers, providing positive
contribution to solving the business problem, but in a manner
that offers a range of choices that puts the responsibility on
the business people to choose between a solution that will last
three months and one that will be able to adapt to changing
business circumstances with a well understood cost and time
profile.

In so many businesses I work with I find that there is still a
huge gulf between the business and IT people, whether they
are internal or external providers. The business people are
locked into a cycle where they blame “the IT people” for lack
of business response while taking no responsibility for helping
the systems providers understand the requirements in a manner
that they can respond in an appropriate manner.

To crack this problem needs a level of engagement that expands
the footprint of the “requirements specification” to inform

architectural work. This needs to happen at two levels – in a
fairly general manner in order to develop and customize the
architectural framework, and at a specific business process level
to inform project delivery.

In this month’s CBDI Journal I report back on a little exercise
that I conducted with some 45 architects at a UK architects
conference organized by Microsoft. At this event I ran a
little survey to find out where folk are in their SOA maturity
development with some interesting results. Also this month we
continue our publication of the CBDI SAE™SOA Reference
Framework with the Architecture Component. This is highly
relevant to the discussion in this editorial – suggesting the
architecture is an intersection of separate views with standards,
patterns, techniques, deliverables, models and practices that
provide the basis for specialization and customization by
individual enterprises.

David Sprott, Everware-CBDI, March 2007

Business Change System Change Requests

Differences between Internal/external organization

Customer required data

Legal differences across geography/industry

Niche/point solutions

Suboptimal original design

Visualize differently

Process flow change

New integration requirements

Rules change

Data additions

Table 1: Examples of Classes of Change

SOA Industry Analysis Report

�� cbdi journal © Everware–CBDI Inc, March 2007

By David Sprott

SOA Maturity
Assessment Survey
Recap and results of the SOA Roadmap Workshop run at
Microsoft’s Architect Insight conference, March 2007

In early March I ran a 75 minute workshop at the annual
Architect Insight conference run by Microsoft in the UK. I
introduced the concepts of SOA Adoption Roadmap and
worked with the delegates to develop a high level assessment of
their current maturity. This article provides a brief introduction
to SOA Roadmap and Maturity concepts and documents the
results from the workshop assessment session.

Introduction
This was the second time Microsoft has held their annual architect’s “get together”
in Wales. For those readers not familiar with European geography, Wales is the small
bit sticking out on the left hand side of the United Kingdom – and it always seems
to be raining there.

This year Microsoft introduced a number of workshop sessions to complement the
tutorials and these were specifically planned to produce some concrete output. In
my workshop session I introduced the concepts of SOA Roadmap and Maturity
Models and then I walked through a relatively high level Capability Maturity Model,
explaining the primary capabilities required at increasing levels of maturity by stream
with the delegates commenting on their current status and concurrently recording
their own assessment of their maturity. At the end of the session I collected the
individual assessments and committed to provide an analysis of the results, which I
hope provides an interesting benchmark.

This report therefore summarizes the introductory remarks and presents the aggregate
results of the delegates’ assessments.

Complex Change Management Problem
We are all constantly involved in many forms of change. We move house, we acquire
new technologies and our roles change as our employers’ fortunes wax and wane. In
a corporate sense change is generally managed to some, but varying degrees. Some
enterprises have developed the management of business process change to an art form
and specialism using formal methodologies such as Six Sigma1.

Clearly IT organizations are also accustomed to making change, particularly
in response to new technology. In some areas such as IT resource management

cbdi journal © Everware–CBDI Inc, March 2007	 �

orchestration and change of the process is increasingly
sophisticated. This is not generally the case throughout all IT
functions.

Against that somewhat mixed background SOA adoption
represents a complex change management problem. It is not
a technology led change rather it is a change in architectural
approach that will, over time, have profound impact on
many IT and business functions including the way projects
are initiated, funded, scoped and governed. It will gradually
require the relationship between business and IT departments,
providers and suppliers to change. It spans many dimensions
and boundaries involving many parts of the organization as
summarized in Table 1.

Maturity Models
The idea of maturity Models is not new – they have been
used effectively in many different domains. In the IT space
the best known maturity model is the SEI’s CMMI2 a
widely used framework for measuring and managing IT
process improvement in development, service delivery and
acquisition.

There have been numerous maturity models developed over
the past 18 months to address the SOA space. I reported on
several of these in my December 2005 report on the SOA
Maturity Model3. Most of these models have some superficial
relationship to the SEI CMMI framework and are focused on
a particular form of maturity, for example the maturity of the
service concept as it relates to ESB technology; or the maturity
of the integration task.

CBDI developed its SOA Maturity Model in 20034 based on
earlier research work I and other colleagues carried out in the
1980s that focused specifically on complex, multi-dimensional
change problems. The CBDI model illustrated in Figure 1 is

distinctive insofar as it focuses specifically on the maturity
of the enterprise adoption of SOA.5 The Maturity Levels
identify primary outcomes that characterize the organizational
capability.

Early Learning – the organization is experimenting
with SOA. Activity is likely to be characterized as
Pilot Projects or Proof of Concept (PoC) projects.

Applied – SOA is employed within conventional
projects to deliver improved structure.

Integrated – SOA is used to deliver integration
between projects and or application silos.

Enterprise – SOA is optimized at the enterprise level.

Ecosystem – The SOA is inherently federated
supporting virtual business.

Whilst these maturity levels are neither standardized or fixed
in stone, we have found these are a useful starting point for
most enterprises.

In our early work in this area we recognized that we need efficient
ways to break up the problem to facilitate understanding,
communications, measurement and management. We
introduced the concept of streams – broad topic areas that break
down the overall task in an organizationally neutral manner,
providing the scope for cross organization communities
of interest to collaborate and reach an appropriate level of
consensus. The streams shown in Figure 2 are provided as an
organizing pattern that we have found useful. Many enterprises
have altered these slightly to suit their needs, but in general
they seem to be widely applicable.

Management – the focal point for management
capabilities spanning visioning, strategy, funding,
chartering, governance, measurement and
management of the SOA adoption process.

•

•

•

•

•

•

Pre SOA SOA

Project driven Business/IT convergence

Variable approaches and processes Contract based services

Point to point integration High levels of reuse of coarser grained functionality

Low levels of reuse at any level Manufacturing and assembly environment

Loose coupled technology Architecture and policy driven

Tight coupled applications Repeatable processes

Low level of business alignment Strong governance to maintain architectural integrity

Table 1: A Complex Change Management Problem

�� cbdi journal © Everware–CBDI Inc, March 2007

SOA Maturity Assessment Survey continued . . .

Early
Learning

Integrated

Enterprise

Ecosystem

Initial SOA
activity
Experimental

Shared services
integrate silos,
rationalize EAI
contracts
Integrated
approach reduces
complexity, cost
and increases
adaptability

Common ecosystem
services eliminate
organizational
boundaries and
enable broader
economic activity
Service concepts
standardized across
industry sectors and
or LOBs

Enterprise level
shared services
create enterprise
adaptability and
consistency
SOA enables
enterprise wide
consistency of
business information
and processes

Applied

Project based
SOA activity
Service
architecture
enables
business
adaptability
for limited
scope

Early
Learning

Integrated Ecosystem

SOA
Management

Service
Architecture

Operational
Infrastructure

Framework
and Process

Organization

Projects &
Programs

Maturity Level

Management tools including vision, strategy, funding, charging, measurement and monitoring

Creation and ongoing management of the service architecture and portfolio

Single logical operational infrastructure with common policy implementation and management tools

The architectural framework and repeatable processes enabling consistency,
trust and governance in federated activity.

Roles and responsibilities to execute on federated, specialized,utility based solutions environment.

Project strategy and planning to enable very high levels of reusable services
in a manufacturing and assembly environment

LifeCycle
Infrastructure

Consistent reference architecture for tools and platforms to deliver and manage
the requirements to retirement life cycle

Applied Enterprise

Figure 1: CBDI Capability Maturity Model

Figure 2: Roadmap Streams

cbdi journal © Everware–CBDI Inc, March 2007	�

Service Architecture – the creation and maintenance
of the service and associated architecture. Note
here the architecture is the instance (or enterprise
specific) architecture not the reference architecture
framework that defines the meta objects in the service
architecture.

Operational Infrastructure – the architecture
and capabilities to support the run time service
environment.

Life Cycle Infrastructure – the architecture and
capabilities to support the entire life cycle of service(s)
states, spanning planned to retired and archived.

Framework and Process
– the reference architecture
framework detailing the
layering, policies, patterns,
models, deliverables
etc. plus the reference
process that facilitates
repeatability, governance
and quality.

Organization – the
roles and responsibilities
required to establish, operate
and maintain a service oriented business.

Projects & Programs – the project capabilities (classes
and profiles) necessary to plan, provision, implement
and assemble services.

Capability Planning
The intersection between maturity levels and streams is
capability – the competence, ability and capacity to perform a
specific function, process or task. Basing change management
on capability provides a systematic and managed approach to
introducing change. An example of capabilities within one
capability area at several levels of maturity is shown in Table 2.

•

•

•

•

•

•

The Assessment Exercise
Having discussed the elements of a capability plan we then
walked through a high level roadmap populated with
selected capabilities shown as Figure 3. Note the capabilities
were selected because they are important and illustrate the
capabilities at varying levels, but there are of course many
other capabilities in a practical plan.

A summary of the results of the assessment exercise are shown
in Table 3.

Survey Conclusions
The highest incidence of capability is at the Applied Maturity

Level with average maturity at this
level at medium maturity (1.8) as
opposed to low or high.

The second highest incidence of
capability is at the Early Learning
level.

This shows a numeric majority of the
sample are in the very early stages of
SOA and are not yet enabling shared

services to any significant extent.

At both the Early Learning and Applied levels delegates
aggregate assessments were just below the mid point.

While the average capability scores are in a fairly narrow range,
there is blue sky between architecture (1.3) and all the other
streams at the Applied level. This illustrates the limitations
of SOA applied to individual projects. While SOA may be
effective, particularly for larger projects, we might surmise
(this was an audience of Microsoft customers) that the average
project size represented may not have been very large.

At the Integrated level there is clear evidence of maturing
Operational Infrastructures with an average capability score
of 2.4 reflecting a common ESB (or equivalent) environment.

Capability Area Capability Maturity Level

Service Governance Record of Services in Use Applied

Monitoring of Service Usage Applied

Control over Service Usage Integrated

Policy based control over Service
Planning and Provisioning

Enterprise

Table 2: Example of Capability/Maturity

Most organizations are in
the early stages and a small

minority is making progress to
more advanced levels

�� cbdi journal © Everware–CBDI Inc, March 2007

SOA Maturity Assessment Survey continued . . .
Ea

rly
 L

ea
rn

A
pp

lie
d

In
te

gr
at

ed
En

te
rp

ris
e

Ec
os

ys
te

m

Av
er

ag
e

Sa
m

pl
e

Av
er

ag
e

Sa
m

pl
e

Av
er

ag
e

Sa
m

pl
e

Av
er

ag
e

Sa
m

pl
e

Av
er

ag
e

Sa
m

pl
e

M
at

ur
ity

M
at

ur
ity

M
at

ur
ity

M
at

ur
ity

M
at

ur
ity

SO
A

M
an

ag
em

en
t

1.
8

8
2.

1
12

1.
8

6
2.

5
2

3.
0

1

Se
rv

ic
e

A
rc

hi
te

ct
ur

e
2.

0
7

1.
3

2
1.

8
6

1.
8

5
1.

3
3

O
pe

ra
tio

na
l

In
fr

as
tr

uc
tu

re
1.

6
7

1.
8

9
2.

4
6

2.
0

5
1.

3
4

Li
fe

 C
yc

le

In
fr

as
tr

uc
tu

re
2.

0
8

2.
0

13
1.

4
4

1.
3

3

0

Fr
am

ew
or

ks
 &

Pr

og
ra

m
s

2.
1

8
1.

7
10

1.
9

7
1.

7
6

1.
3

4

O
rg

an
iz

at
io

n
1.

7
9

1.
7

12
2.

1
7

2.
3

3

0

Pr
oj

ec
ts

 &
 P

ro
gr

am
s

2.
0

10
2.

0
12

1.
3

6
3.

0
1

3.
0

1

O
ve

ra
ll

1.
9

57
2.

1
70

1.
8

42
1.

9
25

1.
5

13

D
ist

rib
ut

io
n

%

27
.5

33
.8

20
.3

12
.1

6.
3

T
ab

le
 3

: A
gg

re
ga

te
 A

ss
es

sm
en

t b
y

St
re

am
 a

nd
 M

at
ur

ity
 L

ev
el

N
ot

es
:

O
n

a
sh

ow
 o

f h
an

ds
 th

e
de

le
ga

te
s c

om
pr

ise
d

a
m

ix
 o

f e
nd

 u
se

r a
nd

 v
en

do
r e

nt
er

pr
ise

s,
w

ith
 a

 si
gn

ifi
ca

nt
 m

aj
or

ity
 (p

er
ha

ps
 7

5%
) o

f e
nd

 u
se

rs
.

D
el

eg
at

es
 w

er
e

as
ke

d
to

 a
ss

es
s t

he
ir

ca
pa

bi
lit

y
m

at
ur

ity
 w

he
re

 n
on

 z
er

o.
 It

 is
 to

 b
e

ex
pe

ct
ed

 th
at

 o
rg

an
iz

at
io

ns
 h

av
e

ca
pa

bi
lit

ie
s a

t m
ul

tip
le

 le
ve

ls.

Sa
m

pl
e

is
th

e
co

un
t o

f t
he

 n
um

be
r o

f a
ss

es
sm

en
ts

 fo
r c

ap
ab

ili
ty

/st
re

am
.

Av
er

ag
e

M
at

ur
ity

 is
 o

n
a

sc
al

e
of

 1
 to

 3
, w

he
re

 1
 is

 lo
w

 a
nd

 3
 is

 h
ig

h.
 N

il
ca

pa
bi

lit
y

w
as

 n
ot

 re
co

rd
ed

.

D
ist

rib
ut

io
n

is
th

e
co

un
t o

f r
ec

or
de

d
ca

pa
bi

lit
y

as
se

ss
m

en
ts

 fo
r a

 m
at

ur
ity

 le
ve

l.
A

lso
 sh

ow
n

gr
ap

hi
ca

lly
 in

 F
ig

ur
e

4.

cbdi journal © Everware–CBDI Inc, March 2007	 �

Fi
gu

re
 3

: S
el

ec
te

d
C

ap
ab

ili
tie

s b
y

St
re

am

C
ol

la
b

or
at

in
g

p
ar

tie
s

ac
t

as

p
ro

vi
d

er
 a

nd
 c

on
su

m
er

S
er

vi
ce

 p
ro

d
uc

t
m

an
ag

em
en

t
S

p
ec

ia
liz

at
io

n
of

 S
er

vi
ce

p

ro
vi

si
on

in
g,

 im
p

le
m

en
ta

tio
n

an
d

as

se
m

b
ly

 p
ro

je
ct

s

S
er

vi
ce

 d
el

iv
er

y
an

d

us
ag

e
in

te
gr

at
ed

 in
to

Lo

B
p

ro
je

ct
s

P
ilo

t
an

d
 P

oC
p

ro
je

ct
s

P
ro

je
ct

s
&

 P
ro

g
ra

m
s

S
er

vi
ce

s
d

ef
in

ed
 a

nd

m
an

ag
ed

 o
n

in
te

r
b

us
in

es
s

co
lla

b
or

at
iv

e
b

as
is

 (v
er

tic
al

,
su

p
p

ly
 c

ha
in

 e
tc

)

S
er

vi
ce

s
ar

e
ow

ne
d

 b
y

th
e

b
us

in
es

s
Th

er
e

is
 s

in
gl

e
p

oi
nt

 o
f

ac
co

un
ta

b
ili

ty
 fo

r
in

te
gr

at
io

n
S

O
A

 is
 a

 p
ro

je
ct

le

ve
l r

es
p

on
si

b
ili

ty
IT

 a
rc

hi
te

ct
s

sp
on

so
r

S
O

A
O

rg
an

iz
at

io
n

C
ol

la
b

or
at

io
n

re
fe

re
nc

e
ar

ch
ite

ct
ur

e
(d

ef
in

ed
 p

oi
nt

s
of

 c
ol

la
b

or
at

io
n)

C
on

ve
rg

en
ce

 o
f b

us
in

es
s

an
d

 IT

p
ra

ct
ic

es
 a

ro
un

d
 s

er
vi

ce
 c

on
ce

p
t

C

om
m

on
 S

O
A

 r
ef

er
en

ce

ar
ch

ite
ct

ur
e

an
d

 p
ro

ce
ss

 (d
ef

in
ed

co

nc
ep

ts
, p

rin
ci

p
le

s,
 p

ol
ic

ie
s

an
d

p

at
te

rn
s)

P
ro

je
ct

 s
p

ec
ifi

c
ar

ch
ite

ct
ur

e
fr

am
ew

or
ks

Fr
am

ew
or

ks
an

d
 p

ra
ct

ic
es

ex

te
nd

ed
 in

ad

 h
oc

m

an
ne

r

Fr
am

ew
o

rk
 a

nd

P
ro

ce
ss

E
co

sy
st

em
 r

eg
is

tr
ie

s
p

ro
vi

d
e

go
ve

rn
an

ce
 o

ve
r

co
lla

b
or

at
iv

e
b

us
in

es
s

p
ro

ce
ss

es

E
nt

er
p

ris
e

re
gi

st
ry

 a
nd

 r
ep

os
ito

ry

p
ro

vi
d

es
 d

es
ig

n
A

N
D

 r
un

tim
e

se
rv

ic
e

as
se

t
lif

e
cy

cl
e

go
ve

rn
an

ce
 a

nd
 a

ss
et

d

ep
en

d
en

cy
 h

or
iz

on
 a

na
ly

si
s

E
nt

er
p

ris
e

le
ve

l r
eg

is
tr

y
an

d

re
p

os
ito

ry
 p

ro
vi

d
es

 c
on

si
st

en
t

lif
e

cy
cl

e
go

ve
rn

an
ce

 o
f t

he
 r

un
 t

im
e

se
rv

ic
e

as
se

t

S
er

vi
ce

s
ar

e
p

ro
je

ct

le
ve

l d
el

iv
er

ab
le

s
S

er
vi

ce
s

ar
e

no
t

m
an

ag
ed

as

se
ts

Li
fe

 C
yc

le

In
fr

as
tr

uc
tu

re

S
er

vi
ce

s
ar

e
m

an
ag

ed
 a

s
fe

d
er

at
ed

 r
es

ou
rc

es

C
om

m
on

 fr
am

ew
or

k
fo

r
en

te
rp

ris
e

se
rv

ic
e

m
an

ag
em

en
t

an
d

 s
ec

ur
ity

C
om

m
on

 E
S

B
 fr

am
ew

or
k

P
ro

je
ct

 E
S

B
E

S
B

 p
ilo

t
or

P

oC
O

p
er

at
io

na
l

In
fr

as
tr

uc
tu

re

Th
er

e
ar

e
ag

re
ed

 b
us

in
es

s
p

ro
ce

ss
 a

nd
 d

at
a

ar
ch

ite
ct

ur
es

 fo
r

b
us

in
es

s
co

lla
b

or
at

io
ns

Th
e

E
nt

er
p

ris
e

ha
s

a
S

er
vi

ce

P
or

tf
ol

io
 P

la
n

Th
er

e
is

 a
 s

ta
nd

ar
d

 fo
r

ric
h

se
rv

ic
e

sp
ec

ifi
ca

tio
n

P
ro

je
ct

 a
rc

hi
te

ct
ur

es

ar
e

se
rv

ic
e

or
ie

nt
ed

A
rc

hi
te

ct
ur

e
is fr

ag
m

en
ta

ry
& ex

p
er

im
en

ta
l

S
er

vi
ce

 A
rc

hi
te

ct
ur

e

S
er

vi
ce

s
fa

ci
lit

at
e

in
te

r
b

us
in

es
s

co
lla

b
or

at
io

ns

S
er

vi
ce

s
ar

e
m

an
ag

ed
 a

s
b

us
in

es
s

as
se

ts
.

Fu
nd

in
g

sy
st

em
s

fa
ci

lit
at

e
p

ro
vi

si
on

in
g

of
 s

ha
re

d
 s

er
vi

ce
s

S
er

vi
ce

s
ar

e
m

an
ag

ed
 a

s
an

 IT

ar
ch

ite
ct

ur
e

co
nc

ep
t

Fu
nd

in
g

fo
r

p
ilo

t/P
oC

p
ro

je
ct

s

S
O

A
 M

an
ag

em
en

t

E
co

sy
st

em
E

nt
er

p
ri

se
In

te
g

ra
te

d
A

p
p

lie
d

E
ar

ly
Le

ar
ni

ng
S

tr
ea

m

M
at

ur
it

y
Le

ve
l

C
ol

la
b

or
at

in
g

p
ar

tie
s

ac
t

as

p
ro

vi
d

er
 a

nd
 c

on
su

m
er

S
er

vi
ce

 p
ro

d
uc

t
m

an
ag

em
en

t
S

p
ec

ia
liz

at
io

n
of

 S
er

vi
ce

p

ro
vi

si
on

in
g,

 im
p

le
m

en
ta

tio
n

an
d

as

se
m

b
ly

 p
ro

je
ct

s

S
er

vi
ce

 d
el

iv
er

y
an

d

us
ag

e
in

te
gr

at
ed

 in
to

Lo

B
p

ro
je

ct
s

P
ilo

t
an

d
 P

oC
p

ro
je

ct
s

P
ro

je
ct

s
&

 P
ro

g
ra

m
s

S
er

vi
ce

s
d

ef
in

ed
 a

nd

m
an

ag
ed

 o
n

in
te

r
b

us
in

es
s

co
lla

b
or

at
iv

e
b

as
is

 (v
er

tic
al

,
su

p
p

ly
 c

ha
in

 e
tc

)

S
er

vi
ce

s
ar

e
ow

ne
d

 b
y

th
e

b
us

in
es

s
Th

er
e

is
 s

in
gl

e
p

oi
nt

 o
f

ac
co

un
ta

b
ili

ty
 fo

r
in

te
gr

at
io

n
S

O
A

 is
 a

 p
ro

je
ct

le

ve
l r

es
p

on
si

b
ili

ty
IT

 a
rc

hi
te

ct
s

sp
on

so
r

S
O

A
O

rg
an

iz
at

io
n

C
ol

la
b

or
at

io
n

re
fe

re
nc

e
ar

ch
ite

ct
ur

e
(d

ef
in

ed
 p

oi
nt

s
of

 c
ol

la
b

or
at

io
n)

C
on

ve
rg

en
ce

 o
f b

us
in

es
s

an
d

 IT

p
ra

ct
ic

es
 a

ro
un

d
 s

er
vi

ce
 c

on
ce

p
t

C

om
m

on
 S

O
A

 r
ef

er
en

ce

ar
ch

ite
ct

ur
e

an
d

 p
ro

ce
ss

 (d
ef

in
ed

co

nc
ep

ts
, p

rin
ci

p
le

s,
 p

ol
ic

ie
s

an
d

p

at
te

rn
s)

P
ro

je
ct

 s
p

ec
ifi

c
ar

ch
ite

ct
ur

e
fr

am
ew

or
ks

Fr
am

ew
or

ks
an

d
 p

ra
ct

ic
es

ex

te
nd

ed
 in

ad

 h
oc

m

an
ne

r

Fr
am

ew
o

rk
 a

nd

P
ro

ce
ss

E
co

sy
st

em
 r

eg
is

tr
ie

s
p

ro
vi

d
e

go
ve

rn
an

ce
 o

ve
r

co
lla

b
or

at
iv

e
b

us
in

es
s

p
ro

ce
ss

es

E
nt

er
p

ris
e

re
gi

st
ry

 a
nd

 r
ep

os
ito

ry

p
ro

vi
d

es
 d

es
ig

n
A

N
D

 r
un

tim
e

se
rv

ic
e

as
se

t
lif

e
cy

cl
e

go
ve

rn
an

ce
 a

nd
 a

ss
et

d

ep
en

d
en

cy
 h

or
iz

on
 a

na
ly

si
s

E
nt

er
p

ris
e

le
ve

l r
eg

is
tr

y
an

d

re
p

os
ito

ry
 p

ro
vi

d
es

 c
on

si
st

en
t

lif
e

cy
cl

e
go

ve
rn

an
ce

 o
f t

he
 r

un
 t

im
e

se
rv

ic
e

as
se

t

S
er

vi
ce

s
ar

e
p

ro
je

ct

le
ve

l d
el

iv
er

ab
le

s
S

er
vi

ce
s

ar
e

no
t

m
an

ag
ed

as

se
ts

Li
fe

 C
yc

le

In
fr

as
tr

uc
tu

re

S
er

vi
ce

s
ar

e
m

an
ag

ed
 a

s
fe

d
er

at
ed

 r
es

ou
rc

es

C
om

m
on

 fr
am

ew
or

k
fo

r
en

te
rp

ris
e

se
rv

ic
e

m
an

ag
em

en
t

an
d

 s
ec

ur
ity

C
om

m
on

 E
S

B
 fr

am
ew

or
k

P
ro

je
ct

 E
S

B
E

S
B

 p
ilo

t
or

P

oC
O

p
er

at
io

na
l

In
fr

as
tr

uc
tu

re

Th
er

e
ar

e
ag

re
ed

 b
us

in
es

s
p

ro
ce

ss
 a

nd
 d

at
a

ar
ch

ite
ct

ur
es

 fo
r

b
us

in
es

s
co

lla
b

or
at

io
ns

Th
e

E
nt

er
p

ris
e

ha
s

a
S

er
vi

ce

P
or

tf
ol

io
 P

la
n

Th
er

e
is

 a
 s

ta
nd

ar
d

 fo
r

ric
h

se
rv

ic
e

sp
ec

ifi
ca

tio
n

P
ro

je
ct

 a
rc

hi
te

ct
ur

es

ar
e

se
rv

ic
e

or
ie

nt
ed

A
rc

hi
te

ct
ur

e
is fr

ag
m

en
ta

ry
& ex

p
er

im
en

ta
l

S
er

vi
ce

 A
rc

hi
te

ct
ur

e

S
er

vi
ce

s
fa

ci
lit

at
e

in
te

r
b

us
in

es
s

co
lla

b
or

at
io

ns

S
er

vi
ce

s
ar

e
m

an
ag

ed
 a

s
b

us
in

es
s

as
se

ts
.

Fu
nd

in
g

sy
st

em
s

fa
ci

lit
at

e
p

ro
vi

si
on

in
g

of
 s

ha
re

d
 s

er
vi

ce
s

S
er

vi
ce

s
ar

e
m

an
ag

ed
 a

s
an

 IT

ar
ch

ite
ct

ur
e

co
nc

ep
t

Fu
nd

in
g

fo
r

p
ilo

t/P
oC

p
ro

je
ct

s

S
O

A
 M

an
ag

em
en

t

E
co

sy
st

em
E

nt
er

p
ri

se
In

te
g

ra
te

d
A

p
p

lie
d

E
ar

ly
Le

ar
ni

ng
S

tr
ea

m

M
at

ur
it

y
Le

ve
l

10� cbdi journal © Everware–CBDI Inc, March 2007

SOA Maturity Assessment Survey continued . . .

However at the same Integrated maturity level the Life Cycle
Infrastructure (1.4) and projects and programs (1.3) are
illustrating that change at this level may only be skin deep.
While a show of hands might tell us lots of enterprises have
installed registries or catalogs, my question (see Figure 3) asked
specifically about “consistent life cycle governance of the run
time service asset “.

Clearly it is a small minority of the delegates that have
significant Enterprise level capability.

At the enterprise level there were clearly one or two organizations
that feel they have made considerable progress with project and
program organization, although interestingly not architecture.
One delegate only indicated his team had created a Service
Portfolio Plan. And just two delegates indicated that services
are managed as business assets.

The average score for Life Cycle Infrastructure (1.3) also
reflects the difficult nature of my question – suggesting that
at this level “Enterprise registry and repository provides design
AND runtime service asset life cycle governance and asset
dependency horizon analysis”.

Finally at the Ecosystem level clearly it is a very small minority
that have made progress in this area.

However I do find it interesting that there was some evidence
of reference architecture governing collaborations in the
frameworks and process average score (1.3/4).

Also that again evidence of management of federated resources
albeit at a low level of maturity (1.3/4) against operational
infrastructure.

Summary Thoughts
I must emphasize that this exercise was carried out in just 75
minutes and is not intended to provide more than a simple
snapshot of what organizations are doing. Our methodology
and advice recommends a much more comprehensive exercise
is needed to really understand current status.

Notwithstanding that caveat, the analysis does confirm
anecdotal evidence and random samples that suggest the
structured approach to SOA is still very much in its infancy.
Most organizations are in the early stages and a small minority
is making progress to more advanced levels. The vision of
federated service architectures remains for almost everyone,
just that, a vision.

Acknowledgements
Thank you to delegates at the Microsoft Architect Insight
conference who participated in this exercise. (A copy of the
report has been sent to them, with thanks)

Thank you to Microsoft UK who encouraged and supported
the exercise

Notes
http://en.wikipedia.org/wiki/Six_Sigma
http://www.sei.cmu.edu/cmmi/
The SOA Maturity Model. http://www.cbdiforum.com/
secure/interact/2005-12/The_SOA_Maturity_Model.
php
SOA Maturity Model in 2003. http://www.cbdiforum.
com/secure/interact/2003-05/maturity.php3
Regular readers of CBDI research will note that in
the 2007 version of the SOA Maturity Model the
maturity levels have been modified. There is one new
level – Applied. We have introduced this primarily
to reflect widespread practice in which projects
commonly adopt SOA at a project level. Whilst this is
generally not recommended, and may sub optimize the
SOA objectives, it is common practice and therefore
necessary to record this in assessment exercises.
The Integration Level has been renamed Integrated
– reflecting the primary characteristic that services
are Integrated to some extent, whilst not yet at the
enterprise level. The Reengineering Level has been
renamed Enterprise, recognizing a primary objective
of SOA to optimize at that scope. Cultural Integration
renamed Ecosystem recognizing that endpoint maturity
will be largely federated.

1.
2.
3.

4.

5.

Figure 4: Capability Distribution by Maturity Level

cbdi journal © Everware–CBDI Inc, March 2007	 11

By John Butler

SOA Best Practice Report

The Architecture
Component of the SAE™
Reference Framework
for SOA

There is no “one size fits all” methodology, ours or anyone
else’s, and so best practice in method development calls for
incorporation of a framework of artifacts, tools and techniques
that can be tailored to the nuances of each organization that
wants to implement the methodology. However, most popular
methods don’t tend to focus on the needs of service lifecycle
instead covering a broad but typically less focused method
landscape. CBDI’s SAE™ Reference Framework is built to
remedy that problem by highlighting aspects of methodology
such as process, techniques and artifacts needed to embrace
SOA concepts in a structured manner. This article provides an
introduction to the Architecture component of the Reference
Framework and the rationale that went into its creation.

Introduction
The SAE Reference Framework is designed to provide a comprehensive framework
of all the components necessary to support the migration to and subsequent upkeep
of a service oriented enterprise. It addresses the three primary perspectives necessary
for capturing methodology – Organization, Process, and Architecture of the
Artifacts. These perspectives are built upon a firm “foundation” Model that provides
the language and principles of SOA. By tailoring these aspects to the development
organization’s needs, a clear target mode of operation can be established to drive the
SOA adoption cycle.

The RF Model Component – Language of the Framework
In order build up a Reference Framework that addresses Organization, Process and
Architecture a firm foundation of language and principles must be established to
ensure that everyone is on the same page. The Model component plays this role within
the SAE™ Reference Framework and comprises four main parts: SOA Metamodel,
SOA Principles, Glossary, and Service Lifecycle.

12� cbdi journal © Everware–CBDI Inc, March 2007

The Architecture Component continued . . .

The details of these are outside the scope of this article but
suffice it to say that these parts define the underlying SOA
concepts and their interrelationships: these form the language
that is used to describe the rest of the Reference Framework.
In particular, the Architecture component makes extensive use
of the SOA Metamodel as the language used to describe the
various views and other elements introduced below. CBDI first
published this metamodel in 20061 and continues to refine it
based on feedback from CBDI members and standards efforts
that are underway2.

Likewise, the SOA Principles established in the Model
component of the Reference Framework provide the guide for
the layout of the Architecture component, both Views and the
Best Practices captured there in.

The Reference Framework Triad – Organization, Process
and Architecture
The other three main components of the Reference Framework
are Organization, Process, and Architecture. These three parts
form a triad that describe key aspects of any methodology
framework. The Process component of the Reference
Framework published in the February 2007 CBDI Journal3
describes a structure of business processes or activities that
a service provisioning organization should follow in order
to successfully analyze, plan, design, provision, and run
services. The Organization component describes the roles
and responsibilities, project profiles, and funding models
recommended in order to successfully support the service
lifecycle. Finally, the Architecture component, the topic of
this article, provides the detailed description of the various
views, models and other elements used and created during the
execution of the method and how they relate to one another.

CBDI-SAETM SOA Reference Framework

Model

SOA Principles

Service Life CycleSOA Meta Model

Glossary

Architecture

Business

Deployment

P
atterns

P
olicy

T
echniques

SOA Views

Organization

Roles & Structure

Funding Models

Project Profiles

M
odels

D
eliverables

SOA Best Practice

Process

Enable

Consume

Manage

Provide

Technology

S
tandards

Implementation

Specification

CBDI-SAETM SOA Reference Framework

Model

SOA Principles

Service Life CycleSOA Meta Model

Glossary

Architecture

Business

Deployment

P
atterns

P
olicy

T
echniques

SOA Views

Organization

Roles & Structure

Funding Models

Project Profiles

M
odels

D
eliverables

SOA Best Practice

Process

Enable

Consume

Manage

Provide

Technology

S
tandards

Implementation

Specification

Figure 1: CBDI-SAE™ SOA Reference Framework

cbdi journal © Everware–CBDI Inc, March 2007	 13

Views – “Slices” of the Service Oriented
Enterprise
One of the defining characteristics of any methodology is the
structure used to capture the relevant aspects or perspectives
of a system, whatever system that may be – business,

information system, hardware, or what have you. The CBDI-
SAE™ Reference Framework includes five views – Business,
Specification, Implementation, Deployment, and Technology.
These views comprise a consistent level of abstraction for
deliverable artifacts that relate to distinct set of stakeholders.
This provides an effective mechanism for grouping related SOA
best practices based on a particular part of the enterprise under
study. Each View defines and clusters together the standards,
patterns, techniques, deliverables, models and policies that
apply to appropriate View as illustrated in Figure 2.

Table 1 and Figure 3 provide a first level of detail on each of the
five Views highlighting:

The primary stakeholder roles involved in each level
of abstraction

The mapping to layers commonly used in enterprise
architecture.

The purpose of each View.

Sample artifacts

Key perspectives of each layer – the essence of the
methodology – showing how the service architecture
manages the relationship between conceptual, logical
and physical perspectives.

•

•

•

•

•

Figure 2: Architecture Component of the SAE Reference
Framework

View Purpose Primary Role(s) Enterprise “Layer”

Business To understand and analyze business needs and how
the business operates in terms of goals and objectives,
organizational structure, processes, information, etc.

Business Architect Business

Specification To plan and specify software services from a platform
independent perspective. It provides a means of
thinking in depth about logical services and their
interrelationships.

Service Architect Software

Implementation To package services into automation units, identify
dependencies between the automation units, and to
determine the implementation constraints that will
govern the internal design and deployment of these
units.

Service Architect,
Software Designer

Software

Deployment To explore alternative and finally capture deployment
choices for run time services. To map implementation
view services to deployment units and to construct
an optimum configuration on the computing
infrastructure.

Infrastructure
Architect,
Operations Mgt

Software/
Infrastructure

Technology To ensure technologies are in place to enable the
service lifecycle at all levels – from planning through
specification, design and execution to retirement.

Infrastructure
Architect,
Operations Mgt

Infrastructure

Table 1: SOA View Descriptions

14� cbdi journal © Everware–CBDI Inc, March 2007

The Architecture Component continued . . .

Note: some architecture frameworks break data out as a separate
layer however, the Reference Framework captures this within
a number of artifacts that reside in the Business, Specification
and Implementation views.)

Note Figure 3 depicts only key artifacts of the RF Architecture
component by Views. It is not intended to be a complete
picture of all the artifacts that would be involved in developing
a SOA or a software solution based on services; for example
there are many existing models (such as logical data models
and business process models) that will also come into play. The
February journal article gives a more complete picture of the

deliverables involved. In addition we have concentrated here
on specifically service oriented artifacts.

The Business View
To fully understand the requirements of software systems and
the services that they comprise, we need to understand the
business context within which they operate. The Business View
provides this context. Further, analysis of business objectives
and processes from a “services perspective” often provides a
significant return on investment to the business in and of itself
for many of the same reasons a service perspective improves

Business

View Service Perspective

S
er

vi
ce

C
at

al
og

Logical Specification of Software
Services

Service = Service Specification

Service = Software Service Impl.

Service Packaging into Automation
Units

Deployment of Automation Units

Service = Run-Time Software Service

Business Service =
Services offered by
Organizational Units

Business Service, Context for
Software Services

Sample Artifacts

Specification

Implementation

Deployment

Technology e.g. Network Layout, ESB

Infrastructure Service =
Run-Time Platform

Logical Network
Services

Physical Network

Automation Unit
Specification

Service Platform
Design Specification

SO Business Plan

Service Implementation
Architecture

Service Deployment
Architecture

Service Specification
Architecture

T
ec

hn
ic

al
A

rc
hi

te
ct

ur
e

Service
Specification

S
er

vi
ce

Le
ve

lA
gr

ee
m

en
t

SO Business Model

Service
Implementation

S
O

S
ec

ur
ity

A
rc

hi
te

ct
ur

e

S
er

vi
ce

P
or

tfo
lio

P
la

n

Figure 3: Sample Artifacts and Service Perspectives by View of the SAE Reference Framework Architecture Component

cbdi journal © Everware–CBDI Inc, March 2007	 15

Key Artifact Focus Typical Format

Ecosystem/Business Context Model
(Part of SO Business Model)

Products or Services offered by a
Business or Organizational Unit and
the use of those products or services
by their customers and suppliers.

BPMN diagrams, UML models
including structure diagrams (e.g.,
package, class, component), behavior
diagrams (e.g., Activity or Interaction
Diagrams) other proprietary formats

Business Goals (Part of SO Business
Model)

High-level goals of the business and
the sub-goals they comprise.

UML Object Diagram, other proprietary
formats such as Hierarchy Diagram

Event Response (Part of SO Business
Model)

Major business events and the
organization’s response to them.

BPMN Diagrams, UML State or Activity
Diagrams, other proprietary formats

Business Process (Part of SO Business
Model)

Business processes that realize the
services offered by the business.

BPMN Diagrams, UML Activity
Diagrams, other proprietary formats

Business Rules A statement that constrains how the
business operates.

A textual table.
More formal rule models use UML Class
Diagrams with Constraints (in text or in
OCL (Object Constraint Language)) or
other proprietary formats

Business Type Model (Part of SO
Business Model)

High-level information entities that
are important at a business level.

UML Class Diagrams, ERDs, other
proprietary formats

Organizational Structure (Often part
of SO Business Model)

Organizational units and roles therein
that comprise a business or enterprise.

Organizational Charts, UML Object
Diagrams, other proprietary formats

Business Case for SOA Justification for migrating to SOA.
Key influence over SOA approach
and architecture policy. E.g forecast
cost and cycle time of delivery and
adaptation by class of component and
service

Textual documents and spreadsheets

SO Business Improvement Plan Plan for improving business operations
by incorporating services
Key driver of architecture decisions
that enable agility E.g forecast change
cycle time for classes of components
and services

Textual documents, project schedules,
and spreadsheets

Business Solution Requirements Solution requirements from a business
perspective

Textual documents and requirements
models

SO Business Plan Overall plan for moving the business
forward including SO perspectives

Composite artifact including SO
Business Models, Business Case for SOA,
and Business Solution Requirements

SO Security Policies (part of SO
Security Architecture)

Detailed business rules and policies
concerning security

Textual document(s)

Table 2 – Key Business View Artifacts

16� cbdi journal © Everware–CBDI Inc, March 2007

The Architecture Component continued . . .

software. It decouples the “what” from the “how” allowing
flexibility in the implementation in terms of business processes,
whether internal or outsourced. Goals and objectives of the
business can be more easily connected with the services the
organization provides.

The Business View includes a number of key artifacts and
models used to capture and analyze important aspects of the
business. These artifacts and models are captured in Table 2.

The Business View also includes other best practices such as
policies, patterns, and techniques that provide guidance as to
how to capture knowledge about the business. Table 8 includes
sample best practices in these areas.

This list of artifacts and models may seem daunting to the
neophyte modeler/architect but remember that not all are
strictly necessarily. Each project team that uses the Reference
Framework will tailor it to their needs using or ignoring artifacts
and models as they see fit in order to analyze and address the
concerns that they find important. The key is to know how and
why to use each one – its pros and cons.

For models the question of notation or “language” comes into
play. While business modelers have not found the same level
of convergence in terms of modeling language as software
modelers have with UML™, there are still aspects that are
generally agreed upon such as Organization, Business Process,
Policy, Business Objective, Business Rule, and Business Entity.
Everware-CBDI has included these salient concepts in our
SOA Metamodel4 and standards from OMG such as Business
Process Modeling Notation (BPMN), Semantics of Business
Vocabulary and Rules (SBVR) and (hopefully) soon to be
approved Business Process Definition Metamodel (BPDM) are
a big step in the right direction. Often, multiple languages are
used to capture business architectures – swimlane diagrams
for business processes, entity relationship diagrams (ERD) for
business information models, org charts for organizational
structure, and various proprietary notations from tool vendors.
UML is increasingly being used to capture business models
though some believe it to be too complex for business users to
understand. Again, selection of the appropriate language and
tools is part of the tailoring process.

Specification View
The Specification View comprises the artifacts and models
required by architects to specify the functional and non-
functional requirements of software solutions and services as
well as the architectural dependencies between them. This view
is meant to be independent of any particular platform such as an
application server, operating system or even Enterprise Service
Bus (ESB). The idea is to capture how services behave, allow

for refactoring of that behaviour into appropriate “chunks”
in order to optimize for reuse and other characteristics that
are independent of any particular technology. That said, it
may very well be that the choice of deployment platform has
already been made and that the services will be required to
be implemented on that platform. However, technology churn
takes place on different cycles than business requirements and
so providing a mechanism for separating these concerns is
critical to maintainability of the service architecture.

The primary diagrams of the Specification View is the Service
Dependency diagram (part of the Service Specification
Architecture) that shows the layers of the Service Architecture,
the services in each layer and the dependencies between them
(See Figure 4). As shown in the figure, service domains can
also be shown in this view.

Though it is certainly one of the more useful, the Service
Dependency diagram is not the only view the Service
Specification Architecture might contain. As with any system
model, additional diagrams that show other characteristics can
be captured. Often, the behavioral aspects, such as the actual
messages being passed between services in order to realize a
request, are very useful in allocating responsibilities to the
various services in the architecture. Such diagrams often take
the form of UML interaction diagrams (typically sequence or
communication diagrams).

The actual diagrams captured will depend on the needs of
the architects creating or specifying the services and other
stakeholders that will use them. Some organizations capture
very detailed structural and behavioral views at the specification
level that are used to drive the implementation and deployment
design processes down the road. Other organizations only
use the dependency diagram for high level organization and
portfolio planning.

Typical artifacts and models that are captured as part of the
Specification View are described in Table 3 below.

Now the question is how we relate the elements captured in
the Specification View back to the Business Model. As stated
above, the Business View provides the context and requirements
for solutions built using services captured in the Specification
View. In order to convince ourselves that each requirement
from the Business View has been adequately addressed we need
to capture the traceability from elements in the Specification
View back to the elements in the Business View.

cbdi journal © Everware–CBDI Inc, March 2007	 17

Figure 4: Service Specification Architecture – Layering and Dependency

Process Services
(orchestration layer)

Order
Fulfillment
Service

Core Business
Services

(‘backbone’ layer)

Underlying Services
(not so easy to use)

Stock Movements
Products
Service

Orders
Service

Stock Management Service

Purchasing
(from highly generic component)

Order
System
Order
System

Stock Control
Application

Stock Control
Application

Product Dev
System

Product Dev
System

Solution Layer
(presentation and dialog)

Utility Services
(high reuse layer)

CurrencyConverter

AddressFormatter

AccountsReceivable
(from legacy Accounting System)

Stock Purchases
Customers

Service

S
al

es
&

B
ill

in
g

In
ve

n
to

ry

Key Artifact Focus Typical Format

Service Specification Architecture Complete logical model of
the software services and their
relationships to solutions, legacy
applications and other 3rd party
applications.

UML Model including structural
diagrams (e.g., package, class,
component) and behavioral diagrams
(e.g., communication, sequence, state).

Service Dependency Diagram (part of
Service Specification Model)

Architectural layers at a logical level
and the structural relationships
between the services in these layers.

UML Package and Class Diagrams

Service Orchestration Diagram (part
of Service Specification Architecture)

Interactions between services that
collaborate to provide services at a
higher level.

UML Interaction Diagrams
(Communication and/or Sequence
Diagrams)

Service Information Model (part of
Service Specification)

Structure of the information used by
services at a logical level.

UML Class Diagrams or ERD Diagrams

Service Description Overview of a service Textual document

Service Specification Detailed specification of a particular
service including both functional and
non-functional requirements

Textual document and UML models

SO Security Specifications (part of SO
Security Architecture)

Specifications for security services/
mechanisms and how they are used by
other services in the architecture

Textual documents and UML models

Table 3: Key Specification View Artifacts

18� cbdi journal © Everware–CBDI Inc, March 2007

The Architecture Component continued . . .

A detailed discussion of how traceability is achieved is beyond
the scope of this article but at a high level this traceability
might be done as follows:

Business Processes are captured in terms of activity
diagrams that include swimlanes representing logical
business roles.

The business roles that are currently or will be
automated in software are identified.

These automated business roles become solutions or
services in the Specification Model.

Lines that cross the swimlane boundaries of
automated roles become operations or messages that
trigger the activities within the swimlane.

These activities are the requirements of the solutions
or services captured in the Specification View.

Capturing the traceability can take a variety of forms. One
mechanism is to use a tool like Rational’s RequisitePro to
maintain a table of business requirements and the elements
from the Specification View that address them. Another
mechanism is to create a diagram within the modeling tool
that shows the dependency of the Specification View elements
to the Business View elements.

•

•

•

•

•

Implementation View
Once the Specification View is complete or at least beginning
to stabilize depending on the process patterns chosen by the
development organization, a model that maps the logical
specification onto automation units (things that package
or will actually be realized in code) should be created. The
mapping may be as simple as one automation unit per logical
service or as complex as mapping several logical services into
some other number of automation units. Further, the services
might be (and often are) provided by legacy applications whose
software architecture is very complex and not well understood.
In situations such as this, one large automation unit might
implement many services.

The primary artifact of the Implementation View is the Service
Implementation Architecture that captures the structure of
the Automation Units that implement the services identified
in the Service Specification Architecture. Figure 5 shows an
example Automation Unit Dependency Diagram of the Service
Implementation Architecture.

Again, the Implementation View may contain a number of
artifacts and models depending on the needs of the project.
Table 4 describes key artifacts and models contained in the
Implementation View.

The models of the Implementation View are typically
captured using UML diagrams. The Service Implementation

Figure 5: Sample Automation Unit Dependency Diagram (part of Service Implementation Architecture)

´ subsystemª
Order System

Order Process

Order Process Service

Orders

Orders Service

ProductsCustomers
Products ServiceCustomers Service

Inventory SystemShipping SystemAddress Formatter

Address Formatter Service Products Inventory ServiceDelivery Scheduling Service

´ subsystemª
Order System

Order Process

Order Process Service

Orders

Orders Service

ProductsCustomers
Products ServiceCustomers Service

Inventory SystemShipping SystemAddress Formatter

Address Formatter Service Products Inventory ServiceDelivery Scheduling Service

cbdi journal © Everware–CBDI Inc, March 2007	 19

Architecture is typically captured as one or more component
diagrams showing the Automation Units and the relationships
between them.

As with traceability between the Specification View and
the Business View, capturing traceability between the
Implementation View and the Specification View can take
a number of forms. Traceability Matrices in tools such as
RequisitePro are often used as well as UML Class diagrams that
include elements from the Implementation View and elements
from the Specification View with Dependency relationships
between them. This traceability is crucial in order to be able to
map all the way from business requirements to the actual code
that supports them.

As for the actual mechanism for providing traceability,
Everware-CBDI recommends mapping the Specification of
the logical Service in the Specification View to the Provided
Capabilities of the Automation Units in the Implementation
View. Since there isn’t necessarily a one-to-one relationship

between Services and Automation Units, not all of the
operations of a Service will be found on Provided Capabilities
of an Automation Unit. In these cases the Service can be traced
to the Automation Unit in general.

Deployment View
We’ve now seen how the Specification and Implementation
Views of the solution “layer” of an enterprise work together
to separate the logical design of the solutions and services
from the implementation design. This is very compatible with
Model Driven Architecture™5 and allows us to separate the
logical functionality required of services from the physical
packaging and technology thereof. The last piece in this puzzle
is the allocation of the service packages or Automation Units to
platforms or Nodes on the network (see the Technology View
below). This mapping is the focus of the Deployment View and
represents a key piece in the methodology puzzle for several
reasons. First, it provides the mapping of Automation Units
onto Nodes or Service Platforms allowing service or solution

Key Artifact Focus Typical Format

Service Implementation Architecture Structure of Automation Units and
software modules that realize logic
services

UML model containing structural
diagrams (e.g., package, component and
class) and behavioral diagrams (e.g.,
communication and sequence)

Solution Implementation Design Structure and orchestration of services
that comprise composite applications

UML model containing package, class
and/or component diagrams

Physical Data Model (often part of the
Service Implementation Architecture)

Physical structure of the data used by
the service or set of services

UML model containing package and
class diagrams

Service Message Structure (often
part of the Service Implementation
Architecture)

Structure of messages transferred back
and forth during service interactions

UML model containing package and
class diagrams

Service Message Patterns (often
part of the Service Implementation
Architecture)

Typical patterns of messages
exchanged during service interactions

UML interaction diagrams
(communication and/or sequence
diagrams)

Automation Unit Description Overview description of a particular
Automation Unit

Textual document

Automation Unit Specification Detailed Specification of an
Automation Unit

Textual document and UML models

Solution Implementation Actual software that implements a
solution

Source code

Service Implementation Actual software that implements a
service

Source code

Table 4: Key Implementation View Artifacts

20� cbdi journal © Everware–CBDI Inc, March 2007

The Architecture Component continued . . .

architects to communicate with infrastructure architects about
how services will run in the production environment. This
ensures that services required for runtime will be available on
the platforms that will run the Automation Units.

Second, it provides a mechanism for these same service
and infrastructure architects to analyze the processing
and bandwidth capacity required for each segment of the
infrastructure. Often, this type of analysis is left until the
last minute or disregarded altogether. The result is generally
slow response time and subsequent stakeholder dissatisfaction.
Table 5 describes key artifacts and models of the Deployment
View.

Ensuring traceability at the Deployment level is relatively easy
thing to do since the Deployment View typically includes
the Automation Units that come from the Implementation
View. This provides direct traceability without any additional
work. Alternatively, one might forego creating detailed
deployment diagrams and opt for a matrix that shows which
Automation Units are deployed to which Nodes or Execution
Environments.

Technology View
The Technology View is last piece in the overall enterprise
layering. The purpose of this view is to nail down exactly what
the network will look like, policies that will govern service
operations and to ensure that the technology base required by
the services running in the production environment have all
the pieces they require.

Table 6 provides a list of the key artifacts and models contained
in the Technology View.

Traceability between elements in the Technology View and
elements in the Deployment View is often navigated in a

direction backward from that of the other layers. For instance,
deployments of Automation Units in the service Deployment
View need to be traced back to Automation Units in the
Service Implementation View. Provisioned Capabilities of
Automation Units need to be traced back to Service Interfaces
or Operations in the Specification View. Services in the
Specification View need to be traced back to roles in Business
Process Models. All of these examples go “up” through the
Views. Infrastructure-Deployment traceability could go in
either direction. The only time the service architect is allowed
to directly drive the runtime infrastructure is when the project
is dealing with a “green field” situation. This might happen
when an organization is first being spun up or when there is
a planned migration to SOA from a legacy environment that
in no way supports SOA. In this situation traceability might
run from the Infrastructure View elements to the Deployment
View elements.

In the vast majority of situations, however, the infrastructure
already exists and must be used with relatively little
modification. In these situations, the traceability is navigated
from the Deployment View elements to the Infrastructure
View elements to ensure that the deployed Automation Units
can run on the existing infrastructure.

Multi-View Artifacts
The reader may have noticed in reading the above sections
that several of the key artifacts/deliverables described in last
month’s article on the SO Process and shown in Figure 3
above are conspicuously missing from the Key Artifact tables.
This is due to the fact that these artifacts cover a broad range
of issues and act to pull together aspects of a number of layers
into one place. Table 7 opposite provides a list of key multi-
view artifacts.

Key Artifact Focus Typical Format

Service Deployment Architecture Static structure and interactions
of the Automation Units and their
deployment to the Nodes on which
they will run

UML model containing deployment
diagrams

Runtime Communication Channels
(part of the Service Deployment
Architecture

Communications Channels between
the Nodes on which the Automation
Units run

UML model containing deployment
diagrams

Service Platform Design Specification
(for example ESB)

Detailed specification of the Service
Platform including the infrastructure
services provided by the platform

Textual document and UML models

Table 5: Key Deployment View Artifacts

cbdi journal © Everware–CBDI Inc, March 2007	 21

Note: For a comprehensive list of the Deliverables created as
part of the SAE Reference Framework please see the February
journal article on The SO Process.

Best Practices – The Methodology “Toolbox”
Best practices are the tools recommended for use in capturing the
various aspects of the Business, Specification, Implementation,
Deployment and Technology Views. The Reference Framework
groups best practices by type – Standard, Pattern, Technique,
Deliverable, Model, or Policy. Attention should be paid to each
one of these types when tailoring the Reference Framework to your

organization so that all aspects of the Framework are evaluated.
Not all practices need to be incorporated into a particular tailoring
of the Framework. However, the choice to exclude a particular
practice should be a conscious one. Table 8 provides a description
of each Best Practice type along with examples.

Concluding Remarks
The Architecture component of the SAE™ Reference
Framework is been structured into Views and Best Practices
in order to support a number of key architectural principles.
Perhaps the most critical of these principles is separation of

Key Artifact Focus Typical Format

Logical Network and Platform Services
Design Model

Logical network layout including
processing nodes and network nodes,
as well as communication channels
between them and the services that run
thereon.

UML models containing class and
object diagrams, UML deployment
diagrams

Technology Dependency Dependencies between technologies
used to implement the SOA

Textual documents, UML models
containing class diagrams (showing
dependencies), or other proprietary
formats

Physical Network Design (part of the
Logical Network and Platform Services
Design Model)

Physical layout of the network Network diagrams in Visio or other
proprietary notations, UML models
containing class and object diagrams

Table 6: Key Technology View Artifacts

Key Artifact Focus Typical Format

SO Security Architecture Comprehensive artifact that
captures all policies, procedures and
architectural elements related to
security

Textual document(s) and UML
models.

Service Portfolio Plan Complete plan used to identify,
describe, group and schedule the
implementation of services by business
domain

Textual document and UML models

Solution Specification Details specifications for a particular
hardware/software solution

Textual document and UML models

Service Catalog Comprehensive list of Services Textual document or registry

Service Level Agreement Contract describing services that a
provider will provide and the metrics
for ensuring that it is being provided
satisfactorily

Textual document

Table 7: Key Multi-View Artifacts

22� cbdi journal © Everware–CBDI Inc, March 2007

The Architecture Component continued . . .

Type Description Examples

Standards Guidelines or requirements for
a particular aspect of the service
lifecycle.

UML 2.1 for Service Analysis and Design
All Services will be published in WSDL 1.1
Service behavior (asynchronous document style, RPC)
Delivery technologies per layer (e.g Process and
Capability Services use Web Services, all other classes of
service use SCA)
Infrastructure services (e.g logging, monitoring,
diagnostics, security etc)

•
•
•
•

•

Patterns A structured description of generic
problem and a recommended
solution, thus representing reusable
best practice knowledge

Business Service Architecture (BSA) Layering Pattern
Service concurrency patterns
Data access patterns
Agility enabling patterns (e.g differentiated service, tagged
values – aka key value pairs, generic domain service, event
subscription, service switching, façade, etc)
Automation Unit design

•
•
•
•

•

Techniques A special procedure for performing a
task, or group of tasks

Gap Analysis
Business Type Modeling
Dependency Analysis
Capability decomposition
Event Analysis
Canonical Data Modeling
Identifying Services
Service Information Modeling
Modeling Legacy Applications for Service Integration

•
•
•
•
•
•
•
•
•

Deliverables A special type of artifact which a
project is responsible for producing
(see glossary for full definition). A
deliverable may (or may not) consist
of a model (or set of models)

Service Description
Service Specification
Service Portfolio Plan
Automation Unit Specification
Service Catalog

•
•
•
•
•

Models An abstract depiction of a problem
or solution. In the context of SAE, a
model must contain objects defined
by the SAE meta model; e.g Business
Type Model. A model can optionally
also be a deliverable.

Business Process Model
Event Model
Business Type Model
Service Specification Dependency Diagram
Service Information Model

•
•
•
•
•

Policy Strategies, rules and guidelines
that govern a range of SAE related
concerns, from service oriented
business modeling to SOA technology
infrastructure

Service Classification and Layering
Service Dependency
Change Management
Service Lifecycle
Service Certification
Service sourcing

•
•
•
•
•
•

Table 8: Best Practice Areas

cbdi journal © Everware–CBDI Inc, March 2007	 23

concerns. By dividing the structure into Views, architects can
separate business concerns from software concerns, logical
concerns from technology concerns and so on. This separation,
in addition to allowing the architect to focus on a particular
concern without having to remember all the others, also
improves the maintainability by “chunking” the architecture
into manageable pieces.

The structure is also complementary with industry trends such
as the Object Management Group’s (OMG) Model Driven
Architecture™ (MDA) and the more general model driven
development (MDD). By incorporating detailed models at
each level supported by rigorous traceability, organizations
are able to capture and maintain detailed models of their
service architecture and analyze the impact of changes to
that architecture in either direction up or down the enterprise
“layers” (e.g., business, specification, technology, etc.). As
model generation technology evolves, users of the Reference
Framework will be able to more easily incorporate these tools
and techniques into their methodology as appropriate since the
models are already there.

Organizations will have differing needs for an SOA reference
framework. The framework will need to integrate with existing
architecture practices, techniques and tooling where they exist.
We expect variation in modeling languages/notations used
(UML, BPMN) and customization of modeling techniques,
policy sets, patterns and standards.

Adoption of a reference framework is also an evolutionary
process. Techniques, and particularly patterns and policies will
evolve with SOA maturity. In the early stages many policies
will probably be advisory; but with more experience they may
well become strongly recommended or mandatory.

The term framework is used advisedly – it is provided as a basis
for customization and specialization. Also in developing the
SAE SOA Framework we are very aware that many architects
will already have established some form of framework, often
using ideas from one or more sources such as Zachman,
TOGAF, EA etc. We will follow-up this report with a mapping
to a number of the widely used frameworks.

Everware-CBDi is actively evolving the Reference
Framework Architecture together with the Model, Process
and Organization components. This will be documented in
the SAETM Knowledgebase. Readers’ views, experience and
feedback would be greatly appreciated.

Notes
A Meta Model for Service Architecture and Engineering
Dodd, J., CBDI Journal, October, 2006. http://www.
cbdiforum.com/secure/interact/2006-10/Intro_Meta_
Model_for_Serv_Architecture_Engineering.php
Everware-CBDI is actively engaged in the Object
Management Group’s (OMG) UML Profile and
Metamodel for Services (UPMS) initiative and is
closely tracking work within OASIS to refine their SOA
reference model.
The Service Oriented Process, Allen, P., CBDI Journal,
February, 2007. http://www.cbdiforum.com/secure/
interact/2007-02/service_oriented_process.php
A Meta Model for Service Architecture and
Engineering. http://www.cbdiforum.com/secure/
interact/2006-10/Intro_Meta_Model_for_Serv_
Architecture_Engineering.php
OMG Model Driven Architecture. http://www.omg.
org/mda/

1.

2.

3.

4.

5.

Subscribe to the
CBDI Forum

The CBDI Journal is
published monthly with
a combined July/August

edition.

An annual corporate
subscription includes

access to all back numbers
plus access to Powerpoint
Libraries and the CBDI

Hot Line Service. In
addition Corporate

Subscribers are encouraged
to participate in Special
Interest Groups (SIGs),

Reviews and general Forum
Meetings.

For more details see:
www.cbdiforum.com

CBDI Objectives
CBDI Forum aims to provide independent, action oriented practice guidance
on Service Oriented Architecture and Component Based Development for
architects, business analysts, project managers, designers and others involved in
creating and delivering advanced architectures.

CBDI Delivery Channels
CBDI Forum provides:

•	 Subscription services – continuous practice guidance published in
the CBDI Journal every month (with July/August combined into one
volume)

•	 Workshops and Seminars – providing indepth education on
architecture, process and practice. Public and In-house classes are
available.

•	 Consulting – specific guidance on adoption roadmap including status
assessments, methodology customization, architectural guidance
including reference architecture development, governance reviews,
business design and strategy development.

CBDI Background
CBDI Forum is the Everware-CBDI research capability and portal providing
independent guidance on best practice in service oriented architecture and
related delivery processes. Working with F1000 enterprises and governments the
CBDI Forum research team is progressively developing structured methodology
and reference architectures for all aspects of service oriented architecture.

A CBDI Forum Subscription provides a corporation or government department
with access to a unique knowledgebase, ongoing continuous practice research
guidance materials and hotline access to CBDI Forum experts. The monthly
CBDI Journal provides in-depth treatment of key practice issues and guidance for
architects, business analysts and managers. Forum Meetings are held periodically
in Europe and North America allowing peers to engage and exchange experience
and best practices.

Contact Us
For further information on any of our services contact us at: info@cbdiforum.
com or +353 28 38073 (International)

IMPORTANT NOTICE: The information available in CBDI publications
and services, irrespective of delivery channel or media is given in good faith
and is believed to be reliable. CBDI Forum Limited expressly excludes any
representation or warranty (express or implied) about the suitability of materials
for any particular purpose and excludes to the fullest extent possible any
liability in contract, tort or howsoever for implementation of, or reliance upon,
the information provided. All trademarks and copyrights are recognised and
acknowledged.

Independent Guidance for
Service Architecture and Engineering

