
Artifact: Reference Architecture

A Reference Architecture is, in essence, a predefined
architectural pattern, or set of patterns, possibly
partially or completely instantiated, designed and
proven for use in particular business and technical
contexts, together with supporting artifacts to enable
their use. Often, these artifacts are harvested from
previous projects.

Role: Software Architect

Optionality/Occurrence: Optional. Inception and Elaboration phases.

Templates and Reports:

Examples:

UML Representation: A number of relevant architectural views: Use-Case,
Logical, Process, Deployment, Implementation, Data.

More Information:

 Purpose
 Brief Outline
 Timing
 Responsibility
 Tailoring

Input to Activities:

 Architectural Analysis

Output from Activities:

Purpose

Reference Architecture artifacts are part of an organization's reusable asset
base. Their purpose is to form a starting point for architectural development.
They may range from ready-made architectural patterns, architectural
mechanisms and frameworks, to complete systems, with known
characteristics, proven in use. They may be applicable generally, or for a broad
class of systems spanning domains, or have a narrower, domain-specific,
focus.

The use of tested reference architectures is an effective way to address many
non-functional requirements, particularly quality requirements, by selecting
existing reference architectures, which are known through usage to satisfy
those requirements. Reference Architectures may exist or be used at different
levels of abstraction and from different viewpoints. These correspond to the
4+1 Views (see "A Typical Set of Architectural Views"). In this way, the
software architect can select what fits best—just architectural design, or design

and implementation, to varying degrees of completion.

Often, a Reference Architecture is defined not to include instances of the
components that will be used to construct the system—if it does it becomes a
Product-Line Architecture—but this is not a hard and fast distinction. In the
Rational Unified Process (RUP), we allow the notion of Reference Architecture
to include references to existing, reusable components (that is,
implementations).

Brief Outline

Organization of Assets

The organization which owns the Reference Architecture assets will need to
decide how the assets are to be classified and organized for easy retrieval by
the software architect, by matching selection criteria for the new system.
Although the creation and storage of Reference Architectures is currently
outside the scope of the RUP, one suggestion is that architectures be
organized around the idea of domains, where a domain is a subject area that
defines knowledge and concepts for some aspect of a system, or for a family of
systems. Here we are allowing use of the term 'domain' at levels below that of
the application. This usage differs slightly from some definitions—for example,
that presented in [HOF99]—but aligns well with that presented in [LMFS96]:

"Product-Line Domain: A bounded group of capabilities - present and/or
future - defined to facilitate communication, analysis and engineering in pursuit
of identifying, engineering and managing commonality across a product-line.
Such domains might include closely related groups of end-user systems,
commonly used functions across multiple systems, or widely applicable
groupings of underlying services."

This definition includes the notion that things used to compose systems may
themselves belong to a domain worthy of study in its own right. The figure
below, taken from [LMFS96], illustrates this principle.

Horizontal and Vertical Domains for the US Army

This figure shows the major system families, Information Systems, Command
& Control, and Weapon Systems, each with some wholly contained vertical
domains, and horizontal domains that cut across these and also across system

families. Thus, Real-Time Scheduling concepts are applicable to the Tactical
Domain of Command & Control and all vertical domains of Weapon Systems. It
probably makes sense therefore, to solve real-time scheduling problems once
for all these domains, and treat the knowledge and assets so developed as a
separate domain, which then has an association to, for example, Electronic
Warfare, but not to Personnel Information Systems.

Contents

The Reference Architecture has the same form as the Artifact: Software
Architecture Document and the associated models, stripped of project specific
references, or having project references and characteristics made generic, so
that the Reference Architecture may be classified appropriately in the asset
base. Typical models associated with the Software Architecture Document
(SAD) are a Use-Case Model, Design Model, Implementation Model and
Deployment Model.

Access to the SAD and associated models gives several points of entry for the
software architect, who could choose to use just the conceptual or logical parts
of the architecture (if the organization's reuse policy allows this). At the other
extreme, the software architect may be able to take from the asset base
complete working subsystems, and a Deployment Model at the physical level
(that is, a complete hardware and network blueprint).

Other supporting artifacts are needed to make the architectural assets usable.

1. The Use-Case Model describes the behavior of the architecture but the
software architect will also need to know its non-functional qualities.
These two—the Use-Case Model and non-functional requirements—
may previously have been captured in a Software Requirements
Specification. From this the software architect will be able to determine
how well the Reference Architecture meets current requirements.

2. The use, and more particularly, the modification of the architecture will
need the same guidance as the original development. For example, the
software architect will need to know what rules were applied in the
formation of the Reference Architecture, and how difficult it will be to
modify interfaces. Access to the design guidelines associated with the
Reference Architecture can help answer these questions.

3. (Optional) Reviewing any relevant existing Test Plans may also prove
useful. These Test Plans will inform the architect of the test and
evaluation strategies previously used to test similar architectures, and
as such are likely to provide insight into potential weaknesses in the
architecture.

4. (Optional) Reviewing any relevant existing Test Automation
Architectures and Test Interface Specifications may prove useful.
These artifacts inform the architect of likely requests that may be made
of the architecture to facilitate testing.

Timing

The Reference Architecture is used in inception and early elaboration during
architectural synthesis and the selection of a candidate architecture. The
creation of Reference Architectures is an organizational issue and currently
outside the scope of the RUP. During project close down, the artifacts created

during the project will be examined to see if anything can be harvested and
retained in the organization's asset base, but the activities and techniques
employed to do this are not elaborated here.

Responsibility

The software architect is responsible for the selection and use of Reference
Architectures.

Tailoring

Unless the system is completely unprecedented, Reference Architectures
should be examined for applicability (to the domain and type of development) if
they exist and are accessible to the development organization. The creation of
Reference Architectures is an issue to be addressed at the organization level.
It's certainly possible to cut back on the contents list above and still achieve
some benefits from architectural reuse. For example, it is possible to omit the
test model, although tests would have to be rewritten if the architecture is
modified. At a minimum one might expect a design model and some
associated behavioral description (perhaps the Use-Case Model). Any less and
it's difficult to call the asset a Reference Architecture—it could still be a valid
pattern (analysis, design, ...) of some kind.

Copyright © 1987 - 2003 Rational Software Corporation
Rational Unified Process

