SOA as an Architectural Style
What is Service-Oriented Architecture (SOA)? Many people talk about it, yet there is little agreement on what this widely popular three letter acronym actually represents. The many competing definitions in place make it hard to sort out its true essence
. The problem here is that SOA means different things to different people [2]:
· From the point of view of a business executive and business analyst, SOA is a set of services that constitute IT assets (capabilities) and can be used for building solutions and/or exposed to customers and partners.
· From the point of view of an enterprise architect SOA is set of architectural principles and patterns addressing overall characteristics of solutions - modularity, encapsulation, loose coupling, separation of concerns, reuse, composability, etc.

· From the point of view of a project manager SOA is a development approach supporting massive parallel development.
· From the point of view of a tester and/or quality assurance engineer SOA represents a way to modularize and consequently simplify overall system testing.

· From the point of view of software developer SOA is a programming model complete with standards, tools and technologies, for example, Web Services.

Although all of these points of view are absolutely correct, the fundamental to understanding SOA is the letter “A”, which stands for (software) architecture. The hard part here is that the term “software architecture” itself is open to interpretation. People have yet to reach agreement on a universally-accepted definition for architecture
.
For the purposes of this article I will use the definition, provided by IEEE Standard 1471-2000, the IEEE Recommended Practice for Architectural Description of Software-Intensive Systems [3]: “Architecture is the fundamental organization of a system embodied in its components, their relationships to each other, and to the environment, and the principles guiding its design and evolution.”

The set of components and their relationships for the particular architecture are defined as an architectural style - ``a vocabulary of components and connector types, and a set of constraints on how they can be combined.'' [4]. A more holistic definition of the architectural style, provided by [8] states that “An architectural style is a family of architectures related by common principles and attributes”. An IT Architectural style is both holistic and specific approach to IT architecture. It is holistic in that it covers the entire software life cycle, including projects design and tools design aspects. It is specific in that it consolidates and integrates the many structural, procedural and descriptive aspects that are addressed as separate entities in the traditional methodologies. “An architectural style provides a useful set of reasonable alternatives – not all alternatives – and coordinates them to work well together”.

SOA can be defined as an architectural style promoting the concept of business-aligned enterprise service as the fundamental unit of designing, building and composing enterprise business solutions. Multiple patterns, defining definitions, implementations and deployment of the SOA solutions complete this style
.
Why SOA?
Both business and technical leaders alike are interested in SOA, considering it as a”silver bullet” for achieving:

· Better alignment between business and IT

· Creating more flexible and responsive IT infrastructure.
· Simplifying integration implementation.
· ...

It is strongly believed that “SOA allows to align the business world with the world of information technology (IT) in a way that makes both more effective. SOA is a bridge that creates a symbiotic and synergistic relationship between the two that is more powerful and valuable than anything that were experienced in the past. Moreover, SOA is about the business results that can be achieved from having better alignment between the business and IT” [5].
To understand the current push for SOA let’s start by taking a closer look at the today’s typical Enterprise IT Architecture and its shortcomings.
Application-Centric Architecture

Today’s Enterprise IT Architecture is often viewed as a collection of applications. Design, development, enhancements and maintenance of software systems revolved around applications. Such approach leads to creation of segregated silos within the enterprise architecture resulting in expensive and inflexible IT systems. Each application is built for a single purpose (e.g., loan origination, claim management, etc.), with its own data store(s) and for a single set of users. As a result it implements only a subset of the enterprise functionality, using and producing only a subset of the enterprise data, typically without concerns about other processing within the enterprise. These silos manifest themselves as islands of data and islands of automation.

Islands of data have the following characteristics [6]:

· Each has its own meaning and/or definition of enterprise objects. For example, while in one application “price” defines the net price, in another application the same term also includes the sales taxes. Even if an object, for example, “address” has the same meaning in two applications; one of them can define it as a set of address lines, while another one treats it as street address, city, state, zip and country. Both cases create semantic dissonance between applications.

· Each has information that overlaps with the contents of another island. For example, applications dealing with the management of health and dental claims also store the demographics information for the insured. At the same time CRM application contains both insured addresses and demographics. This duplication creates integrity issues

· None can provide a complete picture of the enterprise data. For example, a mortgage management application doesn’t contain information about the borrower’s loans from other lines of business. Creating a unified view of the enterprise data requires integrating information from multiple sources.

Characteristics of the islands of automation are as follows [6]:
· Each focuses on a limited set of activities within the enterprise. For example, the health claim management application deals only with the processing of health claims without considering the role and place of these activities in the overall enterprise business process. This requires users to perform “application hopping” to perform their work, thus impacting their productivity.

· There is duplication between business processes contained within different islands. For example, as a result of a merger or acquisition an insurance company can have several claim processing systems. This requires synchronization of changes between multiple applications, ensuring consistency of processes and business rules, supporting these processes.

The effects of the islands of data and automation are invisible at the level of individual applications. However they cause significant problems at the enterprise level, most notably:

· Information fidelity. The redundancy of business data between applications creates an inaccurate representation of enterprise data, even when periodic synchronization occurs. The representations themselves are difficult to reconcile, or at worst contradictory. As the individual applications evolve independently, the complexity of the problem increases.

· Business processes fragmentation. Individual applications provide a limited piece of enterprise functionality. Implementing business processes requires linking together the applications containing partial implementations of process.

Solving these problems brought Enterprise Application Integration (EAI) and Enterprise Information Integration (EII) at the focal point of many enterprise projects. Today these activities consume (and will continue to do so) a significant portion of the enterprise IT budget.
One of the major reasons why these integration initiatives are so expensive, complex and labor intensive is that they are attempting to bring together both data and processing from the applications, which were never designed to work together. As a result majority of time spent during these undertaking is an effort of rationalizing both data and processes from the existing applications against each other.
From Applications to Processes and Services

In a 2004 interview at Info World Grady Booch stated that “the fundamentals of engineering like good abstractions, good separation of concerns never go out of style… there are real opportunities to raise the level of abstraction again” [7].

SOA introduces two high level abstractions - enterprise business services and business processes. Enterprise business services represent existing IT capabilities (aligned with the business functionality of the enterprise). Business processes, orchestrating business services, define the overall functioning of the business.
The charter of SOA is to eliminate applications, as they exist today (with all of their drawbacks, described above) and create software systems as a set of interacting services, coordinated by business processes. In this case every service implements a particular business thing or functions, which are defined in the context of the overall enterprise and business process represents a business solution that has to be implemented.
	Characteristic
	Application-centric architecture
	SOA

	Design and

implementation
	· Function-oriented
· Build to last

· Long development cycles
	· Coordinated oriented
· Build to change

· Build and deployed incrementally

	Resulting system
	· Application silos
· Tightly coupled

· Object oriented interactions
	· Enterprise solutions
· Loosely coupled

· Semantic message oriented interactions

Table 1 Application-centric vs. SOA implementation

Table 1 summarizes the key differences between application-centric and SOA approaches
.

SOA and Decomposition

Enterprise business services are usually defined as a result of decomposition of the enterprise IT system. Decomposition is a technique formalized by classical system theory in the late-1950s. System theory stated that the more complex a system is the more unknowns it contains and thus the harder it is to automate it. This theory prescribed decomposing complex systems into smaller, more manageable ones which are easier to control, and then treating the whole system as a composition of its parts. The same applies to the complex software development initiatives.

Evolution of Decomposition in Software

The first software decomposition approach (introduced in the early 1960s) was splitting applications into separate “jobs,” each implemented by a separate program. Later, as more insight into the program internals was gained, each program itself was split into modules or subroutines, according to their function.

The object-oriented (OO) paradigm introduced by Simula and Smalltalk in the 1970s strengthened decomposition adoption by introducing objects: modules of code, each of which implemented a model of a real thing. The idea was to represent in software the “things of the problem domain,” for example “customer,” “order,” or “trade.” However the abstractions provided by objects turned out to be too fine-grained and intertwined with technical concepts to have a meaning on the business level. For various reasons many object-oriented developers wound up spending most of their time dealing with technical constructs such as collections, graphical widgets, and so on. As a result, in most cases the “objects of the problem domain” disappeared inside amorphous modules which no longer represented anything recognizable by domain experts. Additional problem with OO is the fact that although objects are important decomposition approach during design and implementation time, they are not visible at either deployment or run times and consequently do not directly support either deployment or run time decomposition.

In the continued search for a better design paradigm, a different approach to decomposition was introduced in the late 1990s—components. The idea was to fix the problems of object orientation by raising a level of abstraction, increasing granularity and creation of more tight linkage with the business “things.”

Introduction of software components improved the creation of flexible, better structured and more manageable software applications. However it did not solve the main enterprise

IT problem: its application-centric nature. Both objects and components provide better design and development approaches for individual applications.

SOA brings decomposition to a higher level (Figure 1). Instead of attempting to decompose applications it decomposes the entire enterprise IT functionality.
[image: image1.png]Decomposition
approaches

Service
orientation

Components
based
development

Object
orientation

Subroutines
and functions

Multiple
jobs

f

Enterprise IT
decomposition

p lime

_ Applications
* decomposition
1960s 1970s 1980s 1990 2000

Figure 1 The evolution of decomposition approaches
Elements of SOA
By providing business meaning to its main constituents (business services and business Processes) SOA architectural style promotes alignment of business and technology. In fact, both services and processes can be traced back to Enterprise Business Architecture.

The enterprise SOA defines a set of business-aligned IT services (available to participants throughout the enterprise across multiple lines of business or even outside of the enterprise) that collectively fulfill an organization’s business processes and goals. These services can be choreographed into enterprise business solutions and invoked through standard protocols.
[image: image2.png]Semartic

Data Mode!

Documents Senvces

o=

Irformation
(resaurces)

i 1

f

ans

ans

Figure 2 Enterprise SOA Concepts
Figure 2 illustrates the major elements of enterprise SOA [13]:

· Organization owns all of the SOA related artifacts (models, services, processes, resources) and governs their creation, usage, access, and maintenance. The role of these artifacts is to support the organization and its business goals.

· Business Model is the primary representation of the business’ resources and processes that are required to meet enterprise operational, tactical and strategic business goals. A business model is critical to successful alignment of services with business goals and requirements and consequently to the overall SOA implementation success.

· Semantic Data Model defines the standard business data objects for a given enterprise (such as customer, agreement, etc). These objects effectively create ontology of the enterprise data by defining common concepts (and their content) which describe the functioning of the enterprise. Using this data model for defining the business services interfaces leads to the creation of interoperable semantic service interface definitions - a semantic SOA.

· Services implement specific enterprise business functions and access its data and resources. Well defined and business-aligned services are a critical ingredient of a flexible, extensible enterprise SOA implementation. The structure of services allows them to be independently developed and deployed. Correctly defining and aligning services with the business and semantic models results in plug and play implementation, allowing them to be effectively combined into different enterprise wide business processes and/or solutions.

· Business Processes orchestrate the execution of business services to implement enterprise functionality as specified in the business model - for example, order processing or claims processing. Business processes are usually associated with operational objectives and business goals (such as insurance claims processing or engineering development processing) in a form of key performance indicators (KPI). These KPI collected as part of the process implementation are usually used to evaluate effectiveness of the enterprise functioning.

· Information represents the data resources of the organization. Data resides in a variety of different stores, applications and formats. Different levels of data are used by different levels of SOA constructs. The semantic data model defines the data for business processes and services. The SOA defines the mechanisms for transforming data from its native operational format to the semantic data required for the business services.

· Documents represent legal entities (such as financial documents, insurance policies and claims, and government regulations) that define the obligations of the enterprise and its partners. Documents are a vital part of modern enterprises and have to be included in the SOA implementations (along with the rest of the enterprise information) as first-class citizens.

What makes SOA different?
There have been several attempts to present SOA as either a new form of distributed systems architecture, or as an extension of object-orientation, or as a the next generation EAI. Let’s take a closer look at these analogies.

SOA and Distributed Systems

The W3C Architecture group defines SOA as a form of distributed systems architecture

[9], typically characterized by the following properties:

· Logical view. The service is an abstracted, logical view of actual programs, databases, business processes, etc., defined in terms of what it does, typically carrying out a business-level operation. In other words service is defined as a business meaningful action.

· Message orientation. The service is formally defined in terms of the messages exchanged between provider and consumer, and not the properties of the provider and consumer themselves. The internal structure of implementation is deliberately abstracted away. In other words service interface is separated from the service implementation.

· Description orientation. A service is described by machine-processable metadata - service definition.

· Granularity. Services tend to use a small number of operations with relatively large and complex messages (payloads).

· Network orientation Services tend to be oriented toward use over a network, though this is not an absolute requirement.

· Platform neutral Messages are sent in a platform-neutral, standardized format delivered through the interfaces. XML is the most obvious format that meets this constraint.

[image: image3.png]Service Oriented
Model

Action

Resource

Message Oriented
Model

Message

Figure 3 W3C’s SOA model
The SOA model developed by W3C Figure 3 can be defined in terms of invocation message, implementation, owning organization and metadata, describing the service.

· The Message Oriented model defines message in terms of its content (header and body), delivery transport and originating and executing agents.

· The Resource model defines resources (implementations) in terms of URI, representation and owning organization.

· The Policy model
 defines policy in terms of its subjects (resource and action) and organization, supporting policy.

Although SOA is distributed system architecture with message and network orientation, it is more than just that. Equating SOA with a distributed system focuses only on the technical/implementation aspects of services communications, missing one of its key value propositions: the business-IT alignment.

SOA and Object-Orientation

Some practitioners consider SOA a direct evolution of object orientation (OO), considering services as object/components on steroids [10]. This is as far from the reality as it can get. The similarities do not extend beyond system decomposition for definition, and encapsulation for implementation.

Additional features of objects such as inheritance and polymorphism are not applicable to SOA But what really sets the two apart is usage/programming model
:
· In OO multiple object instances of the same type (potentially existing simultaneously) are distinguished based on their internal state, representing a particular execution context. As a result, the object’s lifecycle is controlled explicitly by its consumer through an object creation. Every object exposes multiple methods which are bound to a particular instance (execution context) and allow to manipulate variables on a given instance.

· In SOA services support not the execution context of a particular consumer - typical service invocation is stateless
 - but rather the state of the enterprise resource(s) associated with the particular service. As a result service lifecycle is not associated with a lifecycle of any particular consumer - it exists regardless of whether particular consumer invokes it or not. The resulting programming model is the direct invocation of the service (without its explicit creation).
	Sidebar: Execution state vs. Invocation state

There is a profound difference between the notions of execution and invocation state: Execution state represents the state of the service during its execution. It always exists and includes internal variables, created during service execution. It is used for keeping track of which part of service execution has completed, storing results of partial service execution and passing parameters between multiple components of service implementation. This state is typically encapsulated in service implementation and invisible to the service consumers.

Invocation state is a shared context between service consumer and service implementation in a particular conversation. In this case a consumer invokes different methods of the same service, assuming that the information that was passed to the service during particular method invocation is available to the service during all consecutive invocations.

A service, in this case, participates in multiple conversations with different consumers and keeps track of each conversation separately. Such notion of invocation state is used, for example in the session variables, or statefull session beans in J2EE. A better term describing this type of state is “conversation state.”

Throughout this article when we talk about statefull vs. stateless invocation of services I am referring only to the invocation state.

This difference has a profound impact on the interface definition for objects and services. In OO multiple methods defined on the interface always physically belong to the same instance of the object because they are bound to the same execution context. In contrast, since services don’t have an execution context, the association of methods in the service interface is a pure logical. The service (and consequently service interface) effectively represents a namespace providing a logical grouping of service methods, which are otherwise independent entities with their own quality of service requirements, security, versioning strategy, endpoint address, etc. To make a programming language analogy, every method of the service is similar to a FORTRAN subroutine/function, which can exist and be executed independently from others.

SOA and EAI

Traditional EAI implementations are typically based on proprietary solutions from EAI vendors, thus creating “lock in” to the vendors’ platforms. Many practitioners are presenting SOA as the next generation Enterprise Application Integration (EAI) technology
.
With the current advances of Web Services as a technology for providing “transport solutions,” SOA and Web Services are often viewed as standards-based integration solutions. This makes them an extremely attractive (i.e. vendor-independent) alternative to EAI implementations. The introduction of the Enterprise Service Bus (ESB) products makes Web services-based, standards-based integration solutions extremely popular.

Although the goal of both EAI and SOA is often similar - support of enterprise business processes with the existing application portfolio, they achieve it in radically different ways. EAI focuses on exposing the applications’ functionality through integration services [12] and effectively exposing existing application portfolio as an enterprise business model. In contrast SOA focuses on hiding the existing applications and exposing a set of application-independent business services instead – projecting enterprise business model on the existing applications portfolio.
Services

One of the basic abstractions, introduced by SOA is service
. In the simplest case a service can be defined as a self-contained, independently developed, deployed, managed and maintained software implementation supporting specific functionality relevant to an enterprise as a whole and “integratable” by design. The service functionality is defined by a service interface, which can be supported by multiple implementations. This implies that a service is not a programming construct or a set of APIs, but is rather an architectural artifact - unit of design, implementation and maintenance, used for implementation of enterprise solutions.
Service implementation concerns

Service implementation concerns span from the ones exposed to the service designer - such as business alignment and reuse of existing IT functionality - to the ones that are visible to the service consumer - such as service contract, service interface, and access policies. Figure 4 sketches these elements and the relationships between them.
[image: image4.png]Business | ™™ [Business
—
defined functionality goals €Ty
by "
atiibuted
provides supports by
A J
Service Service Loose
= > Service [«
contract [P interface [orponas ouea | coupling
o accessed [} o
defined
through combined implemented
by defined by through
by
Service E—— Reusés exising
Access nterprise IT
——— [ieiceas orchestration Pl
policies ["™ ddress functionaity

by

Figure 4 Service implementation concerns
· Service business functionality is defined by enterprise business model, which in tern is build based on the enterprise business goals.

· Service contract defines business functionality of the service, its interface and one or more service endpoint addresses.
· The service interface describes (in the technical terms) the capabilities of the service provided to potential consumers. The interface is defined as a service name (i.e., a namespace) and a set of operations supported by the service. The description of every operation includes definitions of the set of parameters required for service invocation (request) and, if applicable, the result returned by the service (reply). The description also covers the operation’s functionality and it’s pre- and post-conditions.
· Each service method can be accessed through an endpoint address—usually defined as an address’s network location. Every endpoint address is governed by a set of access policies. These policies define the communication protocol used for data transfer and actual service invocation, and QoS, for example security, privacy, etc. provided/required by a given endpoint address.

· Granularity and loose coupling represent important service design attributes.

· The service implementation strives for maximum reuse of the existing enterprise IT functionality.

· Service orchestration represents the prevalent mechanism for composing services into larger ones and building enterprise solutions out of services.

I will take a closer look at the major service implementation concerns in the following sections.

Business Alignment

One of the main promises of SOA is business/IT alignment. This promise can be achieved only if the services are aligned with the business model of the enterprise. Consequently, an enterprise business model is a prerequisite for a successful SOA implementation. A high level model needs to be in place to set the direction, partitioning and taxonomy of services. Its details can be developed over time, in parallel with development of the services [12].

This approach to the definition of the enterprise business services allows for better alignment of business, organizational and application (services) architectures (as prescribed by Convergent Architecture [8,14]). As a result it becomes easier to trace software implementations (services, processes) back to the business architecture, thus making software applications easier to understand by business analysts and simplifying the implementation of changes in the business functionality.

Service Granularity

Traditional distributed systems technologies such as CORBA and DCOM provide local/ remote transparency. In other words, they present the same programming model regardless of the target’s location. On the one hand the consistency simplifies the programming model. On the other hand it allows system designers and developers to spend little time thinking about and defining boundaries. This tradeoff between simplicity of development and execution speed represents one of the major reasons behind the poor performance of many applications built with distributed objects. However this was not a problem with the distributed objects technology, but rather the symptom of fine grained object interactions across system boundaries [15].

In SOA on another hand, all service invocations are remote. This makes explicit the very different characteristics of intra- (i.e., inside the service) and inter-service (i.e., across service boundaries) calls
. This differentiation emphasizes that service calls are expensive. Consequently granularity becomes one of the important characteristics of service design. Because service invocation involves the network they are designed as coarse grained. In other words, service method execution must deliver the value that justifies the latency cost of a network request. Consequently, the exposed service interfaces must be coarse-grained. Instead of exposing many interfaces that provide limited functionality services should expose a small number of interfaces that allow individual requests to perform complete business function.

Proper service granularity allows not only create better performing systems, but lowers the coupling (see below). Large grained services tend to be self-contained and as a result have fewer dependencies on other services.

Coupling

Loose coupling of services is a prerequisite for the ability to use them to build, maintain and modify flexible enterprise solutions, and support a federated development approach throughout the enterprise. The following consequences of coupling are outlined in [16]:

· Tighter coupling tends to cost more over time:

· Synchronizing multiple organizations on change

· Adapting, redeploying updated components without affecting others

· Making changes is hard and expensive, or impossible:

· Different parts of the solution are difficult to manage separately.

· Hard to move, hard to scale, hard to distribute, hard to replace.

· More coupling implies more expensive testing.

· Looser coupling requires greater investment upfront:

· More design work

· More implementation work

The most important dimensions of coupling in SOA implementations are:
Functional Coupling. Although interface-based design is not new, SOA takes it even further by basing the (service) interfaces on the enterprise-wide semantics. The importance of the enterprise-wide semantics for services interoperability was downplayed by the early SOA adopters. The Web Services community hoped that the well defined content and structure of SOAP messages, coupled with XML representation of the payload and standardization of the transport ensure interoperability of the Web Services communication. In reality this provides only technical interoperability, ensuring that a SOAP message from one system can be received and successfully processed by the other system. However it does not help in any way with the semantic interoperability, i.e., the ability of two systems to “understand” each other
. Usage of the enterprise semantic data model for service interfaces definitions leads to the creation of interoperable semantic interface definitions [13]. This semantic SOA provides significantly enhanced interoperability between services: all of them work with the same model at the interface level.

Introduction of semantic messaging requires that service implementations support two completely different, but equally important data models [17]:

· Internal data model used by services implementations. This data model relates to the internal implementation of the service, and thus is specific to the underlying services and components. The internal data model is not exposed to service consumers.

· External data model used for inter-service exchanges - enterprise semantic data model.
Each service is responsible for the semantic brokering, transforming between the enterprise and internal data models.

Temporal Coupling. Services and especially Web Services publications tend to focus on synchronous service invocations
. The use of synchronous communication for service invocations creates tight temporal coupling between service consumer and provider:

· The service provider has to be up and running in order for the service consumer to access it.

· Because synchronous invocation is a blocking call; performance changes in either service execution or request/response delivery can have a significant impact at the service consumer execution.

Making a service invocation asynchronous with a separate reply invocation allows the consumer to continue execution while the provider has a chance to respond. This leads to a temporally decoupled system. Temporary service provider outages and network delays have little or no impact in this case. As long as service provider returns a response, overall system functions properly.

Services represent coarse grain singletons in the overall software system, which make scalability and high availability of services an extremely important issue. This means that asynchronous invocation is a significantly better fit for SOA implementations.

Transactional Coupling. Transactionality, in particular the atomicity, consistency, isolation, and durability (ACID) represent a prevalent approach for solving reliability issues in distributed computing. Financial applications employ it for funds transfer; e-commerce systems use it for payments processing; manufacturing applications use it for inventory control; telecommunication billing systems use it for call rating; and so on.

ACID transactions are usually implemented using transaction monitors (for example Tuxedo, CICS, Encina) or component platforms (for example J2EE application server or MTS). This means that support for ACID transactions requires coupling through the transactional environment, thus limiting interoperability and flexibility.

Another requirement for ACID transactions implementation is resource locking for the duration of transaction, which requires guaranteed short execution time of services
.

ACID transactions, while perfectly appropriate for objects and components are usually too restrictive for services. SOA favors business transactions over the traditional two-phase commit protocol [18,19].

Business Processes

Business services by themselves rarely constitute a complete Business solution - they typically serve as its building blocks. Creation of the complete solution is usually implemented through composition (orchestration) of participating services. Such composition is usually done using business processes.

Business processes and process-centric computing are not new. They have been used in IT successfully for over 20 years, starting with the office automation and workflow systems. Companies that want to increase their effectiveness and competitiveness have to move toward making the process a basic unit of computer-based automation and support. They have to shift their focus from systems of record to systems of processes. “Process processing” ought to replace “data processing”. The shift toward a process-centric enterprise has BPM on everybody’s mind. At the heart of BPM is the notion of “orchestration,” where a process engine orchestrates several manual and automatic process steps while manipulating input/output data.

SOA makes the realization of BPM more practical [20]. Business processes in SOA facilitate the next phase of business process evolution from merely “automated” to “managed flexibility.”

The goal of SOA is to expose an organization’s computing assets as reusable business services, implementing basic business functionality, which can be (re)used and integrated more readily using business processes. Such ability to rapidly assemble or reassemble solutions using existing services is one of the main advantages of SOA.˙ The relationship between business services and business processes (Figure 5) pave the way to a truly flexible enterprise:

· Business services support stable business artifacts, incorporating processing and rules whose interface changes fairly rarely. (Note though that the service implementation can and typically does change frequently.)

· Business processes support fairly fluid business procedures and rules, which can change every few months or even weeks.

· The interaction between business processes and business services is based on the enterprise semantics, which minimize impact of services changes on the business processes and simplifies building processes from business services.

[image: image5.png]Business Processes . Orchestrates business
services to achieve enterpise goals
Changing as economic requirements change

Uses formal sevice definiions based on

the enterprise semaniics Service Govers
Used as senvices changes should not impact sevices
demition

implernentation processes. Process changes reuse

various services as needed

Figure 5 Relationship between services and processes in SOA

Such separation of responsibilities enables business analysts and IT architects to reuse IT functionality, encapsulated in business services, through business processes, orchestrating these services. This simplifies creation of the new processes and optimization of the existing ones. More importantly, once designed processes can be quickly modified in response to market conditions. All this translates into increase of the business flexibility and competitiveness without dramatically increasing incremental costs of making frequent process changes.

SOA and patterns
One of the proven ways of explaining and implementing of a certain architectural style is through patterns. “Patterns and pattern languages are ways to describe best practices, proven designs, and capture past experiences in a way for others to learn from these experiences. Patterns are a proven approach for rapidly understanding design guidelines and the various contexts in which they should be applied.” [23].
That is why it is not surprising to see the amount of recent publications on patterns/patterns languages for SOA [21, 22, 23. 24, 25, 26]. With all importance of these publications, each on of them is concentrating only on a particular aspect of SOA implementation:

· Some of the aspects of service access and infrastructure [21]

· Some of the aspects of service composition [22]

· Some of the aspects of service definition and implementation [23]

· Some of the aspects of service versioning [24]

· Some of the aspects of services security [25]

· Some of the aspects of Enterprise data access [26].

A true SOA pattern language, on another hand, should define a holistic approach to design, creation, utilization and execution of services – complete SOA lifecycle. An example of such language is presented at Figure 6
[image: image6.png]Service oriented
decomposition

Service
repository

Service
Implementation

components
Composite
services

Services
security

Service
Logging

Service
exception
management

Service
'monitoring and
management

Figure 6 Pattern language for SOA
This pattern language covers three major areas
:

Service design. This set of patterns covers some of the most important services design activities. Service Oriented decomposition provides the starting point, describing how to define services based on the problem at hand, enterprise business model and required long term architectural qualities. Service contract defines the creation of formal definition of services, allowing system designers to choose the most appropriate service for their implementation and service architects and developers to properly invoke it. Service repository pattern defines solutions for organizing services related artifacts within the enterprise, thus simplifying collaboration of the stakeholders involved in service definition, creation and usage. Finally Service versioning provides guidelines for dealing with inevitable changes in services contracts and implementations allowing to reduce the impact of these changes on service consumers.
Service implementation. These patterns cover some of the issues related to service implementation activities. Service implementation layer shows how portfolio of existing enterprise applications can be leveraged to implement services aligned with the enterprise business model. Service implementation components pattern complements previous pattern by defining major components, involved in a typical service implementation and their interactions. Finally Composite services pattern explores approaches for combining the functionality of multiple existing services in order to support functionality required by service consumers.
Service infrastructure. This set of patterns covers some important issues of services run-time infrastructure. Service registry pattern focuses on the implementation of late binding for service invocations through the centralized registry, allowing for a single enterprise wide point of control over deployment and run-time capabilities of services. Services security is a specialized pattern language [25], defining a set of patterns, governing design and implementation of services security. Service logging and Service exception management patterns define approaches for centralized logging and exception management in highly distributed SOA environments. Service monitoring and management pattern concentrates on approaches to monitor and manage service execution. Finally Enterprise service bus pattern provides insights into virtualization of services communications, which result in the easier implementation of the above infrastructure patterns.
Conclusion
This article defines SOA as an architectural style. It discusses major elements of this style and their interactions. It also covers rationale behind introduction of this style and its differentiation from the other popular approaches for building enterprise architecture. Finally it introduces a pattern language that can be used for better understanding and simplified implementation of this style.
I will cover some of the patterns, defined here in the upcoming articles.
References:

1. Revisiting the definitive SOA definition. http://searchwebservices.techtarget.com/originalContent/0,289142,sid26_gci1044083,00.html

2. A.W. Brown, M. Delbaere, P. Eeles, S. Johnston and R. Weaver. Realizing Service oriented Solutions with the IBM Software Development Platform. IBM Systems Journal, Oct, 2005. http://www.research.ibm.com/journal/sj/444/brown.pdf

3. IEEE Std 1471-2000: IEEE Recommended Practice for Architectural Description of Software-Intensive Systems-Description http://standards.ieee.org/reading/ieee/std_public/description/se/1471-2000_desc.html

4. Mary Shaw and David Garlan. Software Architecture -- Perspectives on an Emerging Discipline. Prentice-Hall, 1996, ISBN 0-13-182957-2.

5. Rob High, Jr., Stephen Kinder and Steve Graham. IBM’s SOA Foundation. An Architectural Introduction and Overview. DevelopWorks Nov 2005, http://download.boulder.ibm.com/ibmdl/pub/software/dw/webservices/ws-soa-whitepaper.pdf
6. Boris Lublinsky. Achieving the Ultimate EAI Implementation. EAI Journal, Feb 2001. http://www.bijonline.net/Article.asp?ArticleID=303

7. Ed Scannell. IBM's Grady Booch on solving complexity. InfoWorld, Feb 2004. http://www.infoworld.com/article/04/02/02/HNboochint_1.html
8. Richard Hubert. Convergent Architecture: Building Model Driven J2EE Systems with UML. Wiley, 2001 ISBN: 0471105600
9. Web Services Architecture. W3C Working Group Note 11 February 2004. http://www.w3.org/TR/ws-arch/

10. James Gosling. SOA: Buzzworld Whiplash or Real Meat? Sep, 2005 http://blogs.sun.com/roller/page/jag?entry=soa_buzzworld_whiplash_or_real
11. David Trowbridge, Dave Mancini, Dave Quick,Gregor Hohpe, James Newkirk and David Lavigne. Enterprise Solution Patterns Using Microsoft .NET Version 2.0. Microsoft Press, 2003. http://www.microsoft.com/downloads/details.aspx?FamilyId=3C81C38E-ABFC-484F-A076-CF99B3485754&displaylang=en
12. Boris Lublinsky. SOA Design: Meet in the Middle. Java Pro, Aug 2004. http://www.ftponline.com/javapro/2004_10/magazine/features/blublinsky/default.aspx?CP=true

13. Boris Lublinsky Unifying Data, Documents and Processes. Enterprise Architect 2004, vol 2, number 2. http://www.ftponline.com/ea/magazine/summer2004/features/blublinsky/

14. David A.Taylor. Business Engineering with Object Technology. John Wiley & Sons, 1995, ISBN: 0471045217
15. Boris Lublinsky. The key to superior EJB design. Java Developer Journal, Jan 2002. http://www2.sys-con.com/ITSG/virtualcd/Java/archives/0701/lublinsky/index.html

16. Karin Duermeyer. Bridging Business Value to SOA: SOA Best Practices. http://www.websphere.org/docs/presentations/Duermeyer-SOA_Executive_Event_Muenchen.pdf

17. Pat Helland. Data on the Outside vs. Data on the Inside. An Examination of the Impact of Service Oriented Architectures on Data. http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/dataoutsideinside.asp

18. Boris Lublinsky. Transactions and Web Services, EAI Journal, Jan 2003 http://www.bijonline.com/PDF/TWSLublinsky.pdf

19. Mark Little and Tom Freund. A comparison of Web services transaction protocols. Developworks, Oct 2003, http://www-128.ibm.com/developerworks/webservices/library/ws-comproto/

20. B. Lublinsky, D Tyomkyn. SOA & BPM: Living Happily Ever After? Business Integration Journal , March 2006. http://www.bijonline.com/index.cfm?section=article&aid=239

21. Ali Arsanjani. Toward a pattern language for service-oriented architecture and integration, part 1: Build a service eco-system. Developwork , Jul 2005 http://www-128.ibm.com/developerworks/webservices/library/ws-soa-soi/
22. Ali Arsanjani. Toward a pattern language for service-oriented architecture and integration, part 2: Service composition. Developwork , Dec 2005, http://www-128.ibm.com/developerworks/webservices/library/ws-soa-soi2/
23. John Evdemon. Principles of service design: Service patterns and anti-patterns. MSDN, August 2005. http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/SOADesign.asp
24. John Evdemon. Principles of service design: Service versioning. MSDN, August 2005 http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/SOADesignVer.asp
25. Jason Hogg, Don Smith, Fred Chong, Dwayne Taylor, LonnieWall, and Paul Slater. Web Service Security. Scenarios, Patterns, and Implementation Guidance for Web Services Enhancements (WSE) 3.0. Microsoft Press, 2005. http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnpag2/html/wssp.asp

26. B. Lublinsky. Incorporating Enterprise Data into SOA. 2006, InfoQ. http://www.infoq.com/articles/SOA-enterprise-data
� SearchWebServices.com [� REF _Ref148782503 \r \h ��1�] announced a contest for the best definition. They received a slew of submissions and little chance of selecting the best one.

� The Software Engineering Institute maintains a list with software architecture definitions. Currently this list contains more than 50 different definitions.

� More on the patterns is further in the article.

� This table is based on the correspondence with Jean-Jacques Dubray.

� A policy is a constraint on the allowable actions or states, for example, a security policy

� Similar to the differences between Instance-Based and Service-Based Collaborations, described in [� REF _Ref148868146 \r \h ��11�].

� The notable exception to this rule is a conversational composite service which typically has an execution context, supporting a particular conversation.

� Gartner Group has even come up with the term Service Oriented Integration (SOI) and EbizQ lately included SOA in its application integration roadmap.

� SOA implementation typically encompasses 3 types of services – business services, representing business aligned IT artifacts, integration services [� REF _Ref148869454 \r \h ��12�], implementation of integration through SOA technologies, typically Web Services and infrastructure services – representing common IT artifacts aimed for infrastructure support. When talking about services in this article I mean business services.

� In reality some of the intra service calls can be remote as well, for example if services are implemented as multiple EJBs.

� Example of such differentiation can be found everywhere. For example, the fact that many languages use the Roman alphabet does not mean that that people talking different languages sharing this alphabet understand each other. Pure knowledge of the alphabet is not sufficient for understanding the language.

� These shortcomings of current implementations are sometimes viewed as shortcomings of the SOA itself. As a result there are multiple publications promoting Events Driven Architecture (EDA) and SOA-2 as the ways to fix SOA. In my mind it is not SOA that needs fixing, but rather its current usage.

� Longer transactions time usually leads to worsening of the overall throughput of transactional resources.

� Note that some of the patterns belong to several areas

