X.Y. Versioning

Versioning is the process of systematically cataloguing the changes to a resource. This implies an identifiable resource, a specific set of revisions to that resource, and a modified resource that is the result of applying the revisions to the original.

A version identifier is a unique label that indicates a specific configuration of a resource. It is often composed of an immutable name (e.g. example.txt) and a varying string of nonnegative integers separated by decimal points (e.g. 3.2.1). While this is a commonly observed scheme, it is by no means universally used or used consistently. For example, Microsoft's major release versioning of its operating system is Windows 95, Windows 2000, Windows XP, Windows Vista. For Apple, the current versioning is 10.1, 10.2, 10.3, 10.4, 10.5 but this is not consistent with what version numbers meant prior to OS X. From these examples, we can conclude that not only SHOULD a version be specified through use of a version identifier, but documentation SHOULD be available on how the identifier is to be interpreted.

X.Y.1 Versioning and compatibility

Beyond a version identifier indicating a consistent sequence of versions and defining the revisions that transform one version into the next, it is necessary to define a versioning strategy to specify how a command set or information set designed for a predecessor is to be used by the current version and, conversely, how a command set or information set for the current version is to be processed by previous versions. In the current context, we will discuss this in terms of messages sent to the resource and will further expand in later sections on the impact of changing the message envelope or the message content.

Version are often described as being backwards and/or forwards compatible. Figure X.Y-1 summarizes how these concepts apply to resources and their consumers in a typical request response exchange, and this is elaborated in the discussion that follows.

[image: image1.wmf]
Figure X.Y-1 Summary of backwards and forwards compatibility

Backwards compatible

A revised version of a resource is said to be backwards compatible if a consumer can construct a message per the conventions of a original version of the resource and send the message so constructed to that revised version of the resource, and that revised resource can receive the message and can predictably process and respond to it.

A revised version of a consumer is said to be backwards compatible if a resource can construct a response per the conventions of an original version of the resource and send the response so constructed to that revised version of the consumer, and that revised consumer can receive the response and can predictably process it.

Backwards compatibility of a resource means that a newer version of a resource can be rolled out in a way that does not break existing consumers; a backward compatible consumer will not generate exceptions against a previous version of the resource. A software example is a word processor at version 5 being able to read and process version 4 documents. A schema example is a schema at version 5 being able to validate version 4 documents. In the case of Web services, this means that new Web services will be able to process all messages constructed for a previous version.

Forwards compatible

An original version of a resource is said to be forwards compatible if a consumer can construct a message per the conventions of a revised version of the resource and send the message so constructed to that original version of the resource, and that original resource can receive the message and can predictably process and respond to it.

An original version of a consumer is said to be forwards compatible if a resource can construct a response per the conventions of a revised version of the resource and send the response so constructed to that original version of the consumer, and that original consumer can receive the response and can predictably process it.

Of course, the older consumer will not take advantage of any new behavior, but a resource can send a revised response and still have the response successfully processed. An example is a word processing software at version 4 being able to read and process version 5 documents. A schema example is a schema at version 4 being able to validate version 5 documents. This means that a resource can send a newer version of a response to an existing consumer and still have the message successfully processed. In the case of Web services, this means that existing Web service consumers will be able to process all responses of the new Web service.

Compatibility is determined with respect to a revision and the resource or consumer reflecting that revision, i.e. a general statement that something is backwards or forwards compatible is meaningless unless it stated against what is compatibility being assessed. In addition, something can be designed with forwards compatibility in mind, but it cannot be deemed forwards compatible until it can be exercised against a specific revision.

In these definitions, we do not yet discriminate between the interfaces sending or receiving messages and the underlying capabilities that process the messages and result in real world effects. We are concerned with whether a failure has occurred, not specifically where a failure occurred in the internal processing. This becomes more important when we discuss versioning of composite resources.

X.Y.2 Versioning and sufficiency

The previous section has defined compatibility between versions as the ability to maintain communications and to realize some aspects of the desired results. As such, an older resource can receive a message constructed for a newer version, can process the message in terms of its understanding, and will perform functions consistent with its older context. Similarly, an older consumer may receive a response that contains unexpected information and may just make use of the content it finds consistent with its older context.

The question not addressed by compatibility is whether the results of interactions across versions is sufficient for the intent of the consumer. A new resource may have new functionality that can be invoked through new terms in the schema used by the message payload. The new terms could be added through an extensibility mechanism built into the original schema, and thus the original schema may be able to validate the new payload without understanding that new functionality is desired. The target resource can generate and return reasonable results but not necessarily the results required by the consumer.

A “big bang” approach to ensuring sufficiency is to require an update of all consumers and all resources and results in an exception if the versions cited by the two do not explicitly match. This was traditionally the approach taken for single, standalone systems. This approach may also be appropriate in a SOA ecosystem where, for example, an error is found in the previous version of a service or its underlying capability.

However, many attribute the success of the World Wide Web to its ability to provide a best-effort response even when processors were faced with errors or inconsistencies. This is where forwards and backwards compatibility provide value.

Thus, we see where it is not only necessary to have a versioning strategy that defines the semantics of the version identifier used by any resource, but it is also necessary to have versioning policies that define what compatibility approach is appropriate when interacting across versions. The policy may in some sense be generic, such as any succeeding version identified as 1.x will be backward compatible with any 1.x previous version and results are identically generated for functionality that existed in previous 1.x versions. In this case, an adequate policy for the resource is that any 1.x compatible request can be processed by any 1.x version of the resource; an adequate policy for the consumer could be that a response from any 1.x version of the resource is acceptable.

The issue can be sidestepped if every version of the resource is reachable through a different endpoint, but a resource provider may simply want to reuse the endpoint for new versions. For example, there is no externally available version for Google but its ranking algorithms are often altered to increase search fidelity or to simply respond to efforts by content providers to game Google’s ranking algorithm. Google has had a single, stable endpoint at www.google.com, and consumers use whatever version is currently accessible from that endpoint.

In general, a search engine user expects results will be different for a search done last week and the identical search repeated this week. Items that became known to the search engine in the past week would now be presented in a consistent manner. However, the user has also learned to expect that the search engine itself may have been changed and the results could vary even if there were no additional items added to the engine’s index. The unstated context becomes the default versioning policy.

X.Y.3 Versioning for SOA

Versioning indicates change and the question is then what changes are necessary to be reflected in a SOA ecosystem.

The OASIS SOA Reference identifies the dynamic aspects of SOA services as visibility, interaction, and real world effects. We will use this as the framework in which to investigate versioning for SOA.

In the following, we assume service access to any underlying capability; while this is not necessary, it does simplifying the discussion. However, the discussion is generally applicable to any resource, whether or not it is accessible through a SOA service.

· Definition of Resource states that Resources have Descriptions, and the Description references one or more Identifiers by which the Identity of the Resource may be established.

· Both services and service descriptions are Resources

· Each has elements that act as Identifier, sometimes with several Identifiers coming together to denote unique Identity, e.g. as noted above when there is an immutable name and a decimal version number

· Version Identifier in SD is one such Identifier for service Resource

· Description has to have its own description/metadata containing its version

· look at things SD describes

· what function the service provides

· how to interact with service

· what to send in message

· where to send it

· how to send it, i.e. protocol to use

· conditions under which service provider wants to interact

· real world effects of interaction

· type of possible changes:

· changes to using a service

· things that can change

· those affecting functionality

· those affecting how to interact

· those affecting desired or compulsory conditions of use

· those affecting the results

· could be to underlying capability or in functionality to which service provides access

· consumer probably doesn’t care which => opacity

· changes only in description

· things that can change

· correcting errors that do not significantly change description, e.g. a simple typo

· correcting errors that do significantly change description, e.g. the word NOT was missing from the functionality description

· adding information, e.g. an additional real world effect that was previously considered inconsequential

· removing information that was previously required or thought useful, e.g. the number of times the service has been used

· consolidating elsewhere the specifics of some information and replacing the occurrences in the SD by a link to the consolidated location, e.g. version history

· degree to which these are important likely depends on context of use

· how description affects SOA as defined in SOA-RM

· Visibility

· Awareness

· Assume aware of a resource when have knowledge of some aspects of its description

· May have discovered description through search of a registry

· May have had someone or some organization make someone else aware of some subset of description through other means, e.g. email, blogs, reports

· Have knowledge of change when see modified description

· Description needs some version identifier, e.g. a publication date, a version number, to make changed description readily noticeable

· Could just change the description and have participants look for changes, but this is cumbersome and haphazard.

· Need to define how changes are reflected in version identifier

· Is this change affecting service or only description?

· Need to reflect compatibility with previous and subsequent versions

· Not important for version identifier to capture whether something in service or something in underlying capability changed; only need to capture what changes can affect consumer

· However, more details of changes SHOULD be accessible in case consumer having problems and needs to diagnose where problem originates

· service change log/release notes

· aggregated from change logs of components or list of links to same

· may be very general (e.g. change to improve speed) but being able to isolate identifiable set of changes enables consumer to indicate from where problem seems to originate

· Willingness

· Can be affected by changes to description of functionality, conditions of use, or resulting real world effects

· Changes may lead to conclusion that described service no longer sufficiently appropriate for consumer need

· Conversely, a change in consumer’s description could result in service provider withdrawing willingness, say if the consumer has changed affiliation

· Reachability

· Change in protocols may affect whether message exchange is possible; often affects message envelope

· Change in endpoint may require changes to consumer implementation

· Presence information may indicate immediate reachability; change in presence information may affect current and future willingness

· Interaction

· Information model

· Structure of the message payload captures much of the attention when consider versioning of the interface

· Critical question regarding ability to understand and process payload

· Need to version information model, capturing both semantic and syntactic aspects

· Considerable challenge when consumer wants to maintain loose coupling and not be forced into modifications when service changes but must align with information model of provider

· Schema versioning necessary but unresolved when best practice would be new version of namespace vs. new namespace; less consideration given to date on benefits or additional overhead if have more complete semantic models

· Behavior model

· Specific changes in either individual actions or temporal combination of actions is likely reflected in description of functionality or in the business process being followed

· Not at this point clear the extent to which actions and processes need to be versioned separately from service of which they are a part.

· Real world effects

· Reflected in service description

· As noted above, changes are likely to affect willingness

· what needs to be described for SOA

· changes in the service or the service description, where changes are those noted above.

· A change in a description may indicate a change in the resource being described or a change in the description alone. For example, when laws and regulations required nutrition information to be included on food labels, it changes the available description of the contents but not the contents itself.

· other Resources besides service likely to be under some form of configuration management and have their own version identifier

· consumer does not typically need to be aware of these individual versions as long as changes are adequately reflected in SD parts, e.g. functionality, reachability, interaction models, real world effects

· Opacity of service: a consumer SHOULD not need to know how a service or its underlying capability are implemented.

· The consumer needs to know what described aspects change but not which component internal to the service or its underlying capability change

· description that is composite combination of component descriptions will not necessarily link to all components, certainly not to components of components of ..., but most important aspects affecting key elements of SD are likely to bubble up
· The consumer needs to know when change is only to description and implementation remains as before

· Versioning policies need to specify response to desired compatibility and provide basis to ensure sufficiency when interactions occur across versions.

· likely most version policies will follow generic patterns

· MUST also be able to accommodate special situations

· extreme would be “big bang” policy saying exact version matches required

· architectural implications

· Identifier

· Pub/sub to be notified of changes

· unrealistic to expect descriptions to be manually maintained

· seems to imply that descriptions of composites must also be subscribers to changes in their component descriptions

· process/automation to keep composite description up-to-date; implies some automated form of assembling description, e.g. extracts and/or links to component description

· way to indicate changes to implementation vs. only changes to description

· way to find details if something appears amiss

PARKING LOT

-- version of service needs to be roll up of all contributors to the service, i.e. if a component changes, the version changes in some way to reflect the change

X.Y.3.1 What needs a version identifier

For any resource, there are three things that at a minimum must have version identifiers: the resource itself, the means to access the resource, and the resource description. The resource provides some valuable function, whether this be a source of data, processing of data, or a combination of the two. A consumer of the resource MUST be made aware of changes that would affect the outcome of interacting with the resource, and SHOULD be made aware when there are changes that ostensibly would not affect the outcome. The issues around making consumers aware of changes will be discussed below.

what needs to be versioned

· underlying capability

· service access

· descriptions

· service description, including info on capability description

· capability description

There are no restrictions on the implementations of the SOA service or the underlying capability, so either could be a composite of other services.

A change in a description indicates just that and not necessarily a change in the thing being described. For example, when laws and regulations required nutrition information to be included on food labels, it changes the available description of the contents but not the contents itself.

A broader example is I enter a search in my browser query box looking for the best MP3 player for under $100. I do a search last week and this week and get different results. Now what changed? Did the selection of preferred search engine change? Did the search engine change its ranking algorithm? Did the mechanism for defining the term “best” change? Were all these things the same but there is really new products and pricing?

The OASIS SOA Reference identifies the dynamic aspects of SOA services as visibility, interaction, and real world effects. We will use this as the framework in which to investigate versioning for SOA.

In the following, we assume service access to any underlying capability; while this is not necessary, it does simplifying the discussion. However, the discussion is generally applicable to any resource, whether or not it is accessible through a SOA service.

The three preconditions of visibility in a SOA ecosystem are awareness, willingness, and reachability. We assume service consumers (and other interested parties) are aware of a service when they can access the service description. This enables the consumer to understand what the service does, how to access it, the conditions under which a consumer may interact with the service, and what are the notable effects of interacting with the service. If any of these aspects of the service change, the change should be reflected in the service description.

If a consumer becomes aware of a change in the service description, the consumer must reevaluate its willingness to use the changed service.

In many use scenarios, a registered consumer would be notified when the service provider publishes such a change

A consumer is aware of revisions to a service, i.e when the service description has been changed and

� The discussion in this section draws heavily from the W3C Technical Architecture Group (TAG) draft findings � HYPERLINK "http://www.w3.org/2001/tag/doc/versioning-20071113.html" ��http://www.w3.org/2001/tag/doc/versioning-20071113.html� and http://www.w3.org/2001/tag/doc/versioning-strategies-20070917.html

versioning
1
26 February 2008, 8:30 AM, printed 2/26/08, 8:35 AM

