[image: image1.png]Realization of a SOA Ecosystem s
Realizion of a SOA Ecosystem
s el e powmer of SOA b st
e R ok hlders = "Those invalved n design,develpmert,and deploymert of SOAbase systems”
amodeh “<mode a cconforms _|Conceims = Eecive consiruction of SOA based systems”
Service Description Service Visibility T ol oding techmiaues = UML class, seduence, componer, acivty, conm, and comp siruct dagrams *
Model Model -
amocen A e A
Interacting with Services Policies and Contracts
WModel Model

Figure 13 - Model Elements Described in the Realization of a SOA Ecosystem view

The Service Description Model informs the participants of what services exist and the conditions under which they can be used. The Policies and Contracts Model elaborates on the conditions under which service use is prescribed and agreements among participants in the SOA ecosystem..
 The information in the service description as augmented by details of policy provides the basis for visibility as defined in the SOA Reference Model and captured in the Service Visibility Model. Finally, the process by which services are used under the defined conditions and agreements is described in the Interacting with Services Model.

4.1 Service Description Model

A service description is an artifact, often document-based, that defines or references the information needed to use, deploy, manage and otherwise control a service. This includes not only the information and behavior models associated with a service that define interaction via
the service interface but also includes information needed to decide whether the service is appropriate for the current needs of the service consumer. Thus, the service description should also include information such as service reachability, service functionality, and the policies associated with a service.

A service description artifact may be a single document or it may be an interlinked set of documents. For the purposes of this model, differences in representation are to be ignored, but the implications of a ‘web of documents’ are discussed later in this section.

There are several points to note regarding service description:

· The Reference Model states that one of the hallmarks of SOA is the large amount of associated description. The model presented below focuses on the description of services but it is equally important to consider the descriptions of the consumer, other participants, and needed resources other than services.

· Descriptions are inherently incomplete but may be determined as sufficient when it is possible for the participants to access and use the described services based only on the descriptions provided. This means that, at one end of the spectrum, a description along the lines of “That service on that machine” may be sufficient for the intended audience. On the other extreme, a service description with a machine-process-able description of the semantics of its operations and real world effects may be required for services accessed via automated service discovery and planning systems.

· Descriptions come with context, i.e. a given description comprises information needed to adequately support the context. For example, a list of items can define a version of a service, but for many contexts an indicated version number is sufficient without the detailed list. The current model focuses on the description needed by a service consumer to understand what the service does, under what conditions the service will do it, how well the service does it, and what steps are needed by the consumer to initiate and complete a service interaction. Such information also enables the service provider to clearly specify what is being provided and the intended conditions of use.

· Descriptions change over time as, for example, the ingredients and nutrition information for food labeling continues to evolve. A requirement for transparency of transactions may require additional description for those associated contexts.

· Description always proceeds from a basis of what is considered ‘common knowledge’. This may be social conventions that are commonly expected or possibly codified in law. It is impossible to describe everything and it can be expected that a mechanism as far reaching as SOA will also connect entities where there is inconsistent ‘common’ knowledge.

· Descriptions become the collection point of information related to a service or any other resource, but it is not necessarily the originating point or the motivation for generating this information. In particular, given a SOA service as the access to an underlying capability, the service may point to some of the capability’s previously generated description, e.g. a service providing access to a data store may also have access to information indicating the freshness of the data.

These points emphasize that there is no one ‘right’ description for all contexts and for all time. Several descriptions for the same subject may exist at the same time, and this emphasizes the importance of the description referencing source material maintained by that material’s owner rather than having multiple copies that become out of synch and inconsistent.

It may also prove useful for a description assembled for one context to cross-reference description assembled for another context as a way of referencing ancillary information without overburdening any single description. Rather than a single artifact, description can be thought of as a web of documents that enhance the total available description.

This Reference Architecture Foundation uses the term service description for consistency with the concept defined in the Reference Model. Some SOA literature treats the idea of a ‘service contract’ as equivalent to service description. In the SOA-RAF, the term service description is preferred. Replacing the term ‘service description’ with the term ‘service contract’ implies that just one side of the interaction is governing and misses the point that a single set of policies identified by a service description may lead to numerous contracts, i.e. service level agreements, leveraging the same description.

4.1.1 The Model for Service Description

Figure 14 shows Service Description as a subclass of the general Description class, where Description is a subclass of the resource class as defined in Section 3.2.4.1. In addition, each resource is assumed to have a description.
 The following section discusses the relationships among elements of general description and the subsequent sections focus on service description. Other descriptions, such as those of participants, are important to SOA but are not individually elaborated in this document.

4.1.1.1 Elements Common to General Description

The general Description class is composed of a number of elements that are expected to be common among all descriptions supporting a service oriented architecture. A registry/repository
 often contains a subset of the description instance, where the chosen subset is identified as that which facilitates discovery. Additional information contained in a more complete description may be needed to initiate and continue interaction.

[image: image2.png]actas o delegate responsibily to ownedby

has

Figure 14 - General Description
4.1.1.1.1 Provenance

While the resource Identifier provides the means to know which subject and subject description are being considered, Provenance as related to the Description class provides information that reflects on the quality or usability of the subject. Provenance specifically identifies the stakeholder (human, defined role, organization, etc.) that assumes responsibility for the resource being described and tracks historic information that establishes a context for understanding what the resource provides and how it has changed over time. Responsibilities may be directly assumed by the stakeholder who owns a resource (see Section 3.2.4.2) or the Owner may designate Responsible Parties for the various aspects of maintaining the resource and provisioning it for use by others. There may be more than one stakeholder identified under Responsible Parties; for example, one stakeholder may be responsible for code maintenance while another is responsible for provisioning of the executable code.

4.1.1.1.2 Keywords and Classification Terms

A traditional element of description has been to associate the resource being described with predefined keywords or classification taxonomies that derive from referenceable formal definitions This Reference Architecture Foundation does not prescribe which vocabularies or taxonomies may be referenced, nor does it limit the number of keywords or classifications that may be associated with the resource. It does, however, state that a normative definition of any terms or keywords SHOULD be referenced, whether that be a representation in a formal ontology language, a pointer to an online dictionary, or any other accessible source.and vocabularies. This Reference Architecture Foundation does not prescribe which vocabularies or taxonomies may be referenced, nor does it limit the number of keywords or classifications that may be associated with the resource. It does, however, state that a normative definition of any terms or keywords SHOULD be referenced, whether that be a representation in a formal ontology language, a pointer to an online dictionary, or any other accessible source. See Section 4.1.1.2 for further discussion on associating semantics with assigned values.

4.1.1.1.3 Associated Annotations

The general description instance may also reference associated documentation that is in addition to that considered necessary in this model. For example, the owner of a service may have documentation on best practices for using the service. Alternately, a third party may certify a service based on their own criteria and certification process; this may be vital information to other prospective consumers if they were willing to accept the certification in lieu of having to perform another certification themselves. Note, while the examples of Associated Documentation presented here are related to services, the concept applies equally to description of other entities.

4.1.1.2 Assigning Values to Description Instances

 [image: image3.png]1

[

iDescription Clas:

o0

o0

Pointer to Description
[Resolving to Value Set

[Painter to Value Set

[Property|

Value

Set Attributes. ‘

Structure

[Semantics.

01| 04

‘Specifier Aﬁ%

01 0.4 01

identifier Provenance [Value Set Source

Figure 15 - Representation of a Description
Figure 14 shows the template for a general description, but individual description instances depend on the ability to associate meaningful values with the identified elements. Figure 15 shows a model for a collection of information that provides for value assignment and traceability for both the meaning and the source of a value. The model is not meant to replace existing or future schema or other structures that have or will be defined for specific implementations, but it is meant as guidance for the information such structures need to capture to generate sufficient description. It is expected that tools will be developed to assist the user in populating description and auto-filling many of these fields, and in that context, this model provides guidance to the tool developers.

In Figure 15, each class has an associated value specifier or is made up of components that eventually resolve to a value specifier. For example, Description has several components, one of which is Categorization, which would have an associated value specifier.

A value specifier consists of

· a collection of value sets with associated property-value pairs, pointers to such value sets, or pointers to descriptions that eventually resolve to value sets that describe the component; and

· attributes that qualify the value specifier and the value sets it contains.

The qualifying attributes for the value specifier include

· an optional identifier that would allow the value set to be defined, accessed, and reused elsewhere;

· provenance information that identifies the person (individual or organization) who
 has responsibility for assigning the value sets to any description component;

· an optional source of the value set, if appropriate and meaningful, e.g. if a particular data source is mandated.

If the value specifier is contained within a higher-level component (such as Service Description containing Service Functionality), the component may assume values from the attributes of its container.

Note, provenance as a qualifying attribute of a value specifier is different from provenance as part of an instance of Description. Provenance for a service identifies those who own and are responsible for the service, as described in Section 3.2.4. Provenance for a value specifier identifies who is responsible for choosing and assigning values to the value sets that comprise the value specifier. It is assumed that granularity at the value specifier level is sufficient and provenance is not required for each value set.

The value set also has attributes that define its structure and semantics.

· The semantics of the value set property should be associated with a semantic context conveying the meaning of the property within the execution context, where the semantic context could vary from a free text definition to a formal ontology.

· For numeric values, the structure would provide the numeric format of the value and the ‘semantics’ would be conveyed by a dimensional unit with an identifier to an authoritative source defining the dimensional unit and preferred mechanisms for its conversion to other dimensional units of like type.

· For nonnumeric values, the structure would provide the data structure for the value representation and the semantics would be an associated semantic model.

· For pointers, architectural guidelines would define the preferred addressing scheme.

The value specifier may indicate a default semantic model for its component value sets and the individual value sets may provide an override.

The property-value pair construct is introduced for the value set to emphasize the need to identify unambiguously both what is being specified and what is a consistent associated value. The further qualifying of Structure and Semantics in the Set Attributes allows for flexibility in defining the form of the associated values.

4.1.1.3 Model Elements Specific to Service Description

[image: image4.png][Service Description

[Service Description s an atiact
Jand requires componertsto store,
find, access, and manage the
artfact

|Service Descrition
idertifies availble
Imetrics and how to
Jaceess; requies
|componerts to gather,
store, and provide
laceess to metrics

7
’
[Service Reachability Service Interface [Service Functionality [Service Policies | [Metrics
N
[Protocols Endpoint Benavior Information
Model Model [Functions Technical N
|assumptions
[Service Presence | | [Service Description
consistert A idertifies known
[Semanties | | Structure | o oqucc y with polces: recuires
Imechanisms o create
Jand maitai polcies
((may be outsice SO),
[Action Model | [Process Model Service Level (components o sore,
P eret ind. access, an

|l actons of this

[Temporal
jsequence of
jactons.

[manage poicies.

Figure 16 - Service Description
The major elements for the Service Description subclass follow directly from the areas discussed in the Reference Model. Here, we discuss the detail shown in Figure 16 and the purpose served by each element of service description. For example, Service Policies as included in Figure 16 indicate those policies that affect conditions of use of the service; however, while the description may link to detailed policy documents, it is not the purpose of description to justify or elaborate on the rationale for the policies. Similarly, Service Interface Description as included in Figure 16 captures information about what interactions are supported by the service via its Behavior Model and the information exchange needed to carry out those interactions in accordance with the service's Information Model; it is not the coded interface.
Note, the intent in the subsections that follow is to describe how a particular element, such as the service interface description, is reflected in the service description, not to elaborate on the details of that element.

4.1.1.3.1 Service Interface Description
As noted in the Reference Model, the service interface is the means for interacting with a service. For the SOA-RAF and as shown in Section 4.3 the service interface supports an exchange of messages, where

· the message conforms to a referenceable message exchange pattern (MEP, covered below in Section 4.3.3.1),

· the message payload conforms to the structure and semantics of the indicated information model,

· the messages are used to denote events related to or actions against the service, where the actions are specified in the action model and any required sequencing of actions is specified in the process model.

The Service Interface Description element as shown in Figure 17 includes the information needed to carry out this message exchange in order to realize the service behavior described. In addition to the Information Model that conveys the Semantics and Structure of the message, the Service Interface Description indicates what behavior can be expected through interactions conveyed in the Action and Process Models.

[image: image5.png]

Figure 17 - Service Interface Description

Note we distinguish the structure and semantics of the message from that of the underlying protocol that conveys the message. The message structure may include nested structures that are independently defined, such as an enclosing envelope structure and an enclosed data structure.

These aspects of messages are discussed in more detail in Section 4.3.2.

4.1.1.3.2 Service Reachability

Service reachability, as modeled in Section 4.2.2.3 enables service participants to locate and interact with one another. To support service reachability, the service description should indicate the endpoints (also modeled and defined in that section) to which a service consumer can direct messages to invoke actions and the protocol to be used for message exchange using that endpoint.

As generally applied to an action, the endpoint is the conceptual location where one applies an action; with respect to service description, it is the actual address where a message is sent.
4.1.1.3.3 Service Functionality

While the service interface and service reachability are concerned with the mechanics of using a service, service functionality and performance metrics (discussed in Section 4.1.1.3.4) describe what can be expected as a result of interacting with a service. Service Functionality, shown in Figure 16 as part of the overall Service Description model and extended in Figure 18, is a clear expression of service function(s) and the real world effects of invoking the function. The Functions represent business activities in some domain that produce the desired real world effects.

[image: image6.png]package Data] ice-acton RWE |

=l | E=

produce ¥

mustbe A
consistent with

Lovel
World Effoct

is reflected in A

[t o |

Figure 18 - Service Functionality

The Service Functionality may also be limited by technical assumptions/constraints that underlie the effects that can result. Technical constraints are defined as domain specific restrictions and may express underlying physical limitations, such as flow speeds must be below sonic velocity or disk access that cannot be faster than the maximum for its host drive. Technical constraints are related to the underlying capability accessed by the service. In any case, the real world effects must be consistent with the technical assumptions/constraints.

In Figure 16 and Figure 18, we specifically refer to the descriptions of
Service Level and Action Level Real World Effects.
Service Level Real World Effect

A specific change in the state or the information returned as a result of interacting with a service. XE "Service Level Real World Effect"
Action Level Real World Effect

A specific change in the state or the information returned as a result of interacting through a specific action. XE "Action Level Real World Effect"
Service description describes the service as a whole while the component aspects should contribute to that whole. Thus, while individual Actions may contribute to the real world effects to be realized from interaction with the service, there would be a serious disconnect for Actions to contribute real world effects that could not consistently be reflected in the Service Level Real World Effects and thus the Service Functionality. The relationship to Action Level Real World Effects and the implications on defining the scope of a service are discussed in Section 4.1.2.1.

Elements of Service Functionality may be expressed as natural language text, reference an existing taxonomy of functions or other formal model.

4.1.1.3.4 Service Policies, Metrics, and Compliance Records

Policies prescribe the conditions and constraints for interacting with a service and impact the willingness to continue visibility with the other participants. Whereas technical constraints are statements of ‘physical’ fact, policies are subjective assertions made by the service provider (sometimes as passed on from higher authorities).

The service description provides a central location for identifying what policies have been asserted by the service provider. The specific representation of the policy, e.g. in some formal policy language, is outside of the service description. The service description would reference the normative definition of the policy.

Policies may also be asserted by other
participants, as illustrated by the model shown in Figure 19. Policies that are generally applicable to any interaction with the service are asserted by the service provider and included in the Service Policies section of the service description.

[image: image7.png]may affect choice of -

[Palicies | reconcied in B [Gontracts| | Technical | [Semantics
Assumptions.

weed act winin &

et

[Service Participants

——]

[Service Praviders | [Service Consumers | ~[Third Parties

Commuricats rough B

Figure 19 - Model for Policies and Contracts as related to Service Participants

In Figure 19, we specifically refer to policies at the service level. In a similar manner to that discussed for Service Level vs. Action Level Real World Effects in Section 4.1.1.3.3, individual Actions may have associated policies stating conditions for performing the action, but these must be reflected in and be consistent with the policies made visible at the service level and thus the description of the service as a whole. The relationship to Action Level Policies and the implications on defining the scope of a service are discussed in Section 4.1.2.1.

As noted in Figure 19, the policies asserted may be reflected as Technical Assumptions/Constraints that available services or their underlying capabilities must be capable of meeting; it may similarly affect the semantics that can be used. For example of the former, there may be a policy that specifies the surge capacity to be accommodated by a server, but a service that is not designed to make use of the larger server capacity would not satisfy the intent of the policy and would not be appropriate to use. For the latter, a policy may require that only services that support interaction via a community-sponsored vocabulary can be used.

Contracts are agreements among the
participants. The contract may reconcile inconsistent policies asserted by the participants or may specify details of the interaction. Service level agreements (SLAs) are one of the commonly used categories of contracts.

The definition and later enforcement of policies and contracts are predicated on the potential for measurement; the relationships among the relevant concepts are shown in the model in Figure 20. Performance Metrics identify quantities that characterize the speed and quality of realizing the real world effects produced using the SOA service; in addition, policies and contracts may depend on nonperformance metrics, such as whether a license is in place to use the service. Some of these metrics may reflect the underlying capability, some metrics may reflect processing of the SOA service, and some metrics may include expected network overhead. The metrics should be carefully defined to avoid confusion in exactly what is being reported, for example, a case where the service processing time is reported as if it were the total time including the capability and network processing but is only measuring the service processing.

[image: image8.png][Service Policies

trackedin B

[Compliance Records.

<aprovids operational values for

Metrics

reconciled in| A

[Contracts,

trackedin B

reconciled in| A

[External Pol

[Performance
Metrics

Nonperformance
Metrics.

~provide measurable quanties for

Figure 20 - Policies and Contracts, Metrics, and Compliance Records

As with many quantities, the metrics associated with a service are not themselves defined by this Service Description Model because it is not known a priori which metrics are being collected or otherwise checked by the services, the SOA infrastructure, or other resources that participate in the SOA interactions. However, the service description SHOULD provide a placeholder (possibly through a link to an externally compiled list) for identifying which metrics are available and how these can be accessed.

The use of metrics to evaluate compliance and the results of compliance evaluation SHOULD be maintained in compliance records and the means to access the compliance records MAY be included in the Service Policies portion of the service description. For example, the description may be in the form of static information (e.g. over the first year of operation, this service had a 91% availability), a link to a dynamically generated metric (e.g. over the past 30 days, the service has had a 93.3% availability), or access to a dynamic means to check the service for current availability (e.g., a ping). The relationship between service presence and the presence of the individual actions that can be invoked is discussed under Reachability in Section 4.2.2.3.

Note, even when policies relate to the perspective of a single participant, policy compliance can be measured and policies may be enforceable without contractual agreement with other participants. While certain elements of contracts and contract compliance are likely private, public aspects of compliance should be reflected in the compliance record information referenced in the service description. This provides input to evidence that supports determining willingness as described in Section 3.2.5.1.

4.1.2 Use of Service Description

4.1.2.1 Service Description in support of Service Interaction

If we assume we have awareness, the service participants must still establish willingness and presence to ensure full visibility (See Section 4.2) and to interact with the service. Service description provides necessary information for many aspects of preparing for and carrying through with interaction. Recall the fundamental definition of a SOA service is a mechanism to access an underlying capability; the service description describes this mechanism and its use. It lays the groundwork for what can occur, whereas service interaction comprises the specifics through which real-world effects are realized.

[image: image9.png]<« messages
conformingto P

Service Presence

[component must existto

conforms to lexecute "set of operations”
structura and fto generate prescribed real
behavioral |l actons oftis service
detais of -

addressedto avaiabity — -
reflected

conveys Behavior
<apartcpates in intent for ™ Model

carred by (A -

retiect xternal .
constrarts on & N
rempora sequence of actons

syrtax vocabulry
understood by \understood by

Semantics:
s reflectedin ¥

Information Service Level
Model

Figure 21 - Relationship between Action and Components of Service Description Model
Figure 21 combines the models in the subsections of Section 4.1.1 to concisely relate action and the relevant components of the Service Description model. The purpose of Figure 21 is to demonstrate that the components of service description go beyond arbitrary documentation and form the critical set of information needed to define the what and how of action. In Figure 21, the leaf nodes from Figure 16 are shown in blue.

Action is typically invoked via a Message where the structure and processing
details of the message conform to an identified Protocol and is directed to the address of the identified endpoint, and the message payload conforms to the service Information Model.

The availability of an action is reflected in the Action Presence and each Action Presence contributes to the overall Service Presence; this is discussed further in Section 4.2.2.3. Each action has its own endpoint and protocols are associated with the endpoint
. The endpoint and service presence are also part of the service description.

An action may have preconditions where a Precondition is something that needs to be in place before an action can occur, e.g. confirmation of a precursor action. Whether preconditions are satisfied is evaluated when an actor tries to perform the action and not before. Presence for an action means an actor can initiate it and is independent of whether the preconditions are satisfied. However, the successful completion of the action may depend on whether its preconditions were satisfied. The service as a whole may assume responsibility for providing fallback if a precondition is not met, and the service description may indicate functionality without explicitly containing details of how preconditions are satisfied or otherwise mitigated.

Analogous to the relationship between actions and preconditions, the Process Model may imply Dependencies for succeeding steps in a process, e.g. that a previous step has successfully completed, or may be isolated to a given step. An example of the latter would be a dependency that the host server has scheduled maintenance and access attempts at these times would fail. Dependencies related to the process model do not affect the presence of a service although these may affect whether the business function successfully completes. The service as a whole may assume responsibility for providing fallback if a dependency is not met, and the service description may indicate functionality without explicitly containing details of how dependencies are satisfied or otherwise mitigated.

The conditions under which an action can be invoked may depend on policies associated with the action. The Action Level Policies MUST be reflected in (or subsumed by) the Service Policies because such policies may be critical to determining whether the conditions for use of the service are consistent with the policies asserted by the service consumer. For example, if an action requires interaction with another service and that other service has licensing requirements, then the service with such an action also has the same requirement.
The Service Policies are included in the service description.

Similarly, the result of invoking an action is one or more real world effects, and any Action Level Real World Effects MUST be reflected in the Service Level Real World Effect included in the service description. The unambiguous expression of action level policies and real world effects as service counterparts is necessary to adequately describe what constitutes the service interaction. For example, if an action allows for the tracking of user preferences, then the service with such an action results in the same real world effect.

An adequate service description MUST provide a consumer with information needed to determine if the service policies, the (business) functions, and service-level real world effects are of interest, and there is nothing in the technical constraints that preclude use of the service.

Note at the service level, the business functions are not concerned with the action or process models. These models are detailed separately.

The service description is not intended to be isolated documentation but rather an integral part of service use. Changes in service description SHOULD immediately be made known to consumers and potential consumers.

4.1.2.2 Description and Invoking
Actions Against a Service

At this point, let us assume the descriptions were sufficient to establish willingness; see Section 4.2.2.2. Figure 21 indicates the service endpoint establishes where to actually carry out the interaction. This is where we start considering the action and process models.

The action model identifies the multiple actions a user can perform against a service and the user would perform these in the context of the process model as specified or referenced under the Service Interface Description
portion of Service Description. For a given business function, there is a corresponding process model, where any process model may involve multiple actions. From the above discussion of model elements of description we may conclude (1) actions have reachability information, including endpoint and presence, (2) presence of service is some aggregation of presence of its actions, (3) action preconditions and service dependencies do not affect presence although these may affect successful completion.

Having established visibility, the interaction can proceed. Given a business function, the consumer knows what will be accomplished (the service functionality), the conditions under which interaction will proceed (service policies), and the process that must be followed (the process model). The remaining question is how the description information for structure and semantics enable interaction.

We have established the importance of the process model in identifying relevant actions and their sequence. Interaction proceeds through messages and thus it is the syntax and semantics of the messages with which we are here concerned. A common approach is to define the structure and semantics that can appear as part of a message; then assemble the pieces into messages; and, associate messages with actions. Actions make use of structure and semantics as defined in the information model to describe its legal messages.

The process model identifies actions to be performed against a service and the sequence for performing the actions. For a given action, the Reachability portion of description indicates the protocol bindings that are available, the endpoint corresponding to a binding, and whether there is presence at that endpoint. An interaction is through the exchange of messages that conform to the structure and semantics defined in the information model and the message sequence conforming to the action’s identified MEP. The result is some portion of the real world effect that must be assessed and/or processed (e.g. if an error exists, that part that covers the error processing would be invoked).

4.1.2.3 The Question of Multiple Business Functions

Action level effects and policies MUST be reflected at the service level for service description to support visibility.

It is assumed that a SOA service represents an identifiable business function to which policies can be applied and from which desired business effects can be obtained. While contemporary discussions of SOA services and supporting standards do not constrain what actions or combinations of actions can or should be defined for a service, the SOA-RAF considers the implications of service description in defining the range of actions appropriate for an individual SOA service.
Consider the situation if a given SOA service is the mechanism for access to multiple independent (but loosely related) business functions. These are not multiple effects from a single function but multiple functions with potentially different sets of effects for each function. A service can have multiple actions a user may perform against it, and this does not change with multiple business functions. As an individual business function corresponds to a process model, so multiple business functions imply multiple process models. The same action may be used in multiple process models but the aggregated service presence would be specific to each business function because the components being aggregated may be different between process models. In summary, for a service with multiple business functions, each function has (1) its own process model and dependencies, (2) its own aggregated presence, and (3) possibly its own list of policies and real world effects.

A common variation on this theme is for a single service to have multiple endpoints for different levels of quality of service (QoS), e.g. Gold, Silver, and Bronze
. Different QoS imply separate statements of policy, separate endpoints, possibly separate dependencies, and so on. One could say the QoS variation does not require this because there can be a single QoS policy that encompasses the variations, and all other aspects of the service would be the same except for the endpoint used for each QoS. However, the different aspects of policy at the service level would need to be mapped to endpoints, and this introduces an undesirable level of coupling across the elements of description. In addition, it is obvious that description at the service level can become very complicated if the number of combinations is allowed to grow.
One could imagine a service description that is basically a container for action descriptions, where each action description is self-contained; however, this would lead to duplication of description components across actions. If common description components are factored, this either is limited to components common across all actions or requires complicated tagging to capture the components that often but do not universally apply.

If a provider cannot describe a service as a whole but must describe every action, this leads to the situation where it may be extremely difficult to construct a clear and concise service description that can effectively support discovery and use without tedious logic to process the description and assemble the available permutations. In effect, if adequate description of an action begins to look like description of a service, it may be best to have it as a separate service.

Recall, more than one service can access the same underlying capability, and this is appropriate if a different real world effect is to be exposed. Along these lines, one can argue that different QoS are different services because getting a response in one minute rather than one hour is more than a QoS difference; it is a fundamental difference in the business function being provided.

As a best practice, the criteria for whether a service is appropriately scoped may be the ease or difficulty in creating an unambiguous service description. A consequence of having tightly-scoped services is there will likely be a greater reliance on combining services, i.e. more fundamental business functions, to create more advanced business functions. This is consistent with the principles of service oriented architecture and is the basic position of this Reference Architecture Foundation, although not an absolute requirement. Combining services increases the reliance on understanding and implementing the concepts of orchestration, choreography, and other approaches yet to be developed; these are discussed in more detail in section 4.4 Interacting with Services.
4.1.2.4 Service Description, Execution Context, and Service Interaction

The service description MUST provide sufficient information to support service visibility, including the willingness of service participants to interact. However, the corresponding descriptions for providers and consumers may both contain policies, technical assumptions, constraints on semantics, and other technical and procedural conditions that must be aligned to define the terms of willingness. The agreements that encapsulate the necessary alignment form the basis upon which interactions may proceed – in the Reference Model, this collection of agreements and the necessary environmental support establish the execution context.

To illustrate execution context of a service interaction
, consider a Web-based system for timecard entry. For an employee onsite at an employer facility, the execution context requires a computer connected to the local network and the employee must enter their network ID and password. Relevant policies include that the employee must maintain the most recent anti-virus software and virus definitions for any computer connected to the network.

For the same employee connecting from offsite, the execution context specifies the need for a computer with installed VPN software and a security token to negotiate the VPN connection. The execution context also includes proxy settings as needed to connect to the offsite network. The employee must still comply with the requirements for onsite computers and access, but the offsite execution context includes additional items before the employee can access the same underlying capability and realize the same real world effects, i.e. the timecard entries.

[image: image10.wmf]
Figure 22 - Execution Context
Figure 22 shows a few broad categories found in execution context. These are not meant to be comprehensive. Other items may need to be included to provide a sufficient description of the interaction conditions. Any other items not explicitly noted in the model but needed to set the environment SHOULD be included in the execution context.

While the execution context captures the conditions under which interaction can occur, it does not capture the specific service invocations that do occur in a specific interaction. A service interaction as modeled in Figure 23 introduces the concept of an Interaction Description that is composed of both the Execution Context and an Interaction Log. The execution context specifies the set of conditions under which the interaction occurs and the interaction log captures the sequence of service interactions that occur within the execution context. This sequence should follow the Process Model but can include details beyond those specified there. For example, the Process Model may specify an action that results in identifying a data source, and the identified source is used in a subsequent action. The Interaction Log would record the specific data source used.

The execution context can be thought of as a container in which the interaction occurs and the interaction log captures what happens inside the container. This combination is needed to support auditability and repeatability of the interactions.

[image: image11.png][Description

Interaction Description | described by interaction

composed of [f

[Excution| [interaction | recorded [Action
Context Log n

< prosests wiin

Figure 23 - Interaction Description
SOA allows flexibility to accomplish both repeatability and reusability. In facilitating reusability, a service can be updated without disrupting the user experience of the service. So, Google can improve their ranking algorithm without notifying the user about the details of the update.

However, it may also be vital for the consumer to be able to recreate past results or to generate consistent results in the future, and information such as what conditions, which services, and which versions of those services were used is indispensible in retracing one’s path. The interaction log is a critical part of the resulting real world effects because it defines how the effects were generated and possibly the meaning of observed effects. This increases in importance as dynamic composability becomes more feasible. In essence, a result has limited value if one does not know how it was generated.

The interaction log SHOULD be a detailed trace for a specific interaction, and its reuse is limited to duplicating that interaction. An execution context can act as a template for identical or similar interactions. Any given execution context MAY define the conditions of future interactions.

Such uses of execution context imply (1) a standardized format for capturing execution context and (2) a subclass of general description could be defined to support visibility of saved execution contexts. The specifics of the relevant formats and descriptions are beyond the scope of this document.

A service description is unlikely to track interaction descriptions or the constituent execution contexts or interaction logs that include mention of the service. However, as appropriate, linking to specific instances of either of these could be done through associated annotations.

4.1.3 Relationship to Other Description Models

While the representation shown in Figure 15 is derived from considerations related to service description, it is acknowledged that other metadata standards are relevant and should, as possible, be incorporated into this work. Two standards of particular relevance are the Dublin Core Metadata Initiative (DCMI) [DCMI] and ISO 11179 [ISO 11179], especially Part 5.

When the service description (or even the general description class) is considered as the DCMI ‘resource’, Figure 15 aligns nicely with the DCMI resource model. While some differences exist, these are mostly in areas where DCMI goes into detail that is considered beyond the scope of the current Reference Architecture Foundation. For example, DCMI defines classes of ‘shared semantics’ whereas this Reference Architecture Foundation considers that an identification of relevant semantic models is sufficient. Likewise, the DCMI Description Model goes into the details of possible syntax encodings whereas for the Reference Architecture Framework it is sufficient to identify the relevant formats.

With respect to ISO 11179 Part 5, the metadata fields defined in that reference may be used without prejudice as the properties in Figure 15. Additionally, other defined metadata sets may be used by the service provider if the other sets are considered more appropriate, i.e. it is fundamental to this reference architecture to identify the need and the means to make vocabulary declarations explicit but it is beyond the scope to specify which vocabularies are to be used. In addition, the identification of domain of the properties and range of the values has not been included in the current Reference Architecture discussion, but the text of ISO 11179 Part 5 can be used consistently with the model prescribed in this document.

Description as defined here considers a wide range of applicability and support of the principles of service oriented architecture. Other metadata models can be used in concert with the model presented here because most of these focus on a finer level of detail that is outside the present scope, and so provide a level of implementation guidance that can be applied as appropriate.

4.1.4 Architectural Implications

The definition of service description indicates numerous architectural implications on the SOA ecosystem: Some of these implications restate, perhaps word for word, text that appears in the relevant sections. These are restated here to gather them together with other conformance statements for the convenience of the reader when a checklist of requirements is needed to construct the solution-specific reference architectures this foundation is intended to support.

· The real world effects which the service description definition supports must be consistent with the technical assumptions/constraints
· The eervice description definition changes over time and its contents will reflect changing needs and context. Thus the eervice description definition:MUST have
· mechanisms to support the storage, referencing, and access to normative definitions of one or more versioning schemes that may be applied to identify different aggregations of descriptive information, where the different schemes may be versions of a versioning scheme itself;

· configuration management mechanisms to capture the contents of each aggregation and apply a unique identifier in a manner consistent with an identified versioning scheme;

· one or more mechanisms to support the storage, referencing, and access to conversion relationships between versioning schemes, and the mechanisms to carry out such conversions.

· Description makes use of defined semantics, where the semantics MAY be used for categorization or providing other property and value information for description classes. When this is the case, service description MUST have
· semantic models that provide normative descriptions of the utilized terms, where the models may range from a simple dictionary of terms to an ontology showing complex relationships and capable of supporting enhanced reasoning;

· mechanisms to support the storage, referencing, and access to these semantic models;

· configuration management mechanisms to capture the normative description of each semantic model and to apply a unique identifier in a manner consistent with an identified versioning scheme;

· one or more mechanisms to support the storage, referencing, and access to conversion relationships between semantic models, and the mechanisms to carry out such conversions.

· Once we have awareness, the service participants MUST still establish willingness and presence to ensure full visibility (See Section 4.2)
· Given a business function, the consumer knows what will be accomplished (the service functionality), the conditions under which interaction will proceed (service policies), and the process that MUST be followed (the process model).
· Actions MAY have associated policies stating conditions for performing the action, but these MUST be reflected in and be consistent with the policies made visible at the service level and thus the description of the service as a whole.
· Policies asserted MAY be reflected as Technical Assumptions/Constraints that available services or their underlying capabilities MUST be capable of meeting.
· Descriptions include reference to policies defining conditions of use. In this sense, policies are also resources that need to be visible, discoverable, and accessible. The eervice description definition (as also enumerated under governance):MUST have
· Description of policies, including a unique identifier for the policy and a sufficient, and preferably a machine processable, representation of the meaning of terms used to describe the policy, its functions, and its effects

A method to e

· nable searching for policies that best meet the search criteria specified by the service participant; where the discovery mechanism has access to the individual policy descriptions, possibly through some repository mechanism;

· accessible storage of policies and policy descriptions, so service participants can access, examine, and use the policies as defined.

· Descriptions include references to metrics that describe the operational characteristics of the subjects being described. Theservice description definition (as also partially enumerated under governance):MUST have:
· Infrastructure monitoring and reporting information on SOA resources;

· possible interface requirements to make accessible metrics information generated;

· mechanisms to catalog and enable discovery of which metrics are available for a described resources and information on how these metrics can be accessed;

· mechanisms to catalog and enable discovery of compliance records associated with policies and contracts that are based on these metrics.

· Descriptions of the interactions are important for enabling auditability and repeatability, thereby establishing a context for results and support for understanding observed change in performance or results. Thus, the service description definition:MUST have
· one or more mechanisms to capture, describe, store, discover, and retrieve interaction logs, execution contexts, and the combined interaction descriptions;

· one or more mechanisms for attaching to any results the means to identify and retrieve the interaction description under which the results were generated.

· Descriptions may capture very focused information subsets or can be an aggregate of numerous component descriptions. Service description is an example of an aggregate for which manual maintenance of the whole would not be feasible. Thus, the service description definition:MUST have:

· tools to facilitate identifying description elements that are to be aggregated to assemble the composite description;

· tools to facilitate identifying the sources of information to associate with the description elements;

· tools to collect the identified description elements and their associated sources into a standard, referenceable format that can support general access and understanding;

· tools to automatically update the composite description as the component sources change, and to consistently apply versioning schemes to identify the new description contents and the type and significance of change that occurred.

· The description is the source of vital information in establishing willingness to interact with a resource, reachability to make interaction possible, and compliance with relevant conditions of use. Thus, the service description definition:MUST have::

· one or more discovery mechanisms that enable searching for described resources that best meet the criteria specified by a service participant;

· tools to appropriately track users of the descriptions and notify them when a new version of the description is available.

· The service description MUST provide sufficient information to support service visibility, including the willingness of service participants to interact. However, the corresponding descriptions for providers and consumers may both contain policies, technical assumptions, constraints on semantics, and other technical and procedural conditions that must be aligned to define the terms of willingness
4.2 Service Visibility Model

One of the key requirements for participants interacting with each other in the context of a SOA ecosystem is achieving visibility: before services can interoperate, the participants have to be visible to each other using whatever means are appropriate. The Reference Model analyzes visibility in terms of awareness, willingness, and reachability. In this section, we explore how visibility may be achieved.

4.2.1 Visibility to Business

The relationship of visibility to the SOA ecosystem encompasses both human social structures and automated IT mechanisms. Figure 24 depicts a business setting that is a basis for visibility as related to the Social Structure Model (Figure 3) in the Participation in a SOA Ecosystem view (see Section 3.1). The participants acting in the various roles of service consumers, mediators, and service providers may have direct awareness or mediated awareness where mediated awareness is achieved through some third party. A consumer’s willingness to use a service is reflected by the consumer’s presumption of satisfying goals and needs as these compare with information provided in the service description.
 Service providers offer capabilities that have real world effects that result in a change in state. Reachability of the service by the consumer may lead to interactions that change the state of the SOA ecosystem. The consumer can measure the change of state to determine if the claims made by description and the real world effects of consuming the service meet the consumer’s needs.

[image: image12.png][Sosial Structure

member of

[Participant

Service Consumer|_third party awarness b=

Mediator

<t facitates awareness

[Service Desciptions.

[Service Provider

has ¥

has| ¥ establish reachabity B> Servics | offers capabitty

_— rerecion [Capability.
satisfiedin B[S} changein ot bty toatect

drect awareness.

Figure 24 - Visibility to Business
Visibility and interoperability in a SOA ecosystem requires more than location and interface information. A meta-model for this broader view of visibility is depicted in Section 4.1. In addition to providing improved awareness of service capabilities through description of information such as reachability, behavior models, information models, functionality, and metrics, the service description may identify policies valuable for determination of willingness to interact.

A mediator using service descriptions may provide event notifications to both consumers and providers about information relating to the descriptions. One example of this capability is a publish/subscribe model where the mediator allows consumers to subscribe to service description version changes made by the provider. Likewise, the mediator may provide notifications to the provider of consumers that have subscribed to service description updates.

Another important capability in a SOA ecosystem is the ability to narrow visibility to trusted members within a social structure. Mediators for awareness may provide policy based access to service descriptions allowing for the dynamic formation of awareness between trusted members.

4.2.2 Visibility

Attaining visibility is described in terms of steps that lead to visibility. Different participant communities can bring different contexts for visibility within a single social structure, and the same general steps can be applied to each of the contexts to accomplish visibility.

Attaining SOA visibility requires

· service description creation and maintenance,

· processes and mechanisms for achieving awareness of and accessing descriptions,

· processes and mechanisms for establishing willingness of participants,

· processes and mechanisms to determine reachability.

Visibility may occur in stages, i.e. a participant can become aware enough to look or ask for further description, and with this description, the participant can decide on willingness, possibly requiring additional description. For example, if a potential consumer has a need for a tree cutting (business) service, the consumer can use a web search engine to find web sites of providers. The web search engine (a mediator) gives the consumer links to relevant web pages and the consumer can access those descriptions. For those prospective providers that satisfy the consumer's criteria, the consumer's willingness to interact increases. The consumer may contact several tree services to get detailed cost information (or arrange for an estimate) and may ask for references (further description). The consumer is likely to establish full visibility and proceed with interaction with the tree service that mutually establishes visibility.

4.2.2.1 Awareness

An important means for one participant to be aware of another is to have access to a description of that participant and for the description to be sufficiently complete to support the other requirements of visibility.

Awareness can be established without any action on the part of the target participant other than the target providing appropriate descriptions. Awareness is often discussed in terms of consumer awareness of providers but the concepts are equally valid for provider awareness of consumers.

Awareness can be decomposed into: creating the descriptions, making them available, and discovering the descriptions. Discovery can be initiated or it can be by notification.

Achieving awareness in a SOA ecosystem can range from word of mouth to formal service descriptions in a standards-based registry/repository. Some other examples of achieving awareness in a SOA ecosystem are the use of a web page containing description information, email notifications of descriptions, and document based descriptions.

A mediator for awareness is a third party participant whose use provides awareness to one or more consumers of one or more services. Direct awareness is awareness between a consumer and provider without the use of a third party. The use of a registry/repository can provide awareness as can a Web page displaying similar information.

Direct awareness may be the result of having previously established an execution context, or direct awareness may include determining the presence of services and then querying the service directly for description. As an example, a priori visibility of some sensor device may provide the means for interaction or a query for standardized sensor device metadata may be broadcast to multiple locations. If acknowledged, the service interface for the device may directly provide description to a consumer so the consumer can determine willingness to interact.

The same medium for awareness may be direct in one context and may be mediated in another context. For example, a service provider may maintain a web site with links to the provider’s descriptions of services giving the consumers direct awareness to the provider’s services. Alternatively, a community may maintain a web site with a search interface that makes use of an index of these (and possibly other) descriptions of services, and the web site could be used by any number of consumers. More than one approach to mediation may be involved, as different sources of description may specialize in different functions whose use provides mediation.

Descriptions may be formal or informal. Section 4.1, provides a comprehensive model for service description that can be used to mediate visibility. Using consistent description taxonomies and standards based mediated awareness helps provide more effective awareness.

4.2.2.1.1 Mediated Awareness

Mediated awareness promotes simplification of the overall services infrastructure
. Rather than all potential service consumers being informed on a continual basis about all services, there is a known or agreed upon facility or location that stores and supports discovery and/or notification related to the service description.

[image: image13.png]discover servicss B

discover servicss B

Mediator

il

|

B I

Figure 25 - Mediated Awareness
In Figure 25, the potential service consumers perform queries or are notified in order to locate those services that satisfy their needs. As an example, the telephone book is a mediating registry where individuals perform manual searches to locate services (i.e. the yellow pages). The telephone book is also a mediated registry for solicitors to find and notify potential customers (i.e. the white pages).

In mediated service awareness for large and dynamic numbers of service consumers and service providers, the benefits of utilizing the awareness
mediator typically far outweigh the management issues associated with it. Some of the benefits of mediated service awareness are

· Potential service consumers have a known location for searching thereby eliminating needless and random searches

· Typically a consortium of interested parties (or a sufficiently large corporation) serves as the host of the mediation facility

· Standardized tools and methods can be developed and promulgated to promote interoperability and ease of use.

However, mediated awareness can have some risks associated with it:

· A single point of failure. If the awareness mediator
fails then a large number of service providers and consumers are potentially adversely affected.

· A single point of control. If the awareness mediator
is owned by, or controlled by, someone other than the service consumers and/or providers then the latter may be put at a competitive disadvantage based on policies of the discovery provider.

A common mechanism for mediated awareness is a registry/repository. The registry stores links or pointers to service description artifacts. The repository in this example is the storage location for the service description artifacts. Service descriptions can be pushed (publish/subscribe for example) or pulled from the registry/repository mediator.

Registries/repositories may be referred to as federated when supported functions, such as responding to discovery requests, are distributed across multiple registry/repository instances.

4.2.2.1.2 Awareness in Complex Social Structures

Awareness applies to one or more social structures where there is at least one description provider and one description consumer. Awareness may occur within the same social structure or across social structures.
In Figure 26, awareness can be between a limited set of consumers and providers within a single social structure. Within a social structure, awareness can be encouraged or restricted through policies
 and these policies can affect participant willingness. The information about policies should be incorporated in the relevant descriptions. Additionally, the conditions for establishing contracts are governed within a social structure.

[image: image14.png][S0A Ecosystem

s
st
"
Service Consumer 1.0 |Community | 1.*_[service Provider
— s 4
publish or & ~~ A publish o
discover 7 Tscover
esmription

Figure 26 - Awareness in a SOA Ecosystem
IT policy/contract mechanisms can be used by visibility mechanisms to provide awareness between social structures, including trust mechanisms to enable awareness between trusted social structures. For example, government organizations may want to limit awareness of an organization’s services to specific communities of interest.

Another common business model for awareness is maximizing awareness to those within the social structure, the traditional market place business model. A centralized awareness-mediator often arises as a provider for this global visibility, a gatekeeper of visibility so to speak. For example, Google is a centralized awareness-mediator for accessing information on the web. As another example, television networks have centralized entities providing a level of awareness to communities that otherwise could not be achieved without going through the television network.

However, mediators have motivations, and they may be selective in which information they choose to make available to potential consumers. For example, in a secure environment, the mediator may enforce security policies and make information selectively available depending on the security clearance of the consumers.

4.2.2.2 Willingness

Having achieved awareness, participants use descriptions to help determine their willingness to interact with another participant. Both awareness and willingness are determined prior to consumer/provider interaction.

 REF _Ref296094368 \h
By establishing a willingness to interact within a particular social structure (see Section 3.2.5.1), the social structure provides the participant access to capabilities based on conditions the social structure finds appropriate for its context. The participant can use these capabilities to satisfy goals and objectives as specified by the participant’s needs.

Information used to determine willingness is provided by Description (see Section 4.1.1).
 Information referenced by Description may come from many sources. For example, a mediator for descriptions may provide 3rd party annotations for reputation. Another source for reputation may be a participant’s own history of interactions with another participant. The contribution of real world effects to providing evidence and establishing the reputation of a participant is discussed with relation to Figure 9.

A participant inspects functionality for potential satisfaction of needs. Identity is associated with any participant, however, identity may or may not be verified. If available, participant reputation may be a deciding factor for willingness to interact. Policies and contracts referenced by the description may be particularly important to determine the agreements and commitments required for business interactions. Provenance may be used for verification of authenticity of a resource.

Mechanisms that aid in determining willingness make use of the artifacts referenced by descriptions of services. Mechanisms for establishing willingness could be as simple as rendering service description information for human consumption to automated evaluation of functionality, policies, and contracts by a rules engine. The rules engine for determining willingness could operate as a policy decision procedure as defined in Section 4.4.

4.2.2.3 Reachability

Reachability involves knowing the endpoint, protocol, and presence of a service. At a minimum, reachability requires information about the location of the service and the protocol describing the means of communication.

[image: image15.png]fPresence

Protocal [Endpoint
uncapn deseon or ¥ ek

avaiabity B
Message | Winvokedvia [ogoq) reflectedn_ [action Presence| [Service Presence

Figure 27 - Service Reachability
Endpoint

A reference-able entity, processor or resource against which an action can be performed. XE "Endpoint"
Protocol

A structured means by which details of a service interaction mechanism are defined. XE "Protocol"
Presence

The measurement of reachability of a service at a particular point in time. XE "Presence"

A protocol defines a structured method of communication. Presence is determined by interaction through a communication protocol. Presence may not be known in many cases until the interaction begins. To overcome this problem, IT mechanisms may make use of presence protocols to provide the current up/down status of a service.

Service reachability enables service participants to locate and interact with one another. Each action may have its own endpoint and also its own protocols associated with the endpoint and whether there is presence for the action through that endpoint. Presence of a service is an aggregation of the presence of the service’s actions, and the service level may aggregate to some degraded or restricted presence if some action presence is not confirmed. For example, if error processing actions are not available, the service can still provide required functionality if no error processing is needed. This implies reachability relates to each action as well as applying to the service/business as a whole.

4.2.3 Architectural Implications

Visibility in a SOA ecosystem has the following architectural implications on mechanisms providing support for awareness, willingness, and reachability:

· Mechanisms providing support for awareness MUST have the following minimum capabilities:

· creation of Description, preferably conforming to a standard Description format and structure;

· publishing of Description directly to a consumer or through a third party mediator;

· discovery of Description, preferably conforming to a standard for Description discovery;

· notification of Description updates or notification of the addition of new and relevant Descriptions;

· classification of Description elements according to standardized classification schemes.

· In a SOA ecosystem with complex social structures, awareness MAY be provided for specific communities of interest. The architectural mechanisms for providing awareness to communities of interest MUST support:

· policies that allow dynamic formation of communities of interest;

· trust that awareness can be provided for and only for specific communities of interest, the bases of which are typically built on encryption technologies.

· The architectural mechanisms for determining willingness to interact MUST support:

· verification of identity and credentials of the provider and/or consumer;

· access to and understanding of description;

· inspection of functionality and capabilities;

· inspection of policies and/or contracts.

· The architectural mechanisms for establishing reachability MUST support:

· the location or address of an endpoint;

· verification and use of a service interface by means of a communication protocol;

· determination of presence with an endpoint which MAY only be determined at the point of interaction but MAY be further aided by the use of a presence protocol for which the endpoints actively participate.

4.3 Interacting with Services Model

Interaction is the activity involved in using a service to access capability in order to achieve a particular desired real world effect, where real world effect is the actual result of using a service. An interaction can be characterized by a sequence of communicative actions. Consequently, interacting with a service, i.e. participating in joint action with the service—usually accomplished
by a series of message exchanges—involves individual actions performed by both the service and the consumer.
 Note that a participant (or delegate acting on behalf of the participant) can be the sender of a message, the receiver of a message, or both.

4.3.1 Interaction Dependencies

Recall from the Reference Model that service visibility is the capacity for those with needs and those with capabilities to be able to interact with each other, and that the service interface is the means by which the underlying capabilities of a service are accessed. Ideally, the details of the underlying service implementation are abstracted away by the service interface. [Service] interaction therefore has a direct dependency on the visibility of the service as well as its implementation-neutral interface (see Figure 28). Service visibility is composed of awareness, willingness, and reachability, and these are discussed in Section 4.2. The information related to the service interface description is discussed in Section 4.1.1.3.1, and the specifics of interaction are detailed in the remainder of Section 4.3. Service visibility is modeled in Section 4.2.2.

[image: image16.png]Interaction

-

N
N

[Awareness ﬂservlce Visibility

Wilingness

[Reachability|

arterface=>
Service Interface

finformation Model| [Beha

for Model

Figure 28 - Interaction dependencies

4.3.2 Actions and Events

The SOA-RAF uses message exchange between service participants to denote actions performed against and by the service, and to denote events that report on real world effects that are caused by the service actions. A visual model of the relationship between these concepts is shown in Figure 29.

[image: image17.png]conveys B

sends - arecsives performs - causes
[Action
[Participant [Message [Service
[Event
receives B sends senses Teports B
oy B
paricipates i B [Mgasage] paricinates in

[Exchange

Figure 29 - A 'message' denotes either an action or an event
Both actions and events, realized by the SOA services, are denoted by the messages. The Reference Model states that the action model characterizes the “permissible set of actions that may be invoked against a service.” We extend that notion here to include events
and that messages are intended for invoking actions or for notification of events.
In Section 3.3.2 we saw that participants interact with each other in order to participate in joint actions. A joint action is not itself the same thing as the result of the joint action. When a joint action is participated in with a service, the real world effect that results may be reported in the form of an event notification.

4.3.3 Message Exchange

Message exchange is the means by which service participants (or their delegates) interact with each other. There are two primary modes of interaction: joint actions that cause real world effects and notification of events that report real world effects
.

A message exchange is used to affect an action when the messages contain the appropriately formatted content, are directed towards a particular action in accordance with the action model, and the delegates involved interpret the message appropriately.

A message exchange is also used to communicate event notifications. An event is an occurrence that is of interest to some participant; in our case when some real world effect has occurred. Just as action messages have formatting requirements, so do event notification messages. In this way, the Information Model of a service must specify the syntax (structure), and semantics (meaning) of the action messages and event notification messages as part of a service interface. It must also specify the syntax and semantics of any data that is carried as part of a payload of the action or event notification message. The Information Model is described in greater detail in the Service Description Model (see Section 4.1).

In addition to the Information Model that describes the syntax and semantics of the messages and data payloads, exception conditions and error handling in the event of faults (e.g., network outages, improper message formats, etc.) must be specified or referenced as part of the Service Description.

When a message is used to invoke an action, the correct interpretation typically requires the receiver to perform an operation, which itself invokes a set of private, internal actions. These operations represent the sequence of (private) actions a service must perform in order to validly participate in a given joint action.

Similarly, the correct consequence of realizing a real world effect may be to initiate the reporting of that real world effect via an event notification.

Message Exchange

The means by which joint action and event notifications are coordinated by service participants (or delegates). XE "Message Exchange"
Operations

The sequence of actions a service must perform in order to validly participate in a given joint action. XE "Operations"
4.3.3.1 Message Exchange Patterns (MEPs)

The basic temporal aspect of service interaction can be characterized by two fundamental message exchange patterns (MEPs):

· Request/response to represent how actions cause a real world effect
· Event notification to represent how events report a real world effect
This is by no means a complete list of all possible MEPs used for inter- or intra-enterprise messaging but it does represent those that are most commonly used in exchange of information and reporting changes in state both within organizations and across organizational boundaries.

[image: image18.png][opt]

recpiests
response
WEP]

sehtveauestis)

respohsehsg

jprocess
resuestiiss)

jperform
Joperations.

[opt]

fevert
natication
WEP]

jprocess(
raticatianttsg)

registernterest

seni(notificationttsg)

forEvert]
seninotificationttsg)

(Change in sharect
stote

Figure 30 - Fundamental SOA message exchange patterns (MEPs)
Recall from the Reference Model that the Process Model characterizes “the temporal relationships between and temporal properties of actions and events associated with interacting with the service.” Thus, MEPs are a key element of the Process Model. The meta-level aspects of the Process Model (just as with the Action Model) are provided as part of the Service Description Model (see Section 4.1).

In the UML sequence diagram shown in Figure 30 it is assumed that the service participants (consumer and provider) have delegated message handling to hardware or software delegates acting on their behalf. In the case of the service consumer, this is represented by the Consumer Delegate component. In the case of the service provider, the delegate is represented by the Service component. The message interchange model illustrated represents a logical view of the MEPs and not a physical view. In other words, specific hosts, network protocols, and underlying messaging system are not shown, as these tend to be implementation specific. Although such implementation-specific elements are considered outside the scope of this document, they are important considerations in modeling the SOA execution context. Recall from the Reference Model that the execution context of a service interaction is “the set of infrastructure elements, process entities, policy assertions and agreements that are identified as part of an instantiated service interaction, and thus forms a path between those with needs and those with capabilities.”

4.3.3.2 Request/Response MEP

In a request/response MEP, the Consumer Delegate component sends a request message to the Service component. The Service component then processes the request message. Based on the content of the message, the Service component performs the service operation and the associated private actions. Following the completion of these operations, a response message is returned to the Consumer Delegate component. The response could be that a step in a process is complete, the initiation of a follow-on operation, or the return of requested information.

Although the sequence diagram shows a synchronous interaction (because the sender of the request message, i.e., Consumer Delegate, is blocked from continued processing until a response is returned from the Service) other variations of request/response are valid, including asynchronous (non-blocking) interaction through use of queues, channels, or other messaging techniques.
What is important to convey here is that the request/response MEP represents action, which causes a real world effect, irrespective of the underlying messaging techniques and messaging infrastructure used to implement the request/response MEP.

4.3.3.3 Event Notification MEP

An event is made visible to interested consumers by means of an event notification message exchange that reports a real world effect; specifically, a change in shared state between service participants. The basic event notification MEP takes the form of a one-way message sent by a notifier component (in this case, the Service component) and received by components with an interest in the event (here, the Consumer Delegate component).

Often the sending component may not be fully aware of all the components that wish to receive the notification; particularly in so-called publish/subscribe (‘pub/sub’) situations. In event notification message exchanges, it is rare to have a tightly-coupled link between the sending and the receiving component(s) for a number of practical reasons. One of the most common needs for pub/sub messaging is the potential for network outages or communication interrupts that can result in loss of notification of events. Therefore, a third-party mediator component is often used to decouple the sending and receiving components.
Although this is typically an implementation issue, because this type of third-party decoupling is so common in event-driven systems, it is warranted for use in modeling this type of message exchange in the SOA-RAF. This third-party intermediary is shown in Figure 30 as an Event Broker mediator. As with the request/response MEP, no distinction is made between synchronous versus asynchronous communication, although asynchronous message exchange is illustrated in the UML sequence diagram depicted in Figure 30.

4.3.4 Composition of Services

Composition of services is the act of aggregating or ‘composing’ a single service from one or more other services. A simple model of service composition is illustrated in Figure 31.

[image: image19.png]

Figure 31 - Simple model of service composition
Here, Service A is a service that has an exposed interface IServiceA, which is available to the Consumer Delegate and relies on two other services in its implementation. The Consumer Delegate does not know that Services B and C are used by Service A, or whether they are used in serial or parallel, or if their operations succeed or fail. The Consumer Delegate only cares about the success or failure of Service A. The exposed interfaces of Services B and C (IService B and IServiceC) are not necessarily hidden from the Consumer Delegate; only the fact that these services are used as part of the composition of Service A. In this example, there is no practical reason the Consumer Delegate could not interact with Service B or Service C in some other interaction scenario.

While the service composition is opaque from the Consumer Delegate’s perspective, it is transparent to the service owner. This transparency is necessary for service management
to properly manage the dependencies between the services used in constructing the composite service—including managing the service’s lifecycle. The subject of services as management entities is described and modeled in the Ownership in a SOA Ecosystem View of the SOA-RAF and is not further elaborated in this section. The point to be made here is that there can be different levels of opaqueness or transparency when it comes to visibility of service composition.

Services can be composed in a variety of ways, including direct consumer-to-service interaction, by using programming techniques or using an intermediary, such as an orchestration engine leveraging higher level orchestration languages.
Such approaches are further elaborated in the following sub-sections.

4.3.5 Service Composition of Business Processes and Collaborations

The concepts of business processes and collaborations in the context of exchanges across organizational boundaries are described and modeled as part of the Participation in a SOA Ecosystem view of this reference architecture (see Section 3). Here, we focus on the belief that the principles involved in the composition of services (including but not limited to loose coupling, selective transparency and opacity, dynamic interactions)
can be applied to business processes and collaborations. Of course, business processes and collaborations traditionally represent complex, multi-step business functions that may involve multiple participants, including internal users, external customers, and trading partners. Therefore, such complexities cannot simply be ignored when transforming traditional business processes and collaborations to their service-oriented variants.

Business Process

A set of steps (activities) performed in accordance with predefined logic in order to achieve a required business outcome. XE "Business Process"

Business Collaboration
A set of interactions among business participants where each participant agrees to perform activities that in aggregate will produce a required business outcome. XE "Business Collaboration"
Realizing the required business outcomes often involve a combination of business processes and business collaborations. Collaborations may be among actors executing formal business practices; business processes may call upon other actors who accomplish their activities through collaborative efforts. The techniques discussed in the following can be applied to any combination of services that instantiate service-oriented business processes or are used as part of service-oriented business collaborations.

4.3.5.1 Service-Oriented Business Processes

Service orientation as applied to business processes includes both (1) abstracting as services the participating activities and rules governing business processes and (2) using the resulting service to realize the effects of the abstracted process.

When business processes are implemented as
SOA services, all of the concepts used to describe and model composition of services that were articulated in Section 4.3.4 apply. However, there are some important differences between a
service that represents an abstraction of a business process and a service that represents a single-step business interaction. Business processes have temporal properties and can range from short-lived processes that execute on the order of minutes or hours to long-lived processes that can execute for weeks, months, or even years. Further, these processes may involve many participants and may be important considerations for the consumer of a service-oriented business process. For example, a consumer may need to know details of the business process in order to have confidence in the resulting real world effects. In such cases, these temporal properties along with the meta-level aspects of any sub-processes may need to be articulated as part of the meta-level aspects of the service-oriented business process in its Service Description.

 A technique that is used to compose service-oriented business processes that are hierarchical (top-down) and self-contained in nature is known as orchestration.
Orchestration

A technique used to compose service-oriented business processes that are executed and coordinated by an actor acting as ‘conductor.’ XE "Orchestration"
In orchestration, the conductor organizes, controls, and is accountable for the final expected outcome. Among the many ways of implementing business processes, a prevalent implementation is using the orchestration engine and orchestration language (domain-specific language designed specifically to simplify programming).

A simple generic example of such an orchestration is illustrated in Figure 32. Here, Service A is the orchestrating service that controls interaction with the orchestrated service, Service B.

[image: image20.emf]Simple Service-Oriented

Business Process (Service A)

Task 1

Task 3

Task 2

[business rule

satisfied]

[business rule

not satisfied]

Consumer

Delegate

Input data

output data

IServiceA

«request»

«response»

Service B

IServiceB

Figure 32 - Abstract example of orchestration

Here, we use a UML activity diagram to model the simple service-oriented business process as it allows us to capture the major elements of business processes such as the set of related tasks to be performed, linking between tasks in a logical flow, data that is passed between tasks, and any relevant business rules that govern the transitions between tasks. A task is a unit of work that an individual, system, or organization performs and can be accomplished in one or more steps or subtasks. While subtasks can be readily modeled, they are not illustrated in the orchestration model in Figure 32.

This particular example is based on a request/response MEP and captures how one particular task (Task 2) actually utilizes an externally-provided service, Service B. The entire service-oriented business process is exposed as Service A that is accessible via its externally visible interface, IServiceA.

Although not explicitly shown in the orchestration model above, it is assumed that there exists a software or hardware component, i.e., orchestration engine that executes the process flow. Recall that a central concept to orchestration is that process flow is coordinated and executed by a single conductor delegate; hence the name ‘orchestration.’ This is illustrated more generally in Figure 33.

[image: image21.emf]

Service

1

Service

2

Service

3

Service

1

Service

2

Service

3

Controller

•

•

•

•

Figure 33 - General Orchestration Pattern

Orchestration is typically considered in the context of automated processes; however, human actors may also take part. This may be particularly important in cases where the automation fails and human intervention becomes necessary.

4.3.5.2 Service-Oriented Business Collaborations

Whereas orchestration requires a central controller to execute a predefined business process, service composition can also be accomplished as a simultaneous cooperation between actors without the presence of a central control. For such a collaboration, the actors, often considered to be acting as peers, proceed according to prior agreements for information flow and actions. For purposes of this Reference Architecture Foundation, we refer to such interactions as ‘service-oriented business collaborations.’ The technique that is used to compose service-oriented business collaborations is known as choreography.

Choreography

A technique used to engage independent business services into collaborative efforts in order to achieve a common business outcome based on collective agreements between participants and with no one in charge over the entire collaboration XE "Choreography"
For choreography, multiple parties collaborate in a peer-style communication as part of some larger business transaction by exchanging messages with trading partners and external organizations (e.g., suppliers). [NEWCOMER/LOMOW] It differs from orchestration primarily in that each party in a business collaboration describes its part in the service interaction. Service-oriented business collaborations do not necessarily imply exposing the entire peer-style business collaboration as a service itself but rather the collaboration uses service-based interchanges.
A simple generic example of a choreography is illustrated in Figure 34.
[image: image22.png]‘Agreed upon business.
protocols (choreographies)

Organization X

Organization Y

Simple Service-Oriented
Business Process (Service A)

wrequestn

Simple Internal
Business Process

Task 1

ousiness rule

ot satsisc]

[ousiness rle
satsfed]

Figure 34 - Abstract example of choreographyThis example, which is a variant of the orchestration example illustrated earlier (in Figure 32), adds trust boundaries between two organizations; namely, Organization X and Organization Y. It is assumed that these two organizations are peer entities that have an interest in a business collaboration, for example, Organization X and Organization Y could be trading partners. Organization X retains the service-oriented business process Service A, which is exposed to internal consumers via its provided service interface, IServiceA. Organization Y also has a business process that is involved in the business collaboration; however, for this example, it is an internal business process that is not exposed to potential consumers either within or outside its organizational boundary.

In Figure 34, the communications between Organization X and Organization Y are shown through ports where there are “agreed-upon business protocols (choreographies)”. These ports do not explicitly show service interfaces in order to emphasize that in the example these are not intended to be generally available to any actor in the SOA ecosystem; however, the interfaces should adhere to the principles involved in the composition of services.

The message exchanges used for the choreography need to specify
how and when to pass control from one trading partner to another, i.e., between Organization X and Organization Y. Defining the business protocols used in the business collaboration involves precisely specifying the visible message exchange behavior of each of the parties involved in the protocol, without revealing internal implementation details [NEWCOMER/LOMOW]. In a service-oriented business collaboration, a choreography language
must be capable of describing the coordination of those service-oriented processes that cross organizational boundaries. In case of an upset, the choreography should provide for contingencies including, as with orchestration, human intervention.

4.3.6 Architectural Implications of Interacting with Services

Interacting with Services has the following architectural implications on mechanisms that facilitate service interaction:

· A well-defined service Information Model MUST be provided that:

· describes the syntax and semantics of the messages used to denote actions and events;

· describes the syntax and semantics of the data payload(s) contained within messages;

· documents exception conditions in the event of faults due to network outages, improper message/data formats, etc.;

· is both human readable and machine processable;

· is referenceable from the Service Description artifact.

· A well-defined service Behavior Model MUST be provided (as defined in the SOA-RM)
that:

· characterizes the knowledge of the actions invoked against the service and events that report real world effects as a result of those actions;

· characterizes the temporal relationships and temporal properties of actions and events associated in a service interaction;

· describe activities involved in a workflow activity that represents a unit of work;

· describes the role (s) performed in a service-oriented business process or service-oriented business collaboration;

· is both human readable and machine processable;

· is referenceable from the Service Description artifact.

· Service composition mechanisms MUST be included to support orchestration of service-oriented business processes and choreography of service-oriented business collaborations such as:

· Declarative and programmatic compositional languages;

· Orchestration and/or choreography engines that support multi-step processes as part of a short-lived or long-lived business transaction;

· Orchestration and/or choreography engines that support compensating transactions in the presences of exception and fault conditions.

· Infrastructure
MUST be specified that provides mechanisms to support service interaction, including but not limited to:

· mediation within service interactions based on shared semantics;

· translation and transformation of multiple application-level protocols to standard network transport protocols;

· auditing and logging that provide a data store and mechanism to record information related to service interaction activity such as message traffic patterns, security violations, and service contract and policy violations

· security that provides
authorization and authentication support, etc., which provide protection against common security threats in a SOA ecosystem;

· monitoring
such as hardware and software mechanisms that both monitor the performance of systems that host services and network traffic during service interaction, and are capable of generating regular monitoring reports.
· In a service-oriented business collaboration, a choreography language MUST be capable of describing the coordination of those service-oriented processes that cross organizational boundaries. (In case of an upset, the cchoreography SHOULD provide for contingencies including, as with orchestration, human intervention.
4.4
Policies and Contracts Model

A common phenomenon of many machines and systems is that the scope of potential behavior is much broader than is actually needed for a particular circumstance. This is especially true of a system as powerful as a SOA ecosystem. As a result, the behavior and performance of the system tend to be under-constrained by the implementation; instead, the actual behavior is expressed by means of policies of some form. Policies define the choices that stakeholders make; these choices are used to guide the actual behavior of the system to the desired behavior and performance.

As noted in Section 3.2.5.2, a policy is an expression of constraints that is promulgated by a stakeholder who has the responsibility of ensuring that the constraint is enforceable
. In contrast, contracts are agreements between participants.

While responsibility for enforcement may differ, both contracts and policies share a common characteristic – there is a constraint that must be enforced. In both cases, the mechanisms needed to enforce constraints are likely to be identical; in this model, we focus on the issues involved in representing policies and contracts and on some of the principles behind their enforcement.

4.4.1 Policy and Contract Representation

A policy constraint is a specific kind of constraint: the ontology of policies and contracts includes the core concepts of permission, obligation, owner, and subject. In addition, it may be necessary to be able to combine policy constraints and to be able to resolve policy conflicts.

Policy Framework

A policy framework is a language in which policy constraints may be expressed. XE "Policy Framework"
A policy framework combines syntax for expressing policy constraints together with a decision procedure for determining if a policy constraint is satisfied.

[image: image23.png]Actor

Contract

is party to

Constraint

is bound by

expressed as

is bound by

asserts

Stakeholder

Policy

Figure 35 - Policies and Contracts
We can characterize a policy framework in terms of a logical framework and an ontology of policies. The policy ontology details specific kinds of policy constraints that can be expressed; and the logical framework is a ‘glue’ that allows us to express combinations of policies.

Logical Framework

A linguistic framework consisting of a syntax – a way of writing expressions – and a semantics – a way of interpreting the expressions. XE "Logical Framework"
Policy Ontology

A formalization of a set of concepts that are relevant to forming policy expressions. XE "Policy Ontology"
For example, a policy ontology that allows identification of simple constraints – such as the existence of a property, or that a value of a property should be compared to a fixed value – is often enough to express many basic constraints.

Included in many policy ontologies are the basic signals of permissions and obligations. Some policy frameworks are sufficiently constrained that there is no possibility of representing an obligation; in which case there is often no need to ‘call out’ the distinction between permissions and obligations.

The logical framework is also a strong determiner of the expressivity of the policy framework: the richer the logical framework, the richer the set of policy constraints that can be expressed. However, there is a strong inverse correlation such that increasing expressivity yields less ease and greater inefficiency of implementation.

In the discussion that follows we assume the following basic policy ontology:

Policy Owner

A stakeholder that asserts and enforces the policy. XE "Policy Owner"
Policy Subject

An actor whose action, or a resource whose maintenance or use, is
constrained by a policy or contract. XE "Policy Subject"
Policy Constraint

A measurable and enforceable proposition found within a policy. XE "Policy Constraint"
Policy Object

An identifiable state, action or resource that is potentially constrained by the policy. XE "Policy Object"
4.4.2 Policy and Contract Enforcement

The enforcement of policy constraints has to address two core problems: how to enforce the atomic policy constraints, and how to enforce combinations of policy constraints. In addition, it is necessary to address the resolution of policy conflicts. Contracts are the documented agreement between two or more parties but otherwise have the same enforcement requirements as policies.

4.4.2.1 Enforcing Simple Policy Constraints

The two primary kinds of policy constraint – permission and obligation – naturally lead to different styles of enforcement. A permission constraint must typically be enforced prior to the policy subject invoking the policy object. On the other hand, an obligation constraint must typically be enforced after the fact through some form of auditing process and remedial action.

For example, if a communications policy required that all communication be encrypted, this is enforceable at the point of communication: any attempt to communicate a message that is not encrypted can be blocked.

Similarly, an obligation to pay for services rendered is enforced by ensuring that payment arrives within a reasonable period of time. Invoices are monitored for prompt (or lack of) payment.

The key concepts in enforcing both forms of policy constraint are the policy decision and the policy enforcement.

Policy Decision

A determination as to whether a given policy constraint is satisfied. XE "Policy Decision"
A policy decision is effectively a measurement of some state – typically a portion of the SOA ecosystem’s shared state. This implies a certain timeliness in the measuring: a measurement that is too early or is too late does not actually help in determining if the policy constraint is satisfied appropriately.

Policy Enforcement

A mechanism that limits the behavior and/or state of policy subjects to comply with a policy decision. XE "Policy Enforcement"
A policy enforcement implies the use of some mechanism to ensure compliance with a policy decision. The range of mechanisms is completely dependent on the kinds of atomic policy constraints that the policy framework may support. As noted above, the two primary styles of constraint – permission and obligation –lead to different styles of enforcement.

4.4.2.2 Conflict Resolution

Whenever it is possible that more than one policy constraint applies in a given situation, there is the potential that the policy constraints themselves are not mutually consistent. For example, a policy constraint that requires communication to be encrypted and a policy constraint that requires an administrator to read every communication conflict with each other – the two policy constraints cannot both be satisfied concurrently.

In general, with sufficiently rich policy frameworks, it is not possible to always resolve policy conflicts automatically. However, a reasonable approach is to augment the policy decision process with simple policy conflict resolution rules; with the potential for escalating a policy conflict to human adjudication.

Policy Conflict

A state in a policy decision process in which the satisfaction of one or more policy constraints leads directly to the violation of one or more other policy constraints. XE "Policy Conflict"
Policy Conflict Resolution

A rule determining which policy constraint(s) should prevail if a policy conflict occurs. XE "Policy Conflict Resolution"
The inevitable consequence of policy conflicts is that it is not possible to guarantee that all policy constraints are satisfied at all times. This, in turn, implies certain flexibility in the application of policy constraints: each individual constraint may not always be honored.

4.4.3 Architectural Implications

The key choices that must be made in a system of policies center on the policy framework, policy enforcement, and conflict resolution
· There SHOULD be a standard policy framework that is adopted across ownership domains within the SOA ecosystem:

· This framework MUST permit the expression of simple policy constraints

· The framework MAY allow (to a varying extent) the combination of policy constraints, including

· Both positive and negative constraints

· Conjunctions and disjunctions of constraints

· The quantification of constraints

· The framework MUST at least allow the policy subject and the policy object to be identified as well as the policy constraint.

· The framework MAY allow further structuring of policies into modules, inheritance between policies and so on.

· There SHOULD be mechanisms that facilitate the application of policies:

· There SHOULD be mechanisms that allow policy decisions to be made, consistent with the policy frameworks.

· There SHOULD be mechanisms to enforce policy decisions

· There SHOULD be mechanisms to support the measurement of whether certain policy constraints are satisfied, or to what degree they are satisfied.

· Such enforcement mechanisms MAY include support for both permission-style constraints and obligation-style constraints.

· Enforcement mechanisms MAY support the simultaneous enforcement of multiple policy constraints across multiple points in the SOA ecosystem.

· There SHOULD be mechanisms to resolve policy conflicts

· This MAY involve escalating policy conflicts to human adjudication.

· There SHOULD be mechanisms that support the management and promulgation of policies.

� Resources have descriptions and a description can be considered as a type of resource, e.g. the description itself can have further descriptive data such as its version or last revision. The model emphasizes this point but should not be interpreted too rigorously as allowing endless recursion.

� This is analogous to a WSDL 2.0 interface operation (WSDL 1.1 portType) having one or more defined bindings and the service identifies the endpoints (WSDL 1.1 ports) corresponding to the bindings.

� In order for multiple actors to participate in a joint action, they must each act according to their role within the joint action. For SOA-based systems, this is achieved through a message exchange style of communication. The concept of “joint action” is further described in Section � REF _Ref295736542 \r \h ��3.3.2�.

� The notion of “joint” in joint action implies that you have to have a speaker and a listener in order to interact.

� There are cases when a response is not always desired and this would be an example of a “one-way” MEP. Similarly, while not shown here, there are cases when some type of “callback” MEP is required in which the consumer agent is actually exposed as a service itself and is able to process incoming messages from another service.

�Issue 168

�Issue 170 (see also Issue 176)

�Issue 173

�Recursion loop – every description is a resource, that requires a description Modifications needed for Issue 290 remove Consumer and Provider Description classes.

�Issue 291

�To be changed as per 3/29/2012 email and attachment (will resolve Issues 66, 176)

�Issue 176, part

�Change per 3/29/2012 email and attachment Remove Event Model (Issue 292)

�Issue 176

�Comment 179

�Issue 179 – modifications needed

�Comment 179

�Issue 254

�Issue 70

�To be modified per issue 256

�Issue 182

�Issue 75

�Issue 76

�Issue 77

�Similar to Issue 77 but never explicitly entered

�Issue 308

�Issue 183

�Issue 257

�Issue 185

�This text will be repeated in other Architectural Implications sections.

�Reworded

Issue 294

�To be modified per Issue 301

�Unmarked changes per Issue 302

�Issue 187, 188

�Issue 189

�“Mediator” needs to be replaced with “Mediated Awareness” as component label Issue 190

�Issue 192

�Issue 193

�Issue 194

�Issue 195

�Issue 196

�Issue 302

�Issue 262 (part)

�Issue 262 (part)

�Issue 202

�Comment 203

�Change per 3/29/2012 email and attachment

�Issue 292

�Issue 93

�Issue 94, 204

�Issue 264

�Issue 206

�Issue 208

�Issues 95, 209

�Statement relevant with or without service being a composite.

�Issue 265

�Issue 210

�Issues 96 & 216 plus agreed rewrite

�Issue 213

�Figure needs formalizing

�Issue 235

�Issue 98

�Issue 225: can a message exchange “define” anything? “indicate”?

�Issue 226

�Issue 236

�Issue 227

�Issue 300

�Issue 101

�Issue 229

�Issue 102, 230

�Issue 232

�Issue 232

�Issue 272

�Issue 310

�Issue 237

_1390837410.vsd
text

Task 2

IServiceB

[business rule satisfied]

[business rule not satisfied]

Task 3

Simple Service-Oriented
Business Process (Service A)

Service B

Task 1

Consumer
Delegate

Input data

output data

IServiceA

«request»

«response»

