ISSN 1745-1884

CBDlJournal

MARCH 2007

2 Editorial

Business Change Matters

4 SOA Industry Analysis Report
SOA Maturity Assessment Survey

In early March I ran a 75 minute workshop at the annual
Architect Insight conference run by Microsoft in the UK.

I introduced the concepts of SOA Adoption Roadmap and
worked with the delegates to develop a high level assessment
of their current maturity. This article provides a brief
introduction to SOA Roadmap and Maturity concepts and
documents the results from the

workshop assessment session.

By David Sprott

11 SOA Best Practice Report
The Architecture Component of the
SAE™ Reference Framework for SOA

There is no “one size fits all” methodology, ours or anyone
else’s, and so best practice in method development calls
for incorporation of a framework of artifacts, tools and

techniques that can be tailored to the nuances of each
organization that wants to implement the methodology.
However, most popular methods don’t tend to focus on
the needs of service lifecycle instead covering a broad
but typically less focused method landscape. CBDI’s
SAE™ Reference Framework is built to remedy that
problem by highlighting aspects of methodology such as
process, techniques and artifacts needed to embrace SOA
concepts in a structured manner. This article provides

an introduction to the Architecture component of the
Reference Framework and the rationale that
went into its creation.

By John Butler

Independent Guidance for
Service Architecture and Engineering

his month I return to the question of how, when and why to involve the
business in SOA. This is a question that surfaces repeatedly in our work and I
am prompted yet again that this is far from straightforward issue to resolve.

The basic model that I base our advice upon is that in the early stages of SOA adoption
it is highly inadvisable to raise business expectations because there is a significant
amount of learning that needs to happen — and that’s best done in private, behind
closed doors in the IT environment. Creating basic services, breaking up monolithic
architectures, improving and rationalizing application integration contracts, creating
separation based architectures in project development all provide benefit, but in
business terms they are indirect.

What is useful and important is to commence the dialogue with business management
as early as possible around the question of what agility the business needs. Of course
it’s pointless asking business people “what agility do you need?” Generally business
people don’t know. Even if they are aware of impending change, of M&A based
actions for example, they are often unable to communicate this because of business
confidentiality requirements.

But in most businesses change is happening constantly, and one approach is simply to
analyze change and project requests to classify types of change. I did this, admittedly
in a less than formal fashion, a couple of years ago with one of our customers. We
assessed types of change on the basis of peoples’ experience and developed a simple
model that illustrated classes of change and relative incidence. See Table 1.

Editorial
It’s not rocket science to figure out patterns of change (and the need for agility) and to

Business Change Matters
see patterns relate to business maturity or vertical sector. Relatively young businesses

IT architects need to will be constantly expanding channels to market. Mature industries will be focused

é e p;,.ow' dmg P ositive strongly on process improvement.

The interesting question is not just how to establish architecture that has inherently
agile characteristics, rather how to define the architecture in a manner that reflects
the business problem in the change characteristics of the specific business and industry sector. It would seem

5 entirely reasonable that the architect should be able to answer the question — how long
4 manner toat oﬂé e will it take to make certain types of change? Perhaps each layer of the architecture

range 0f€/70i€€5 t/mtputs should be designed specifically to meet a change SLA.

contribution to solving

In general terms we may assess that core business and capability services will be
relatively slow moving, and that change cycles of 6 months are adequate. In contrast
business p€0p[€ to choose process services are generally regarded as fast moving and we might assess a change
cycle time of weeks to be required. However my experience is that this approach is
still way too generalized. The layering approach gives a basic model, but what would
and ddﬂptabz'[it}/ Proﬁ[e, be really useful is for a set of recommended patterns that can be used dependent on
the situation as it’s perceived specific to the particular (or cluster of) service. They
may also have widely different cost and usability considerations.

the responsibility on the

the appropriate cost, time

In our kitbag we should have a set of patterns that have been developed over time
and are well understood, not just in the architect and developer sense, but in terms
of life cycle impact on time to market and cost. With this approach, frankly, we
should be operating more like an architect in other professions. If you commission
a custom build of say a house, the architect will want to know your requirements in
both functional and non functional terms. In my own experience the architect will

www.cbdiforum.com

Business Change

Differences between Internal/external organization
Customer required data

Legal differences across geography/industry
Niche/point solutions

Suboptimal original design

Table 1: Examples of Classes of Change

come back with positive contribution to the overall design and
provide a range of design options — which of course all have
varying cost, time, quality and quite probably agility impacts.

In the same way IT architects need to be providing the same
level of service to business customers, providing positive
contribution to solving the business problem, but in a manner
that offers a range of choices that puts the responsibility on
the business people to choose between a solution that will last
three months and one that will be able to adapt to changing
business circumstances with a well understood cost and time

profile.

In so many businesses I work with I find that there is still a
huge gulf between the business and IT people, whether they
are internal or external providers. The business people are
locked into a cycle where they blame “the IT people” for lack
of business response while taking no responsibility for helping
the systems providers understand the requirements in a manner
that they can respond in an appropriate manner.

To crack this problem needs a level of engagement that expands
the footprint of the “requirements specification” to inform

CBDI Journal © Everware—CBDI Inc, March 2007

System Change Requests

Visualize differently

Process flow change

New integration requirements
Rules change

Data additions

architectural work. This needs to happen at two levels — in a
fairly general manner in order to develop and customize the
architectural framework, and at a specific business process level
to inform project delivery.

In this month’s CBDI Journal I report back on a little exercise
that I conducted with some 45 architects at a UK architects
conference organized by Microsoft. At this event I ran a
little survey to find out where folk are in their SOA maturity
development with some interesting results. Also this month we
continue our publication of the CBDI SAE™SOA Reference
Framework with the Architecture Component. This is highly
relevant to the discussion in this editorial — suggesting the
architecture is an intersection of separate views with standards,
patterns, techniques, deliverables, models and practices that
provide the basis for specialization and customization by
individual enterprises.

David Sprott, Everware-CBDI, March 2007

SOA Industry Analysis Report

SOA Maturity
Assessment Survey

Recap and results of the SOA Roadmap Workshop run at
Microsoft’s Architect Insight conference, March 2007

\

W

In early March I ran a 75 minute workshop at the annual

Architect Insight conference run by Microsoft in the UK. I

L
B

introduced the concepts of SOA Adoption Roadmap and

b=

worked with the delegates to develop a high level assessment of

their current maturity. This article provides a brief introduction
to SOA Roadmap and Maturity concepts and documents the

results from the workshop assessment session.

By David S prott Introduction

This was the second time Microsoft has held their annual architect’s “get together”
in Wales. For those readers not familiar with European geography, Wales is the small
bit sticking out on the left hand side of the United Kingdom — and it always seems
to be raining there.

This year Microsoft introduced a number of workshop sessions to complement the
tutorials and these were specifically planned to produce some concrete output. In
my workshop session I introduced the concepts of SOA Roadmap and Maturity
Models and then I walked through a relatively high level Capability Maturity Model,
explaining the primary capabilities required at increasing levels of maturity by stream
with the delegates commenting on their current status and concurrently recording
their own assessment of their maturity. At the end of the session I collected the
individual assessments and committed to provide an analysis of the results, which I
hope provides an interesting benchmark.

This report therefore summarizes the introductory remarks and presents the aggregate
results of the delegates’ assessments.

Complex Change Management Problem

We are all constantly involved in many forms of change. We move house, we acquire
new technologies and our roles change as our employers’ fortunes wax and wane. In
a corporate sense change is generally managed to some, but varying degrees. Some
enterprises have developed the management of business process change to an art form
and specialism using formal methodologies such as Six Sigma'.

Clearly IT organizations are also accustomed to making change, particularly
in response to new technology. In some areas such as IT resource management

4 CBDI Journal © Everware—CBDI Inc, March 2007

Pre SOA

Project driven

Variable approaches and processes
Point to point integration

Low levels of reuse at any level
Loose coupled technology

Tight coupled applications

Low level of business alignment

Table 1: A Complex Change Management Problem

orchestration and change of the process is increasingly
sophisticated. This is not generally the case throughout all IT
functions.

Against that somewhat mixed background SOA adoption
represents a complex change management problem. It is not
a technology led change rather it is a change in architectural
approach that will, over time, have profound impact on
many IT and business functions including the way projects
are initiated, funded, scoped and governed. It will gradually
require the relationship between business and I'T departments,
providers and suppliers to change. It spans many dimensions
and boundaries involving many parts of the organization as
summarized in Table 1.

Maturity Models

The idea of maturity Models is not new — they have been
used effectively in many different domains. In the IT space
the best known maturity model is the SEI's CMMI? a
widely used framework for measuring and managing IT
process improvement in development, service delivery and
acquisition.

There have been numerous maturity models developed over
the past 18 months to address the SOA space. I reported on
several of these in my December 2005 report on the SOA
Maturity Model®. Most of these models have some superficial
relationship to the SEI CMMI framework and are focused on
a particular form of maturity, for example the maturity of the
service concept as it relates to ESB technology; or the maturity
of the integration task.

CBDI developed its SOA Maturity Model in 2003* based on
earlier research work I and other colleagues carried out in the
1980s that focused specifically on complex, multi-dimensional
change problems. The CBDI model illustrated in Figure 1 is

CBDI Journal © Everware—CBDI Inc, March 2007

SOA

Business/I'T convergence

Contract based services

High levels of reuse of coarser grained functionality
Manufacturing and assembly environment
Architecture and policy driven

Repeatable processes

Strong governance to maintain architectural integrity

distinctive insofar as it focuses specifically on the maturity
of the enterprise adoption of SOA.®> The Maturity Levels
identify primary outcomes that characterize the organizational
capability.

° Early Learning — the organization is experimenting
with SOA. Activity is likely to be characterized as
Pilot Projects or Proof of Concept (PoC) projects.

e Applied — SOA is employed within conventional
projects to deliver improved structure.

e Integrated — SOA is used to deliver integration
between projects and or application silos.

* Enterprise — SOA is optimized at the enterprise level.

. Ecosystem — The SOA is inherently federated
supporting virtual business.

Whilst these maturity levels are neither standardized or fixed
in stone, we have found these are a useful starting point for
most enterprises.

Inourearly work in this area we recognized that we need efficient
ways to break up the problem to facilitate understanding,
communications, measurement and management. We
introduced the concept of streams — broad topic areas that break
down the overall task in an organizationally neutral manner,
providing the scope for cross organization communities
of interest to collaborate and reach an appropriate level of
consensus. The streams shown in Figure 2 are provided as an
organizing pattern that we have found useful. Many enterprises
have altered these slightly to suit their needs, but in general
they seem to be widely applicable.

* Management — the focal point for management
capabilities spanning visioning, strategy, funding,
chartering, governance, measurement and
management of the SOA adoption process.

SOA Maturity Assessment Survey continued . . .

Applied

Early
Learning

Initial SOA
activity
Experimental

Project based
SOA activity

Service
architecture
enables
business
adaptability
for limited
scope

Figure 1: CBDI Capability Maturity Model

SOA
Management

Management tools including vision, strategy, funding, charging,measurement and monitoring

Service
Architecture

Creation and ongoing management of the service architecture andportfolio

|nf?:set:-aut£:ra; Single logical operational infrastructure with common policy implementtion and management tools
i i i i
Infra:itf:J?:¥3:: Consistent reference architegture for tools gnd platfprms to delver and manage
the requirements to retirement life cycle
[[[[
Framework The architectural framework and repeatable processes enabling cansistency,

and Process

trust and governance in federated activity.

Organization

Roles and responsibilities to execute on federated, specialized, utility based solutions environment.

Projects & Project strategy and planning to enable very high levels of reusable services
Programs in a manufacturing and assembly environment
Early | Applied | Integrated | Enterprise | Ecosystem
Learnin .
J » Maturity Level >

Figure 2: Roadmap Streams

CBDI Journal © Everware—CBDI Inc, March 2007

Capability Area Capability Maturity Level

Service Governance

Monitoring of Service Usage
Control over Service Usage

Policy based control over Service

Record of Services in Use

Applied
Applied
Integrated

Enterprise

Planning and Provisioning

Table 2: Example of Capability/Maturity

o Service Architecture — the creation and maintenance
of the service and associated architecture. Note
here the architecture is the instance (or enterprise
specific) architecture not the reference architecture
framework that defines the meta objects in the service

architecture.

e Operational Infrastructure — the architecture
and capabilities to support the run time service
environment.

e Life Cycle Infrastructure — the architecture and

capabilities to support the entire life cycle of service(s)
states, spanning planned to retired and archived.

o Framework and Process
— the reference architecture
framework detailing the
layering, policies, patterns,
models, deliverables
etc. plus the reference
process that facilitates
repeatability, governance

and quality.

. Organization — the
roles and responsibilities
required to establish, operate
and maintain a service oriented business.

¢ Projects & Programs — the project capabilities (classes
and profiles) necessary to plan, provision, implement
and assemble services.

Capability Planning

The intersection between maturity levels and streams is
capability — the competence, ability and capacity to perform a
specific function, process or task. Basing change management
on capability provides a systematic and managed approach to
introducing change. An example of capabilities within one
capability area at several levels of maturity is shown in Table 2.

CBDI Journal © Everware—CBDI Inc, March 2007

Most organizations are in

the early stages and a small

minority is making progress to

more advanced levels

The Assessment Exercise

Having discussed the elements of a capability plan we then
walked through a high level roadmap populated with
selected capabilities shown as Figure 3. Note the capabilities
were selected because they are important and illustrate the
capabilities at varying levels, but there are of course many
other capabilities in a practical plan.

A summary of the results of the assessment exercise are shown

in Table 3.

Survey Conclusions

The highest incidence of capability is at the Applied Maturity

Level with average maturity at this
level at medium maturity (1.8) as
opposed to low or high.

The second highest incidence of
capability is at the Early Learning
level.

This shows a numeric majority of the
sample are in the very eatly stages of
SOA and are not yet enabling shared

services to any signiﬁcant extent.

At both the Early Learning and Applied levels delegates
aggregate assessments were just below the mid point.

While the average capability scores are in a fairly narrow range,
there is blue sky between architecture (1.3) and all the other
streams at the Applied level. This illustrates the limitations
of SOA applied to individual projects. While SOA may be
effective, particularly for larger projects, we might surmise
(this was an audience of Microsoft customers) that the average
project size represented may not have been very large.

At the Integrated level there is clear evidence of maturing
Operational Infrastructures with an average capability score
of 2.4 reflecting a common ESB (or equivalent) environment.

=
(<5}
S
S
—
<
S
Q
)
(eb)
>
| —
)
)
fd
[
(«b)
e
n
(7p)
D
(77
(7p)
<C
)
=
|} —
|
fd
(9°}
=
<C
(@)
)

*f 21031 ur A[reoryded umoys os[y ‘[oAd] L1InieW B 10§ syudwssasse A1[iqeded papI022T JO IJUNOD Y ST UONINQLIISI(]

"papI00a1 10u sem Apiqedes [IN "YSIY ST ¢ PUE MO[ST T 2I9YM ‘¢ 01] JO 3[dS & UO ST L1rnIejy 25eIoay

‘wreans/A1iqedes 10J SIUSWSSISSE JO 12qUUINU Y JO IUN0D a1 ST o[dwreg

*s[pA9] o[dnpnuu 1e sanifiqedes aaey suoneziuesIo 18y pa102dxa 2q 01 ST 1] 019z UOU 219yM A1Inrew A1(iqeded 1197 SSISSE 01 PIS{SE 21oM SANEZP(

"S195T pUd JO (946 / sdeyrad) Arrofewr yueoyTudis e qam ‘sas11d101us 10puaA pue 1asn pud Jo 1w € pastzdwod sa1eSa[ap ay1 spuey Jo Moys B uQ)

$SION]

[P Lanaepy pue weang £q 1uawssassy 21e32133Y ¢ 9[qe].

€9 eI €0c 8¢ SLT Yo LOIGEBQ]

€I ST 194 61 w 81 0L I'c LS 61 E240)

I 0°¢ I 0°¢ 9 ¢l Cl 0¢ 0t 0¢ sweidorg 9 s199[01]

0 ¢ €T L I'c Cl L1 6 L1 uonezuediQ

14 €1 9 L1 L 61 01 LT 8 I'c swreigoi

78 SRS

0 ¢ ¢l ¥ i ¢l 0¢ 8 0¢ SISO

LD 1T

4 €1 S 0'¢ 9 ¥'c 6 8’1 L 91 SANIDILISELLU

reuoneiad

¢ €1 S 8’1 9 81 € ¢l L 0C SHMERERGRENY SOINES

I 0°¢ © ST 9 8’1 €l 'e 8 81 wpwaSeuey YOS
Lrmiepy Awmiepy Amiepy Amiepy Amaepy

odwreg o3eIoAYy odwreg o3e10AYy odwreg o3e1oAy ordureg ode1oAy oidureg a8eroAy

wsAs00q astrdiorug pareidau] urea| Ajreyg

March 2007

CBDI Inc,

Joumnal © Everware

/

CBD

wreang £q saniiqeden) pa1o9ag ¢ arn3ry

Jawinsuoo pue Jspinoid
se 10e saiued Buieloqe|on

juswebeuew 1onpoud 8o1nI8g

s109foid Ajquiesse
pue uoneiusws|dwi ‘Buluoisinoid
99IAJI8S JO uonezieoadg

s109(0id goT
ol pajelbsiul abesn
pue AisAjjdp 821n8S

syoefoid
00d pue 10]id

(010 Ureyos A|ddns

‘[eoIuaA) siseq aAllBIoge|[0D
ssauisng Jajul uo pabeuew
pue paulep sedIneS

ssauisng
8y} AQ paumo aJe seoInIeg

uoleiBayul oy AljIgelunoooe
Jo juiod s|buls si asoy |

Ayjigisuodsal [aAs|
109(oid B s1 YOS

VOS Josuods
so8)yole ||

(uonesoge)|o0o Jo
sjulod paulep) ainjosnyose
90UBJ9J8J UOIIIOgE|I0D

1deou09 8o1AIes punode seonoeid
1] pue ssauisng Jo 8ouabieAuo)

(susened
pue sea101j0d ‘ss|dioulid ‘sydesuoo
paulep) sseooid pue ainjo8yyoe

9oUaJ9jeI YOS Uowwo)

SyIomawe.}
ainjoayyose
o10ads j08loud

Jauuew

ooy pe

Ul papualxd
saoloeid pue
SyJomawel

sassaoo.d

SSaUISNq 9AI}BIO0E||0D
Jano aoueulanob apinoid
sau1sibal walsAsoog

sisAjeue uoziioy Aouspuadep
19SSE pue aoueuIanob

9]0A2 9yl 19SSE 92INIBS

awnuni gNY ubisep sepinoid
Aoysodas pue Ansibal asudisiug

19SSE 90IAI8S
awl} unJ 8yl Jo adueuIanob 9|0AD
oJI| 1U81SISU0D sapinoid Aloyisodal

pue Ansibai |ans| asudisiug

S8|geJaNIep |9A9)
109(0id aJe seoIAIeS

sjesse
pabeuew jou
aJe S90INIBS

$00IN0S8. pajelsps)
se pebeuew aie seoINIeS

Ainoss pue
uswabeuew adiAles asudiaius
JOJ YJOoMalel) UoWWOoD

}Jomewel} gS3 uowwon

gs3 108loid

0od
Jo jo|1d 953

suoleloge||09
SSauISN(J0} S8IN}O/lYdIE

Blep pue ssaosoud
ssauisng psealbe aie aley]

ue|d 0l|oJLI0d
90IMJ9G B sey aslidieug ey

uoieolyoads aoInIeS
You Jo} pJepuess e S| aley |

pajuSLIo BOIAISS BJe
seinyoslyo.e 108foid

[eluswLIadxa
?
Keyuswibely
sl
ain1081yoly

1deouod ainjosuyose syo09foid

SuoI1BJOge||00 SsauIsnq *S}OSSe ssauisng sa0IAI8S paJeys Jo Bujuoisinoid 1] ue se pabeuew nodnold
Jajul a1e|1o.) S80I se pabeuew aJe saoINIeS ayey|10e} swaysAs Buipund ale seoineg | Joy Buipung
Buiuiea

wolsAsoo] asudiajug pajebalu| palddy Aueg

[one Auniey

sweubold %@ s1oafoid

uoneziuebiQ

$S990.d
pue YJomawe.q

ainjonJiselju]
9joAD oy

aimonJiseu|
|euonesado

24N}08)1Yy21Y 92IAIDS

juswabeue YOS

weans

CBDI Journal © Everware—CBDI Inc, March 2007

SOA Maturity Assessment Survey continued . . .

Capability Distribution by Maturity

40
35

30

25

15

10

0- : : : :

Early Applied Integrated Enterprise Ecosystem

Figure 4: Capability Distribution by Maturity Level

However at the same Integrated maturity level the Life Cycle
Infrastructure (1.4) and projects and programs (1.3) are
illustrating that change at this level may only be skin deep.
While a show of hands might tell us lots of enterprises have
installed registries or catalogs, my question (see Figure 3) asked
specifically about “consistent life cycle governance of the run
time service asset .

Clearly it is a small minority of the delegates that have
significant Enterprise level capability.

Atthe enterprise level there were clearly one or two organizations
that feel they have made considerable progress with project and
program organization, although interestingly not architecture.
One delegate only indicated his team had created a Service
Portfolio Plan. And just two delegates indicated that services
are managed as business assets.

The average score for Life Cycle Infrastructure (1.3) also
reflects the difficult nature of my question — suggesting that
at this level “Enterprise registry and repository provides design
AND runtime service asset life cycle governance and asset
dependency horizon analysis”.

Finally at the Ecosystem level clearly it is a very small minority
that have made progress in this area.

However I do find it interesting that there was some evidence
of reference architecture governing collaborations in the
frameworks and process average score (1.3/4).

Also that again evidence of management of federated resources
albeit at a low level of maturity (1.3/4) against operational
infrastructure.

Summary Thoughts

I must emphasize that this exercise was carried out in just 75
minutes and is not intended to provide more than a simple
snapshot of what organizations are doing. Our methodology
and advice recommends a much more comprehensive exercise
is needed to really understand current status.

Notwithstanding that caveat, the analysis does confirm
anecdotal evidence and random samples that suggest the
structured approach to SOA is still very much in its infancy.
Most organizations are in the early stages and a small minority
is making progress to more advanced levels. The vision of
federated service architectures remains for almost everyone,
just that, a vision.

Acknowledgements

Thank you to delegates at the Microsoft Architect Insight
conference who participated in this exercise. (A copy of the
report has been sent to them, with thanks)

Thank you to Microsoft UK who encouraged and supported
the exercise

Notes
1. heepi/lenwikipedia.org/wiki/Six_Sigma
2. hupi//www.sei.cmu.edu/cmmi/

3. The SOA Maturity Model. http://www.cbdiforum.com/
secure/interact/2005-12/The_SOA_Maturity_Model.
php

4. SOA Maturity Model in 2003. http://www.cbdiforum.
com/secure/interact/2003-05/maturity.php3

5. Regular readers of CBDI research will note that in
the 2007 version of the SOA Maturity Model the
maturity levels have been modified. There is one new
level — Applied. We have introduced this primarily
to reflect widespread practice in which projects
commonly adopt SOA at a project level. Whilst chis is
generally not recommended, and may sub optimize the
SOA objectives, it is common practice and therefore
necessary to record this in assessment exercises.

The Integration Level has been renamed Integrated

— reflecting the primary characteristic that services

are Integrated to some extent, whilst not yet at the
enterprise level. The Reengineering Level has been
renamed Enterprise, recognizing a primary objective

of SOA to optimize at that scope. Cultural Integration
renamed Ecosystem recognizing that endpoint maturity
will be largely federated.

CBDI Jounal © Everware—CBDI Inc, March 2007

SOA Best Practice Report

instead covering a broad but typically less focused method

By John Butler landscape. CBDI's SAE™ Reference Framework is built to
remedy that problem by highlighting aspects of methodology

m The Architecture

=i Component of the SAE™
Reference Framework
for SOA

e

/l
=

’
-

There is no “one size fits all” methodology, ours or anyone

else’s, and so best practice in method development calls for

incorporation of a framework of artifacts, tools and techniques

that can be tailored to the nuances of each organization that

T 2.

wants to implement the methodology. However, most popular
p gy pop

methods don’t tend to focus on the needs of service lifecycle

such as process, techniques and artifacts needed to embrace
SOA concepts in a structured manner. This article provides an
introduction to the Architecture component of the Reference

Framework and the rationale that went into its creation.

Introduction

The SAE Reference Framework is designed to provide a comprehensive framework
of all the components necessary to support the migration to and subsequent upkeep
of a service oriented enterprise. It addresses the three primary perspectives necessary
for capturing methodology — Organization, Process, and Architecture of the
Artifacts. These perspectives are built upon a firm “foundation” Model that provides
the language and principles of SOA. By tailoring these aspects to the development
organization’s needs, a clear target mode of operation can be established to drive the
SOA adoption cycle.

The RF Model Component — Language of the Framework

In order build up a Reference Framework that addresses Organization, Process and
Architecture a firm foundation of language and principles must be established to
ensure that everyone is on the same page. The Model component plays this role within
the SAE™ Reference Framework and comprises four main parts: SOA Metamodel,
SOA Principles, Glossary, and Service Lifecycle.

CBDI Journal © Everware—CBDI Inc, March 2007 11

The Architecture Component continued . . .

The details of these are outside the scope of this article but
suffice it to say that these parts define the underlying SOA
concepts and their interrelationships: these form the language
that is used to describe the rest of the Reference Framework.
In particular, the Architecture component makes extensive use
of the SOA Metamodel as the language used to describe the
various views and other elements introduced below. CBDI first
published this metamodel in 2006" and continues to refine it
based on feedback from CBDI members and standards efforts

that are underway?.

Likewise, the SOA Principles established in the Model
component of the Reference Framework provide the guide for
the layout of the Architecture component, both Views and the
Best Practices captured there in.

The Reference Framework Triad — Organization, Process
and Architecture

The other three main components of the Reference Framework
are Organization, Process, and Architecture. These three parts
form a triad that describe key aspects of any methodology
framework. The Process component of the Reference
Framework published in the February 2007 CBDI Journal®
describes a structure of business processes or activities that
a service provisioning organization should follow in order
to successfully analyze, plan, design, provision, and run
services. The Organization component describes the roles
and responsibilities, project profiles, and funding models
recommended in order to successfully support the service
lifecycle. Finally, the Architecture component, the topic of
this article, provides the detailed description of the various
views, models and other elements used and created during the
execution of the method and how they relate to one another.

CBDI-SAE™ SOA Reference Framework
Model Process
SOA Principles Glossary Manage
SOA Meta Model Service Life Cycle Consume
Provide
Architecture
T S0AViews | {7TS0A Best Practice | Enable
Business
Specification S|l [l Organization
_ HEIRIBIENEHER Roles & Structure
‘| Implementation HEIRIECHER
§ =S EE . .
Deployment o113 @ | | Project Profiles
Technology Funding Models

Figure 1: CBDI-SAE™ SOA Reference Framework

12

CBDI Journal © Everware—CBDI Inc, March 2007

Architecture
SOA Views SOA Best Practice
Business
Specification

Implementation

Deployment

Technology

Figure 2: Architecture Component of the SAE Reference
Framework

Views — “Slices” of the Service Oriented

Enterprise

One of the defining characteristics of any methodology is the
structure used to capture the relevant aspects or perspectives
of a system, whatever system that may be — business,

information system, hardware, or what have you. The CBDI-
SAE™ Reference Framework includes five views — Business,
Specification, Implementation, Deployment, and Technology.
These views comprise a consistent level of abstraction for
deliverable artifacts that relate to distinct set of stakeholders.
This provides an effective mechanism for grouping related SOA
best practices based on a particular part of the enterprise under
study. Each View defines and clusters together the standards,
patterns, techniques, deliverables, models and policies that
apply to appropriate View as illustrated in Figure 2.

Table 1 and Figure 3 provide a first level of detail on each of the
five Views highlighting:
e The primary stakeholder roles involved in each level
of abstraction

e The mapping to layers commonly used in enterprise
architecture.

* 'The purpose of each View.
e Sample artifacts

. Key perspectives of each layer — the essence of the
methodology — showing how the service architecture
manages the relationship between conceptual, logical
and physical perspectives.

Business To understand and analyze business needs and how Business Architect Business
the business operates in terms of goals and objectives,
organizational structure, processes, information, etc.

Specification To plan and specify software services from a platform Service Architect Software
independent perspective. It provides a means of
thinking in depth about logical services and their
interrelationships.

Implementation ~ To package services into automation units, identify Service Architect, Software
dependencies between the automation units, and to Software Designer
determine the implementation constraints that will
govern the internal design and deployment of these
units.

Deployment To explore alternative and finally capture deployment ~ Infrastructure Software/
choices for run time services. To map implementation Architect, Infrastructure
view services to deployment units and to construct Operations Mgt
an optimum configuration on the computing
infrastructure.

Technology To ensure technologies are in place to enable the Infrastructure Infrastructure
service lifecycle at all levels — from planning through Architect,
specification, design and execution to retirement. Operations Mgt

Table 1: SOA View Descriptions

CBDI Journal © Everware—CBDI Inc, March 2007

13

The Architecture Component continued . . .

View Sample Artifacts Service Perspective
; Business Service, Context for
Business SO Business Plan Software Services
KAN Business Service =
SO Business Model X\ Services offered by
Organizational Units
Specification : — Logical Specification of Software
Service Specification Services
Architecture Q —
= I 2
5 2 . Voo
all=ll5 Service Wi
ollg P o0—
% I8 N S Specification Service = Service Specification
< <
158
Implementation 21121 |8]]| z| [Service Implementation | Service Packaging into Automation
B St1211-2 Architecture Unit
HIHIEIE : e
lg c‘/D) s Automation Unit | < | | |
Z &z Specification \a v
-‘g Service | |
3 Implementation] | Service = Software Service Impl.
@ |-
O . .
Deployment 2 Service Deployment Deployment of Automation Units
Architecture
-
Service Platform |";"|
Design Specification)])
|| ® Service = Run-Time Software Service
® 5
Technology _% B Logical Network e.g. Network Layout, ESB /
3 % Services e
[= E\
< L)
Physical Network Infrastructure Service = L
Run-Time Platform

Figure 3: Sample Artifacts and Service Perspectives by View of the SAE Reference Framework Architecture Component

Note: some architecture frameworks break data outas a separate
layer however, the Reference Framework captures this within
a number of artifacts that reside in the Business, Specification
and Implementation views.)

Note Figure 3 depicts only key artifacts of the RF Architecture
component by Views. It is not intended to be a complete
picture of all the artifacts that would be involved in developing
a SOA or a software solution based on services; for example
there are many existing models (such as logical data models
and business process models) that will also come into play. The
February journal article gives a more complete picture of the

14

deliverables involved. In addition we have concentrated here
on specifically service oriented artifacts.

The Business View

To fully understand the requirements of software systems and
the services that they comprise, we need to understand the
business context within which they operate. The Business View
provides this context. Further, analysis of business objectives
and processes from a “services perspective” often provides a
significant return on investment to the business in and of itself
for many of the same reasons a service perspective improves

CBDI Journal © Everware—CBDI Inc, March 2007

Key Artifact

Ecosystem/Business Context Model
(Part of SO Business Model)

Business Goals (Part of SO Business
Model)

Event Response (Part of SO Business
Model)

Business Process (Part of SO Business

Model)

Business Rules

Business Type Model (Part of SO
Business Model)

Organizational Structure (Often part
of SO Business Model)

Business Case for SOA

SO Business Improvement Plan

Business Solution Requirements

SO Business Plan

SO Security Policies (part of SO
Security Architecture)

Table 2 — Key Business View Artifacts

CBDI Journal © Everware—CBDI Inc, March 2007

Products or Services offered by a
Business or Organizational Unit and
the use of those products or services
by their customers and suppliers.

High-level goals of the business and
the sub-goals they comprise.

Major business events and the
organization’s response to them.

Business processes that realize the
services offered by the business.

A statement that constrains how the
business operates.

High-level information entities that
are important at a business level.

Organizational units and roles therein
that comprise a business or enterprise.

Justification for migrating to SOA.
Key influence over SOA approach
and architecture policy. E.g forecast
cost and cycle time of delivery and
adaptation by class of component and
service

Plan for improving business operations
by incorporating services

Key driver of architecture decisions
that enable agility E.g forecast change
cycle time for classes of components
and services

Solution requirements from a business
perspective

Overall plan for moving the business
forward including SO perspectives

Detailed business rules and policies
concerning security

BPMN diagrams, UML models
including structure diagrams (e.g.,
package, class, component), behavior
diagrams (e.g., Activity or Interaction
Diagrams) other proprietary formats

UML Object Diagram, other proprietary
formats such as Hierarchy Diagram

BPMN Diagrams, UML State or Activity
Diagrams, other proprietary formats

BPMN Diagrams, UML Activity
Diagrams, other proprietary formats

A textual table.

More formal rule models use UML Class
Diagrams with Constraints (in text or in
OCL (Object Constraint Language)) or
other proprietary formats

UML Class Diagrams, ERDs, other
proprietary formats

Organizational Charts, UML Object
Diagrams, other proprietary formats

Textual documents and spreadsheets

Textual documents, project schedules,
and spreadsheets

Textual documents and requirements
models

Composite artifact including SO
Business Models, Business Case for SOA,
and Business Solution Requirements

Textual document(s)

15

The Architecture Component continued . . .

software. It decouples the “what” from the “how” allowing
flexibility in the implementation in terms of business processes,
whether internal or outsourced. Goals and objectives of the
business can be more easily connected with the services the
organization provides.

The Business View includes a number of key artifacts and
models used to capture and analyze important aspects of the
business. These artifacts and models are captured in Table 2.

The Business View also includes other best practices such as
policies, patterns, and techniques that provide guidance as to
how to capture knowledge about the business. Table 8 includes
sample best practices in these areas.

This list of artifacts and models may seem daunting to the
neophyte modeler/architect but remember that not all are
strictly necessarily. Each project team that uses the Reference
Framework will tailor it to their needs using or ignoring artifacts
and models as they see fit in order to analyze and address the
concerns that they find important. The key is to know how and
why to use each one — its pros and cons.

For models the question of notation or “language” comes into
play. While business modelers have not found the same level
of convergence in terms of modeling language as software
modelers have with UML", there are still aspects that are
generally agreed upon such as Organization, Business Process,
Policy, Business Objective, Business Rule, and Business Entity.
Everware-CBDI has included these salient concepts in our
SOA Metamodel* and standards from OMG such as Business
Process Modeling Notation (BPMN), Semantics of Business
Vocabulary and Rules (SBVR) and (hopefully) soon to be
approved Business Process Definition Metamodel (BPDM) are
a big step in the right direction. Often, multiple languages are
used to capture business architectures — swimlane diagrams
for business processes, entity relationship diagrams (ERD) for
business information models, org charts for organizational
structure, and various proprietary notations from tool vendors.
UML is increasingly being used to capture business models
though some believe it to be too complex for business users to
understand. Again, selection of the appropriate language and
tools is part of the tailoring process.

Specification View

The Specification View comprises the artifacts and models
required by architects to specify the functional and non-
functional requirements of software solutions and services as
well as the architectural dependencies between them. This view
is meant to be independent of any particular platform such asan
application server, operating system or even Enterprise Service
Bus (ESB). The idea is to capture how services behave, allow

for refactoring of that behaviour into appropriate “chunks”
in order to optimize for reuse and other characteristics that
are independent of any particular technology. That said, it
may very well be that the choice of deployment platform has
already been made and that the services will be required to
be implemented on that platform. However, technology churn
takes place on different cycles than business requirements and
so providing a mechanism for separating these concerns is
critical to maintainability of the service architecture.

The primary diagrams of the Specification View is the Service
Dependency diagram (part of the Service Specification
Architecture) that shows the layers of the Service Architecture,
the services in each layer and the dependencies between them
(See Figure 4). As shown in the figure, service domains can
also be shown in this view.

Though it is certainly one of the more useful, the Service
Dependency diagram is not the only view the Service
Specification Architecture might contain. As with any system
model, additional diagrams that show other characteristics can
be captured. Often, the behavioral aspects, such as the actual
messages being passed between services in order to realize a
request, are very useful in allocating responsibilities to the
various services in the architecture. Such diagrams often take
the form of UML interaction diagrams (typically sequence or
communication diagrams).

The actual diagrams captured will depend on the needs of
the architects creating or specifying the services and other
stakeholders that will use them. Some organizations capture
very detailed structural and behavioral views at the specification
level that are used to drive the implementation and deployment
design processes down the road. Other organizations only
use the dependency diagram for high level organization and
portfolio planning.

Typical artifacts and models that are captured as part of the
Specification View are described in Table 3 below.

Now the question is how we relate the elements captured in
the Specification View back to the Business Model. As stated
above, the Business View provides the contextand requirements
for solutions built using services captured in the Specification
View. In order to convince ourselves that each requirement
from the Business View has been adequately addressed we need
to capture the traceability from elements in the Specification
View back to the elements in the Business View.

CBDI Jounal © Everware—CBDI Inc, March 2007

Solution Layer
(presentation and dialog)
1

|
|
7
|‘. (F)l:ﬁiTI;ent ,’I ,/ Process Services
¥ Service /. Stock Management Service (0rchestration layer)

~
~Q \

CurrencyConverter Utility Services
\ (high reuse layer)
AddressFormatter \

Y
AccountsReceivable Purchasing
(from legacy Accounting System) (from highly generic component)

Underlying Services
(not so easy to use)

Figure 4: Service Specification Architecture — Layering and Dependency

Key Artifact Focus Typical Format

Service Specification Architecture Complete logical model of UML Model including structural
the software services and their diagrams (e.g., package, class,
relationships to solutions, legacy component) and behavioral diagrams
applications and other 3rd party (e.g., communication, sequence, state).
applications.

Service Orchestration Diagram (part ~ Interactions between services that UML Interaction Diagrams

of Service Specification Architecture) collaborate to provide services at a (Communication and/or Sequence
higher level. Diagrams)

Service Description Overview of a service Textual document

SO Security Specifications (part of SO Specifications for security services/ Textual documents and UML models

Security Architecture) mechanisms and how they are used by

other services in the architecture

Table 3: Key Specification View Artifacts

CBDI Journal © Everware—CBDI Inc, March 2007 17

The Architecture Component continued . . .

A detailed discussion of how traceability is achieved is beyond
the scope of this article but at a high level this traceability
might be done as follows:

. Business Processes are captured in terms of activity
diagrams that include swimlanes representing logical
business roles.

* The business roles that are currently or will be
automated in software are identified.

. These automated business roles become solutions or
services in the Specification Model.

. Lines that cross the swimlane boundaries of
automated roles become operations or messages that
trigger the activities within the swimlane.

* 'These activities are the requirements of the solutions
or services captured in the Specification View.

Capturing the traceability can take a variety of forms. One
mechanism is to use a tool like Rational’s RequisitePro to
maintain a table of business requirements and the elements
from the Specification View that address them. Another
mechanism is to create a diagram within the modeling tool
that shows the dependency of the Specification View elements
to the Business View elements.

Implementation View

Once the Specification View is complete or at least beginning
to stabilize depending on the process patterns chosen by the
development organization, a model that maps the logical
specification onto automation units (things that package
or will actually be realized in code) should be created. The
mapping may be as simple as one automation unit per logical
service or as complex as mapping several logical services into
some other number of automation units. Further, the services
might be (and often are) provided by legacy applications whose
software architecture is very complex and not well understood.
In situations such as this, one large automation unit might
implement many services.

The primary artifact of the Implementation View is the Service
Implementation Architecture that captures the structure of
the Automation Units that implement the services identified
in the Service Specification Architecture. Figure 5 shows an
example Automation Unit Dependency Diagram of the Service
Implementation Architecture.

Again, the Implementation View may contain a number of
artifacts and models depending on the needs of the project.
Table 4 describes key artifacts and models contained in the
Implementation View.

The models of the Implementation View are typically
captured using UML diagrams. The Service Implementation

“ subsysten?
Order System

Order Process Service

Order Process

Orders Service ~

Orders

P
Products Service ESdects

Address Formatter Service

Delivery Scheduling Service

Products Inventory Service

Address Formatter

Shipping System

Inventory System

Figure 5: Sample Automation Unit Dependency Diagram (part of Service Implementation Architecture)

18

CBDI Journal © Everware—CBDI Inc, March 2007

Service Implementation Architecture

Solution Implementation Design

Physical Data Model (often part of the
Service Implementation Architecture)

Service Message Structure (often
part of the Service Implementation
Architecture)

Service Message Patterns (often
part of the Service Implementation

Structure of Automation Units and
software modules that realize logic
services

Structure and orchestration of services
that comprise composite applications

Physical structure of the data used by
the service or set of services

Structure of messages transferred back
and forth during service interactions

Typical patterns of messages
exchanged during service interactions

UML model containing structural
diagrams (e.g., package, component and
class) and behavioral diagrams (e.g.,
communication and sequence)

UML model containing package, class
and/or component diagrams

UML model containing package and

class diagrams

UML model containing package and
class diagrams

UML interaction diagrams
(communication and/or sequence

Architecture)

Automation Unit Description
Automation Unit

Automation Unit Specification
Automation Unit

Solution Implementation
solution

Service Implementation
service

Table 4: Key Implementation View Artifacts

Architecture is typically captured as one or more component
diagrams showing the Automation Units and the relationships
between them.

As with traceability between the Specification View and
the Business View, capturing traceability between the
Implementation View and the Specification View can take
a number of forms. Traceability Matrices in tools such as
RequisitePro are often used as well as UML Class diagrams that
include elements from the Implementation View and elements
from the Specification View with Dependency relationships
between them. This traceability is crucial in order to be able to
map all the way from business requirements to the actual code
that supports them.

As for the actual mechanism for providing traceability,
Everware-CBDI recommends mapping the Specification of
the logical Service in the Specification View to the Provided
Capabilities of the Automation Units in the Implementation
View. Since there isn’t necessarily a one-to-one relationship

CBDI Journal © Everware—CBDI Inc, March 2007

Overview description of a particular
Detailed Specification of an
Actual software that implements a

Actual software that implements a

diagrams)

Textual document
Textual document and UML models
Source code

Source code

between Services and Automation Units, not all of the
operations of a Service will be found on Provided Capabilities
of an Automation Unit. In these cases the Service can be traced
to the Automation Unit in general.

Deployment View

We've now seen how the Specification and Implementation
Views of the solution “layer” of an enterprise work together
to separate the logical design of the solutions and services
from the implementation design. This is very compatible with
Model Driven Architecture™ and allows us to separate the
logical functionality required of services from the physical
packaging and technology thereof. The last piece in this puzzle
is the allocation of the service packages or Automation Units to
platforms or Nodes on the network (see the Technology View
below). This mapping is the focus of the Deployment View and
represents a key piece in the methodology puzzle for several
reasons. First, it provides the mapping of Automation Units
onto Nodes or Service Platforms allowing service or solution

19

The Architecture Component continued . . .

Service Deployment Architecture

Static structure and interactions
of the Automation Units and their

UML model containing deployment
diagrams

deployment to the Nodes on which

they will run

Runtime Communication Channels
(part of the Service Deployment

Architecture Units run

Service Platform Design Specification
(for example ESB)

Communications Channels between
the Nodes on which the Automation

Detailed specification of the Service
Platform including the infrastructure

UML model containing deployment
diagrams

Textual document and UML models

services provided by the platform

Table 5: Key Deployment View Artifacts

architects to communicate with infrastructure architects about
how services will run in the production environment. This
ensures that services required for runtime will be available on
the platforms that will run the Automation Units.

Second, it provides a mechanism for these same service
and infrastructure architects to analyze the processing
and bandwidth capacity required for each segment of the
infrastructure. Often, this type of analysis is left until the
last minute or disregarded altogether. The result is generally
slow response time and subsequent stakeholder dissatisfaction.
Table 5 describes key artifacts and models of the Deployment
View.

Ensuring traceability at the Deployment level is relatively easy
thing to do since the Deployment View typically includes
the Automation Units that come from the Implementation
View. This provides direct traceability without any additional
work. Alternatively, one might forego creating detailed
deployment diagrams and opt for a matrix that shows which
Automation Units are deployed to which Nodes or Execution
Environments.

Technology View

The Technology View is last piece in the overall enterprise
layering. The purpose of this view is to nail down exactly what
the network will look like, policies that will govern service
operations and to ensure that the technology base required by
the services running in the production environment have all
the pieces they require.

Table 6 provides a list of the key artifacts and models contained
in the Technology View.

Traceability between elements in the Technology View and
elements in the Deployment View is often navigated in a

20

direction backward from that of the other layers. For instance,
deployments of Automation Units in the service Deployment
View need to be traced back to Automation Units in the
Service Implementation View. Provisioned Capabilities of
Automation Units need to be traced back to Service Interfaces
or Operations in the Specification View. Services in the
Specification View need to be traced back to roles in Business
Process Models. All of these examples go “up” through the
Views. Infrastructure-Deployment traceability could go in
either direction. The only time the service architect is allowed
to directly drive the runtime infrastructure is when the project
is dealing with a “green field” situation. This might happen
when an organization is first being spun up or when there is
a planned migration to SOA from a legacy environment that
in no way supports SOA. In this situation traceability might
run from the Infrastructure View elements to the Deployment
View elements.

In the vast majority of situations, however, the infrastructure
already exists and must be used with relatively lictle
modification. In these situations, the traceability is navigated
from the Deployment View elements to the Infrastructure
View elements to ensure that the deployed Automation Units
can run on the existing infrastructure.

Multi-View Artifacts

The reader may have noticed in reading the above sections
that several of the key artifacts/deliverables described in last
month’s article on the SO Process and shown in Figure 3
above are conspicuously missing from the Key Artifact tables.
This is due to the fact that these artifacts cover a broad range
of issues and act to pull together aspects of a number of layers
into one place. Table 7 opposite provides a list of key multi-
view artifacts.

CBDI Journal © Everware—CBDI Inc, March 2007

Logical Network and Platform Services
Design Model

Logical network layout including
processing nodes and network nodes,
as well as communication channels

UML models containing class and
object diagrams, UML deployment
diagrams

between them and the services that run

thereon.

Technology Dependency

Physical Network Design (part of the
Logical Network and Platform Services
Design Model)

Table 6: Key Technology View Artifacts

Note: For a comprehensive list of the Deliverables created as
part of the SAE Reference Framework please see the February
journal article on The SO Process.

Best Practices — The Methodology “Toolbox”
Best practices are the tools recommended for use in capturing the
various aspects of the Business, Specification, Implementation,
Deployment and Technology Views. The Reference Framework
groups best practices by type — Standard, Pattern, Technique,
Deliverable, Model, or Policy. Attention should be paid to each
one of these types when tailoring the Reference Framework to your

Dependencies between technologies
used to implement the SOA

Physical layout of the network

Textual documents, UML models
containing class diagrams (showing
dependencies), or other proprietary
formats

Network diagrams in Visio or other
proprietary notations, UML models
containing class and object diagrams

organization so that all aspects of the Framework are evaluated.
Notall practices need to be incorporated into a particular tailoring
of the Framework. However, the choice to exclude a particular
practice should be a conscious one. Table 8 provides a description
of each Best Practice type along with examples.

Concluding Remarks

The Architecture component of the SAE™ Reference
Framework is been structured into Views and Best Practices
in order to support a number of key architectural principles.
Perhaps the most critical of these principles is separation of

SO Security Architecture

Comprehensive artifact that
captures all policies, procedures and

Textual document(s) and UML
models.

architectural elements related to

security

Service Portfolio Plan

Complete plan used to identify,

Textual document and UML models

describe, group and schedule the
implementation of services by business

domain

Solution Specification

Details specifications for a particular

Textual document and UML models

hardware/software solution

Service Catalog

Service Level Agreement

Comprehensive list of Services

Contract describing services that a

Textual document or registry

Textual document

provider will provide and the metrics
for ensuring that it is being provided

satisfactorily

Table 7: Key Multi-View Artifacts

CBDI Journal © Everware—CBDI Inc, March 2007

21

The Architecture Component continued . . .

Standards Guidelines or requirements for
a particular aspect of the service

lifecycle.

Patterns A structured description of generic
problem and a recommended
solution, thus representing reusable

best practice knowledge

A special procedure for performing a
task, or group of tasks

Techniques

Deliverables A special type of artifact which a
project is responsible for producing
(see glossary for full definition). A
deliverable may (or may not) consist

of a model (or set of models)

Models An abstract depiction of a problem
or solution. In the context of SAE, a
model must contain objects defined
by the SAE meta model; e.g Business
Type Model. A model can optionally

also be a deliverable.

Strategies, rules and guidelines

that govern a range of SAE related
concerns, from service oriented
business modeling to SOA technology
infrastructure

Policy

Table 8: Best Practice Areas

22

UML 2.1 for Service Analysis and Design
All Services will be published in WSDL 1.1
Service behavior (asynchronous document style, RPC)

Delivery technologies per layer (e.g Process and
Capability Services use Web Services, all other classes of
service use SCA)

Infrastructure services (e.g logging, monitoring,
diagnostics, security etc)

Business Service Architecture (BSA) Layering Pattern
Service concurrency patterns

Data access patterns

Agility enabling patterns (e.g differentiated service, tagged
values — aka key value pairs, generic domain service, event
subscription, service switching, facade, etc)

Automation Unit design

Gap Analysis

Business Type Modeling
Dependency Analysis
Capability decomposition
Event Analysis

Canonical Data Modeling
Identifying Services

Service Information Modeling

Modeling Legacy Applications for Service Integration

Service Description

Service Specification

Service Portfolio Plan
Automation Unit Specification

Service Catalog

Business Process Model

Event Model

Business Type Model

Service Specification Dependency Diagram

Service Information Model

Service Classification and Layering
Service Dependency

Change Management

Service Lifecycle

Service Certification

Service sourcing

CBDI Journal © Everware—CBDI Inc, March 2007

concerns. By dividing the structure into Views, architects can
separate business concerns from software concerns, logical
concerns from technology concerns and so on. This separation,
in addition to allowing the architect to focus on a particular
concern without having to remember all the others, also
improves the maintainability by “chunking” the architecture
into manageable pieces.

The structure is also complementary with industry trends such
as the Object Management Group’s (OMG) Model Driven
Architecture™ (MDA) and the more general model driven
development (MDD). By incorporating detailed models at
each level supported by rigorous traceability, organizations
are able to capture and maintain detailed models of their
service architecture and analyze the impact of changes to
that architecture in cither direction up or down the enterprise
“layers” (e.g., business, specification, technology, etc.). As
model generation technology evolves, users of the Reference
Framework will be able to more easily incorporate these tools
and techniques into their methodology as appropriate since the
models are already there.

Organizations will have differing needs for an SOA reference
framework. The framework will need to integrate with existing
architecture practices, techniques and tooling where they exist.
We expect variation in modeling languages/notations used
(UML, BPMN) and customization of modeling techniques,
policy sets, patterns and standards.

Adoption of a reference framework is also an evolutionary
process. Techniques, and particularly patterns and policies will
evolve with SOA maturity. In the early stages many policies
will probably be advisory; but with more experience they may
well become strongly recommended or mandatory.

CBDI Journal © Everware—CBDI Inc, March 2007

The term framework is used advisedly — it is provided as a basis
for customization and specialization. Also in developing the
SAE SOA Framework we are very aware that many architects
will already have established some form of framework, often
using ideas from one or more sources such as Zachman,
TOGATF, EA etc. We will follow-up this report with a mapping
to a number of the widely used frameworks.

Everware-CBDi is actively evolving the
Framework Architecture together with the Model, Process
and Organization components. This will be documented in
the SAE™ Knowledgebase. Readers’ views, experience and
feedback would be greatly appreciated.

Reference

Notes

1. A Meta Model for Service Architecture and Engineering
Dodd, J., CBDI Journal, October, 2006. http://www.
cbdiforum.com/secure/interact/2006-10/Intro_Meta_
Model_for_Serv_Architecture_Engineering.php

2. Everware-CBDI is actively engaged in the Object
Management Group’s (OMG) UML Profile and
Metamodel for Services (UPMS) initiative and is
closely tracking work within OASIS to refine their SOA
reference model.

3. The Service Oriented Process, Allen, P., CBDI Journal,
February, 2007. http://www.cbdiforum.com/secure/
interact/2007-02/service_oriented_process.php

4. A Meta Model for Service Architecture and
Engineering. heep://www.cbdiforum.com/secure/
interact/2006-10/Intro_Meta_Model_for Serv_
Architecture_Engineering.php

5. OMG Model Driven Architecture. http://www.omg.
org/mda/

23

Subscribe to the
CBDI Forum

The CBDI Journal s
published monthly with
a combined July/August

edition.

An annual corporate
subscription includes
access to all back numbers
plus access to Powerpoint
Libraries and the CBDI
Hot Line Service. In
addition Corporate
Subscribers are encouraged
to participate in Special
Interest Groups (SIGs),

Reviews and general Forum

Meetings.

For more details see:

www.cbdiforum.com

Independent Guidance for Everwaie-
Service Architecture and Engineering

)

-CBDI

o

CBDI Objectives

CBDI Forum aims to provide independent, action oriented practice guidance
on Service Oriented Architecture and Component Based Development for
architects, business analysts, project managers, designers and others involved in
creating and delivering advanced architectures.

CBDI Delivery Channels
CBDI Forum provides:

e Subscription services — continuous practice guidance published in
the CBDI journal every month (with July/August combined into one
volume)

e Workshops and Seminars — providing indepth education on
architecture, process and practice. Public and In-house classes are
available.

e Consulting — specific guidance on adoption roadmap including status
assessments, methodology customization, architectural guidance
including reference architecture development, governance reviews,
business design and strategy development.

CBDI Background

CBDI Forum is the Everware-CBDI research capability and portal providing
independent guidance on best practice in service oriented architecture and
related delivery processes. Working with F1000 enterprises and governments the
CBDI Forum research team is progressively developing structured methodology

and reference architectures for all aspects of service oriented architecture.

A CBDI Forum Subscription provides a corporation or government department
with access to a unique knowledgebase, ongoing continuous practice research
guidance materials and hotline access to CBDI Forum experts. The monthly
CBDI Journal provides in-depth treatment of key practice issues and guidance for
architects, business analysts and managers. Forum Meetings are held periodically
in Europe and North America allowing peers to engage and exchange experience
and best practices.

Contact Us

For further information on any of our services contact us at: info@cbdiforum.
com or +353 28 38073 (International)

IMPORTANT NOTICE: The information available in CBDI publications
and services, irrespective of delivery channel or media is given in good faith
and is believed to be reliable. CBDI Forum Limited expressly excludes any
representation or warranty (express or implied) about the suitability of materials
for any particular purpose and excludes to the fullest extent possible any
liability in contract, tort or howsoever for implementation of; or reliance upon,
the information provided. All trademarks and copyrights are recognised and
acknowledged.

