2.1 Services

A service is a set of functionality provided by one entity for the use of others. It is invoked through a software interface but with no constraints on how the functionality is implemented by the providing entity. Thus, the service could carry out its described functionality through one or more automated and/or manual processes that themselves could invoke other available services. A service is opaque in that its implementation is hidden from the service consumer except for (1) the data model exposed through the published service interface and (2) any information included as metadata to describe aspects of the service which are needed by service consumers to determine whether a given service is appropriate for the consumer’s needs. Thus while service opacity is an essential property of SOA, it is not absolute.

Service Composition

Consistent with the axiom of opacity, a Service Consumer cannot see anything behind the service interface and does not know if one service is actually consuming and aggregating additional other services. Whether a Service's functions are mapped to a set of classes in some native language or another service is not important or relevant as far as invoking the service is concerned.

[image: image1.emf]
Figure 2 - Service Composition
Examining Figure 2 - Service Composition above, the service function (for service A) is described in the service description specific to that service. If completing the function depends on two or more serial or parallel paths of execution successfully completing behind the service interface (like calling services B and C) within a certain time frame, that is typically not relevant to state in the service description for service A. Ideally, the service consumer is only concerned with the service's ultimate success or failure. Mapping the functionality to success and failure is the responsibility of the service provider.

As part of hiding its implementation, when a service is invoked by multiple users in a manner such that a new service invocation is requested before a previous service invocation is completed, the mechanisms the service uses to handle the overlapping (and possibly simultaneous) invocations is not typically revealed to the consumer. Indeed, the service may make use of other services providing specialized functionality to support such needs. However, there may be situations, such as quality of service requirements, where the effects of implementation choices have consequences that impact descriptive quantities included in the service metadata. Here, while the implementation details may not be specifically revealed, information derivable from these details will be available to the consumer.

Service interface
The service interface specifies how to access the service and syntactically represents this information in a standard, referenceable format. It prescribes what information needs to be provided to the service in order to exercise its functionality and/or the results of the service invocation to be returned to the service consumer. This logical expression of the set of information items associated with the consumption of the service is often referred to as the service’s data model. Note, that the service may be invoked without requiring input from the consumer and may accomplish its functions without providing any return or feedback to the consumer.

In addition to conforming to a standard, referenceable syntax, the service interface must also make consistent use of SOA semantics as defined in this reference model. This may be represented as a mapping between SOA semantics and the chosen interface syntax. Note, the specific domain semantics of the service provider and service consumer are beyond the scope of this reference model but the reference model does [does it?] address the need for the service interface to enable providers and consumers to unambiguously identify resources providing relevant definitions for their respective domains. See detailed discussion of SOA semantics in section 2.3.

2.1.1 Service description

As discussed above, the concept of a SOA is based on the use of a service without the service consumer needing to know the details of the service implementation. Hidden details could include the specific logic applied, the mechanism for encoding the logic, or the physical means by which the service is hosted. However to use a service, a service consumer must know

(1) the service exists and is available

(2) the service performs a certain function or set of functions

(3) the service operates under a specified set of assumptions, constraints, and policies

(4) the service can be invoked through a specified means, including inputs that the service requires and outputs that will form the response to the invocation.

The mechanisms to establish presence and availability are discussed elsewhere in this document; items (2) through (4) form the service description. The service interface, as described above, describes the basics of the required inputs and outputs that make up the data model for item (4). The description of functionality and assumptions, constraints, and policies are less specific and more dependent on the context to which the service provider and consumer are aligned.

The most difficult of the description items is item (2), that capturing service functionality. This aspect of description needs to be expressed in a way that is generally understandable by service consumers but able to accommodate a vocabulary that is sufficiently expressive for the domain for which the service provides its functionality. The description may include, among other possibilities, a textual description intended for human consumption or identifiers or keywords referenced to specific machine-processible definitions. The likelihood of specifying of a single description vocabulary is a matter of philosophical debate and is not within the scope of this reference model.

Assumptions, constraints, and policies are particular descriptive aspects of a service that control if and under what circumstances the service is appropriate or accessible for use. While the line between each of these is vague, the common requirement is that they must be expressed in such a way as to enable corresponding instances to be processed in a consistent, logical fashion. In essence, assumptions, constraints, and policies not only provide information but also the inputs to a logical framework that can be interpreted and enforced.

Assumptions in the technical sense provide conditions that underlie the derivation of the service functionality. For example, a service that calculates the pressure distribution around a body might indicate whether the solution assumes compressible or incompressible flow and whether shock conditions fall within the service capabilities. The appropriate service would be different for a submarine vs. an automobile vs. a jet flying at supersonic speeds. This example not only highlights the need to evaluate a set of assumptions but also the need to adequately express assumptions specific to a particular domain of discourse.

Constraints, like assumptions, can restrict how a service is to be used. While it may not be an underlying assumption, it could be a precondition to a service being accessed. For example, a constraint could be that a prospective consumer needs to prove there is a paid subscription before the service can be used.

Policies express a set of assertions and obligations to which service providers and/or consumers must adhere. To make use of policies, these must be expressed in a way that characteristics of the provider or consumer can be identified to evaluate whether the policy conditions are being satisfied. For example, if policy states that employee salary information can only be accessed by their direct supervisor or the group’s designated HR representative, then the required conditions must be visible to and identifiable by the policy evaluation mechanism. There may also be a need to capture the results of policy evaluations and such results may be appropriately included as part of the metadata of the service or the participating entities. Metadata is discussed below and policy is more fully discussed in section 2.2.

The relationship between service description and service metadata
The service description may be considered part of or the complete set of the metadata associated with a service (see Appendix META for a discussion of metadata in the context of a SOA) but in any case, the service description overlaps and shares many common properties with service metadata. As noted in Appendix META, there is no one “right” set of metadata but rather the metadata content depends on the context and the needs of the parties using the associated entity. The same holds for a service description. While there are certain elements that are likely to be part of any service description, most notably the data model, many elements such as assumptions and policy may vary. However, the mechanisms to specify the service description should follow a standard, referenceable format that can accommodate the necessary variations and lend themselves to common processing tools (such as discovery engines) to manipulate the service description.

Consider, for example, the descriptive elements that may apply for a data resource vs. a processing resource. Here, we will assume the resources to be distinguished as follows:

· A data resource is a source of content that accepts a request and returns a value or set of values in response. The return can be an entity (such as a particular schema), an attribute of an entity (such as when the schema was last modified), or any numerical or textual value or set of values. The content can be static objects stored in some repository or dynamically generated through the use of a processing resource.

· A processing resource is one that accepts a task and return a status indicating the extent to which the task was completed and information on how the state of entities changed as a result of the processing. One or more processing resources may be invoked as part of a process of submitting a query and being returned a response. From the standpoint of a user (either human or machine), it is unimportant what combination of data and processing resources are invoked as long as the request is satisfied.

Both types of resources are likely to have descriptive items such as a name, a textual description, and possibly a set of descriptors/keywords with a pointer to the vocabulary definition from which the descriptors/keywords are taken. Both resources may also identify responsible parties, including who is responsible for operations, who is responsible for design, who is responsible for implementation. However, it may be appropriate for a data resource to publish its update cycle so a consumer can decide if the resource is current enough for its needs. The processing resource, on the other hand, might publish its current version number (with a reference giving a context for the version numbering semantics) and a development status (with a similar defining reference). Additional constraints and policies could be connected with these descriptive elements. For example, if a particular processing resource has a beta staus, access may only be granted to certified beta testers.
The examples emphasize that both prospective consumers and providers are likely to use elements of the service description to mutually establish the suitability of a given service interaction. The result of the interaction will certainly be the effect of invoking the service functionality, but it may also include the service consumer affecting the description of the providing service. For example, if the service did not perform with the required quality of service, the consumer will be provided a mechanism to report the deficiency. More directly, a service performing policy evaluation may have descriptive elements showing who has used the service. This information may be of use to other consumers deciding which policy evaluation service to use, or it may be part of a notification mechanism to inform past consumers if the evaluation service has been modified. What is common in these examples is that the service description may contain information originating from someone other than the service provider and this has implications fro service description extension/modification and configuration management.
Appendix META – Metadata in the context of a SOA

Metadata is often described as a critical element that will support and enable a service-oriented architecture. To accomplish the many functions for which it has been associated, metadata for a SOA must go beyond being the data model in a database or the information included before a table in a data file to identify the variables represented by the values in the rows and columns. For example, metadata has been discussed in terms of the following capabilities:
· Consumers must be able to search for resources without knowing the details, such as specific APIs, of the resource beforehand. This implies that the description of the resource must be expressed in a universally accessible format and, though it will be associated with the resource, the description will be external to the resource so it can be accessed without reading or otherwise invoking the resource itself.

· The external description must contain sufficient detail so the consumer can decide if the resource will satisfy the current need.

· If the resource is appropriate, the consumer must be able to access the resource content or invoke the resource processing without knowing the APIs or other internal details of the resource.

· If the consumer attempts to access the resource, sufficient information must be available about the consumer so that the provider or an agent acting for the provider can determine if the access is authorized.

· The producer and consumer must share a common format for the description and must also agree on how to interpret the description content. This may be accomplished by indicating a common vocabulary or distinct vocabularies for which services exist to mediate a translation.

To accomplish this, the traditional definition of metadata must be expanded. In the SOA context, we will define metadata to be a subset of the data related to an entity that provides some critical descriptive information which is useful in some context for identifying, using, or otherwise interacting with the entity. It provides a set of descriptive properties which serves one or more of the following functions

1. uniquely characterizes an entity and for which values associated with the descriptive properties allow a user (human or machine) to discriminate between one entity and another,

2. describes how the entity and its contents can be accessed (both procedurally and the terms of access) in either a read or write mode or executed if the entity comprises processing instructions,

3. contains pointers to information not explicitly part of a given metadata set but which is required as processing or control inputs by other applications or services.

Metadata often includes what the entity is, where it is located, and how to make use of it. It may describe entity properties such as format, structure/organization, context, business rules, or any other chosen elements of its integral or associated data or capabilities. It may include the calling argument to methods, invocation of services, or similar executable commands that act on the content of an instance of the entity, including accessing it from its native storage format.

Examples of metadata
Example 1 – metadata for a book
Consider the ways in which metadata for a book may be defined and used for different contexts.

· For a librarian, the Library of Congress classification number is likely an important metadata element.

· Conversely, for a bookseller, the classification number is not likely to be as important but the current sales price would be (while this price may not be of interest to the librarian).

· The text in the book is unlikely to be identified as metadata, but specific quotes from the book may be metadata for someone advertising the book.

Example 2 – getting the weather
Consider a user looking for meteorological data. Metadata associated with a data resource that could support this includes

· general document metadata with the name of the data resource and the geographic locations from where it can be accessed; metadata specific to the function of the data resource, such as the date, time, and location where the data was collected,

· access control restrictions which must be satisfied (or possibly licensing terms if it is a commercial source) and a pointer to the service interface (e.g. WSDL) to retrieve the data,

· a pointer to pedigree information describing the quality of the data as evaluated based on how the data was collected and processed and the accuracy of the measurements.
The request for the meteorological data may generate a log file detailing the services invoked and resources used to satisfy the request, and the log file could be archived using a network storage service. Associated with the stored log could be metadata containing a log ID, the date of the request, and the identity of the requester. Note, in this example, the log file itself is not considered metadata but information describing the log file is. A pointer to the log metadata would be returned with the requested data so the consumer would both know how the request was fulfilled and be able to point to the log as a repeatable means to satisfy a similar request in the future.

As noted in both the book example and the weather example, what constitutes the appropriate metadata set depends on the context of the user and the current needs to be satisfied. Thus, it is less important to have defined the perfect metadata set than to ensure that the combined metadata available can provide or support access to the critical information at the critical time.

