

White Paper
Architecting Web Services

By Mike Rosen, Chief Enterprise Architect, IONA Technologies,

and John Parodi, Principal Writer, IONA Technologies

IONA Technologies PLC

December 2001

iPortal Application Server is a Trademark of IONA Technologies PLC.
IONA e-Business Platform is a Trademark of IONA Technologies PLC.
IONA Enterprise Integrator is a Trademark of IONA Technologies PLC.
IONA Mainframe Integrator is a Trademark of IONA Technologies PLC.
Adaptive Runtime Technology is a Trademark of IONA Technologies PLC.
Total Business Integration is a Trademark of IONA Technologies PLC.
IONA SureTrack is a Trademark of IONA Technologies PLC.
IONA XMLBus is a Registered Trademark of IONA Technologies PLC.
Orbix is a Registered Trademark of IONA Technologies PLC.
Orbix 2000 Notification is a Registered Trademark of IONA Technologies PLC.
Orbix/E is a Registered Trademark of IONA Technologies PLC
E2A is a Registered Trademark of IONA Technologies PLC
“End 2 Anywhere” is a Registered Trademark of IONA Technologies PLC

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no
warranty of any kind to this material including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. IONA Technologies PLC shall not be liable for
errors contained herein, or for incidental or consequential damages in connection with the furnishing,
performance or use of this material.

COPYRIGHT NOTICE
No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form
or by any means, photocopying, recording or otherwise, without prior written consent of IONA
Technologies PLC. No third-party intellectual property right liability is assumed with respect to the use
of the information contained herein. IONA Technologies PLC assumes no responsibility for errors or
omissions contained in this white paper. This publication and features described herein are subject to
change without notice.
Copyright © 1999-2002 IONA Technologies PLC. All rights reserved.
All products or services mentioned in this white paper are covered by the trademarks, service marks, or
product names as designated by the companies that market those products.

M2758

Summary
This paper discusses the architectural considerations and requirements for support
of Web services and Web service applications. It reviews basic Web service
architectures and technologies, examines the granularity of Web services, and
describes how higher-level business functions are exposed or presented as Web
services.

The paper then introduces an enterprise-scale architecture for building Web service
applications and places that architecture into the context of the total enterprise.
Finally, the paper shows how this enterprise architecture for Web services
addresses the architectural requirements, by virtue of its success in actual
customer implementations.This paper is derived from a Webcast presentation by
Mike Rosen, Chief Enterprise Architect with IONA Technologies. Mike’s broad
knowledge of enterprise architecture comes from hands-on implementation
experience with B2B, EAI and distributed technologies, including Java, XML,
CORBA, COM and messaging. He is author of several books, including Designing
E-Business Systems and Architectures: A Manager’s Guide. E-mail him at
mike.rosen@iona.com.

 iii

mailto:mike.rosen@iona.com

Table of Contents
Summary... iii

1 Introduction... 1

2 Definition of Web Services... 2

2.1 Web Service Characteristics.. 4

2.2 Creating Higher-Level Business Functions .. 5

2.3 Document Based Processing... 7

2.4 The Importance Of Business Models .. 9

2.5 Additional Requirements .. 10

3 Fundamentals of Distributed System Architecture 10

3.1 Tiers and Responsibilities ... 14

3.2 The Process Automation Trap ... 16

3.3 Web Services Enterprise Architecture... 18

3.4 Using Web Services for B2B Interaction ... 20

3.5 Using Web Services for EAI .. 20

4 Industry Trends and Evolving Standards ... 22

5 Architecture Review and Conclusions ... 24

6 Further Reading ... 26

7 Contact Details .. 27

 iv

1 Introduction
Any good architecture is constructed in response to specific requirements, and in
accordance with basic architectural principles. Some of the basic architectural
principles discussed in this paper are:

Separate concerns: The purpose of a strict separation of concerns is to keep
independent things independent, so that a change in one part of the system does
not adversely affect other parts. The most familiar example of this principle is the
separation of interface and implementation. At the architecture level, this can be
viewed as a separation of presentation functions from business functions.

Another critical separation of concerns, for the purposes of this discussion, is the
need to keep the business logic independent from the specific technology (EJB,
CORBA, DCOM, and so on.) that is used to implement it. The fundamental idea is
that a business solution should not be specified in terms of IT constructs such as
messages or objects.

Accommodate the future: Architecture should provide flexibility, so that future
application requirements can be satisfied easily. In building a flexible architecture,
we try to identify both the future application requirements and areas that are likely
to change. We isolate those likely changes with architectural “flex points.”
Tracking industry trends helps us to identify some of these areas of potential
change. Clearly, the constantly changing technology landscape means that the
architecture must also be flexible in the face of new technologies as they emerge
and mature.

Align With Industry Standards: Industry standards provide enormous value to IT
development, not only by providing standard solutions to difficult problems, but
also by providing choice and technology commoditization, which let customers
avoid vendor lock-in. Architecture must identify and incorporate appropriate
standards, both current and emerging.

Architect for the Enterprise: Architecture strives to promote consistency and re-
use. Thus, the difference between architecture and enterprise architecture is one of
scope. Whereas application architecture typically applies to a single application or
family of applications—for example, life insurance policy underwriting and related
functions—enterprise architecture is concerned with providing a consistent
infrastructure throughout the entire enterprise, to be used by many different types
of applications. Enterprise architecture must also promote the development of
business functionality in such a way that it is easily reused by those many different
applications. So, to continue the underwriting example, even if the original
underwriting function was designed for life insurance, a forward-looking enterprise
architecture would allow it to be applied to auto and homeowners policies as those
functions are added over time.

Business Drivers: Perhaps the most important architectural principle is that the
purpose of architecture (and of IT as a whole) is to support the enterprise’s
business drivers, that is, the business strategies and goals. In consulting with
CIO’s, CEO’s, and IT Directors over the past few years, the following common,
primary business goals for IT have emerged:

• Become more competitive in this fast moving e-business environment,
meaning much faster time-to-market with new applications.

• Continue to improve the quality of those applications.

• Reduce cost of the applications, meaning not only the development cost
but the costs of maintenance and operation as well.

2 Definition of Web Services
What is a Web service? Simply put, a Web service is a software construct that
exposes business functionality over the Internet. In the context of a Web service,
“expose” means:

• Identifying valuable business processes within the enterprise.

• Defining loosely-coupled, service-oriented interfaces to those processes.

• Describing those interfaces in a Web-based, industry-standard format.

Service-oriented interfaces can be organized into Service-Oriented Architectures,
which define systems in terms of reusable business services rather than business
data, so that business processes can be used in many different applications.
Commonly, smaller units of functionality are recombined into several different,
larger business processes. Building systems based on such an architecture means
that changes in business data do not require changes in cooperating or existing
systems.

Loose coupling applies to several aspects of system design, including
synchronicity, interface, data, and technology. Systems that are loosely-coupled in
time have an asynchronous or event-driven model rather than a synchronous
model of interaction. Interfaces can be designed with loose coupling in mind, so
that minor changes and enhancements in services do not require updates to client
software. The data passed between applications can also be described in a loosely-
coupled, extensible way; XML allows backward-compatible and flexible
enhancements to data schemas. Loose coupling allows different parts of the
system to work together, but to remain independent so that changes in one part do
not necessarily require changes elsewhere.

In this same context, “over the Internet” means:

 2

• Publishing a description of the interface so that it can be discovered and
used. The description of the interface is expressed in an industry-standard,
XML-based format called Web Service Description Language (WSDL).
WSDL supports a complete description of the operations available and the
parameters required to use those business services. In addition, it
describes how to bind to those services, specifying the protocols and
endpoints required. Once a Web service is described, its description is
published in a repository that conforms to the UDDI (Universal Description
and Discovery Interface) standard. Clients can query the repository to
discover an appropriate service. A client might access a service that is
already known, or might search for a service based on a category,
depending on the application. B2B partners will typically look up known
services with known partners. Private consumers will be more likely to

search for services by category, for example stock quotes or currency
conversion, where the semantics of interactions are well understood. Over
time, we expect to see a federation of repositories organized around
industry verticals, like insurance or health care.

• Accepting requests and returning replies. The request is a message
formatted according to the Simple Object Access Protocol (SOAP), which
is a modular protocol built on top of XML. On the Internet, SOAP
messages are sent using HTTP or HTTP/S (although SOAP is actually
protocol-independent). SOAP’s XML foundation is important because XML
provides an extensible mechanism for describing messages and content.
This extension capability allows for a loosely-coupled relationship between
sender and receiver, which is especially important over the Internet where
two parties may be in different organizations or enterprises. In addition,
XML is represented in ASCII text, which can easily pass through corporate
firewalls over the HTTP protocol.

• Bridging between the outward-facing interface (accessible via standard
Web protocols) and internal implementation of the service (typically using
standard as well as proprietary enterprise protocols). The SOAP request is
received by a run-time service (a SOAP “listener”) that accepts the SOAP
message, extracts the XML message body, transforms the XML message
into a native protocol, and delegates the request to the actual business
process within the enterprise. These run-time capabilities may be hosted
within a Web services container, which provides scalability, load
balancing and other enterprise qualities-of-service for the Web service
itself.

So these six items serve as a first approximation of the requirements for a Web
services architecture, as illustrated in Figure 1.

Web Services ContainerWeb Services Container

EJB

Back-end
Systems

J2EE J2EE

CORBA CORBA

JMS JMS

Industry RepositoryIndustry Repository

UDDI /
ebXML

Web
Services

Client

Web
Services
Runtime

WSDL
WSDLWSDL

SOAP /
HTTP(S)

discovery

description

execution

Firewall

Figure 1: Basic Web Services Architecture

 3

To summarize, Web services technology uses XML and other standards to expose
business functionality. The business services are described in WSDL, which is
advertised in a UDDI repository. A client discovers the service and invokes it by
sending SOAP messages that conform to the WSDL description.

Web services were originally envisioned as providing interaction over the Internet,
and that is typically how they are used today. But they are certainly not limited to
that environment. Today, we are seeing simple business functions, such as CORBA
objects, EJB or Java classes, or the targets of JMS messages, being exposed as
Web services. Software, such as IONA’s Orbix E2A e-Business Platform, provides
tools that examine such objects and automatically express their interface
descriptions in WSDL.

A Web services runtime component (such as the one generated by Orbix E2A)
handles the reception of the message, the translation of the XML to another format
if necessary, and invocation of the back-end business functionality. In some
systems, these runtime capabilities will be encapsulated within a Web service
container.

2.1 Web Service Characteristics

Looking at Web services from a slightly different angle, we can say that they have
the following characteristics:

• A Web service exposes a well-defined service-based interface described in
WSDL.

• A Web service is registered and can be located through UDDI or another
Web service repository.

• A Web service communicates using higher-level, XML-based messages
sent over standard protocols such as SOAP.

• A Web service is implemented inside the enterprise using existing (or new)
business functionality.

So far, the basic architecture shown in Figure 1 supports the characteristics that
we desire in a Web service.

It is important to note that there are two basic location or discovery paradigms:

• Static, in which you find a service that you know about.

• Dynamic, in which you discover a service dynamically.

Static discovery is much like existing naming or directory mechanisms in use
today. Dynamic discovery is similar to Web search engine capabilities but is not
prevalent today. This simply means that Web service discovery is one of those
areas in which change is likely, and this potential for change has to be addressed
by the enterprise architecture.

 4

2.2 Creating Higher-Level Business Functions

Although Web services are similar in many ways to other service-style software
constructs, the characteristics of Web service usage are very different and must be
taken into account. The Web service designer must deal with the basic physics of
widely distributed applications.

One of the most common mistakes made with CORBA and J2EE programming, is
to design a distributed object as though it were the same as a local object. This
usually results in too much—and mostly unnecessary—network traffic and
interaction. This consideration is even more important with Web services.

To illustrate this, lets examine some system characteristics. When we analyze
system performance, we measure the duration of local invocations in units of
microseconds, or with today’s processors, even nanoseconds. When we measure
the latency of LAN messages we use units of milliseconds. But when we measure
message latency over the Internet, we measure in seconds. Thus a distributed
request over the Internet is between a thousands and a million times more
expensive than making a local call.

While networking overhead is obviously an issue for Web services, this does not
mean that we should avoid using networks. But it does mean that we have to
define our network service interfaces intelligently.

The foremost goal of interface design for Web services is to increase request
granularity, which is to say that we must design higher-level interfaces than those
required in other service paradigms. In other words, a Web service must provide
more value and pass more information in a single request.

This goal is achieved by defining interfaces in terms of providing a specific
business service, rather than in terms of getting and setting specific data values.
Web service interfaces should enable business to take place via a single exchange
of messages. One guideline we can use to help us define such interfaces is that
they should expose a valuable business function, for example a sales transaction
for a specific item.

In terms of implementation, we create such a higher-level business service by
combining a set of more primitive or fundamental business functions. We can call
these combinations Business Compositions and design them to follow the
guidelines laid out for service-oriented interfaces, that is, exposing a valuable
business function and exchanging data via a single XML message exchange.

One of the major advantages of this approach is that we can create many different
compositions from the same set of primitive functions. For example, a credit
verification primitive could be used by all services that require immediate payment.

 5

Process Diagram Process Activity

Order
Confirmation

Credit
Approval

Purchase
Order

ERP PO

Order NewInventory

Enter Order Automatically
Into ERP System

Send Orders
to Suppliers

Inventory Not Available

Send Backorder
Notification

Send Order
Confirmation

Inventory Available

Send Credit
Check to Bank

Order Received

credit verified

Figure 2: Sample Business Composition

Figure 2 shows a sample business model that describes a business composition
for purchase order processing. On the left is a process diagram, where each box
represents a fundamental or primitive business process. The composite purchase
order process uses the ERP system, the credit approval system, and the inventory
system.

This kind of diagram shows a usage relationship, which is critical for
understanding dependency management as well as for visualizing the overall
picture. To keep the models simple, interfaces and parameters are not shown.

On the right of Figure 2 is a process activity diagram that shows the flow of the
purchase order process. Both process and process activity diagrams are useful and
necessary for good design.

 6

Web Services ContainerWeb Services Container

Industry RegistryIndustry Registry

SOAP /
HTTP(S)

UDDI /
ebXML

Web
Services

Client

Web
Services
Runtime

discovery

description

EnterpriseInternet

execution

Web Services Business Functionality

Business
Composition

WSDLWSDLWSDL

Firewall

Figure 3: Improved Web Services Architecture

Figure 3 illustrates an improvement over the Web services architecture shown in
Figure 1. Instead of exposing low-level classes as Web services, this architecture
uses a higher level, higher value business function to expose as a service interface.

Changing the level of interface did not affect the underlying Web service
technology architecture, and this is an important point. This means we can use
Web services at a variety of levels within an enterprise, as described below.

2.3 Document Based Processing

One of the characteristics of higher-level interfaces is that more data is passed in a
single message exchange. Many of these higher-level services will use a document-
based communications approach, with data organized into an XML business
document, as opposed to an RPC style.

The difference between the RPC style and the document processing style is that
the RPC style passes a small number of individual data items in a request, and
synchronously gets a small number of reply data items in return. The document
processing style passes a collection of data in the form of a business document.

The document contains all of the information required for business processing. It
typically contains far more data than the amount passed in RPC-style parameters.
Because it is formatted in XML, the document’s structure is self-describing, which
makes it easy for subsets of information to be extracted for different processing
steps. While a document processing request/response could be synchronous, an
asynchronous approach is more common.

 7

Since these documents can contain a great deal of data, document processing can
be complex. A superb paradigm for both document processing (even for simple
documents) and business composition, is that of a business process model (for

example, a workflow definition accompanied by an execution service (for example,
a workflow engine), as shown in Figure 4.

High-Level Web ServicesHigh-Level Web Services
Business
Document
Request

Partners
Business
Document
Response

Business Process Automation

Enterprise
Integration

Server

Business
Composition

packaged applicationfundamental business objects

service
interface

Business
Process
Model

Business
Process
Model

define

define

Figure 4: Document-Based Web Services

At the top of Figure 4 are the different components of a high-level Web service.
Receipt of a request document from a partner is shown at the upper left.

The information in a request document corresponds to the steps in a business
composition, and the business composition is defined as a Business Process
Model. The process model expresses a sequence of steps, conditionals branches,
transformations, and so on. A business process service executes the steps in the
model.

Steps within the model can invoke fundamental/primitive business processes,
which themselves have service-oriented interfaces. Steps may also invoke
processes within packaged applications, such as an ERP system, typically through
an enterprise integration server or through specialized adapters.

Information resulting from the request is then formatted into the response business
document and sent back to the partner. Of course, this architecture supports other
scenarios. The enterprise might initiate a dialogue with a request to a partner and
then process the response. The architecture supports both directions of flow.

Note the critical role of the business process model. It is used to define the
business compositions and the fundamental business objects. More detailed
versions of the business model also define the service-oriented interfaces and the
associated process flows.

 8

2.4 The Importance Of Business Models

Most of the business applications developed in the past forty years do not have a
business model associated with them. So it is perfectly reasonable to ask why
business models are needed.

The fact that most problem domains and applications are not formally modeled is
one of the reasons that application evolution is so complex and difficult, and why
the IT industry has largely failed to deliver on the promise of software reuse.

Figure 2 showed a very simple example of a business model. In practice, a
business model is normally begun at higher level than that shown, and typically
includes:

• A Domain Model, which describes standard industry domain entities. For
example, the insurance industry has entities such as party, risk,
beneficiary, and so on. These insurance domain entities are described in
standards published by the ACORD consortium, so individual enterprises
don’t have to develop a complete domain model themselves.

• An Enterprise Model, which describes the high-level processes and entities
that a particular enterprise adds to a domain model. To continue the
insurance industry example, an enterprise may be in the re-insurance
sector, so only a portion of the insurance domain model would apply. The
enterprise of course has its own set of processes for doing business, and
these processes represent the company’s added value and competitive
advantage. The Enterprise Model represents the entire enterprise.

• Internal models, which provide the details on interfaces, process flows,
and so on, for individual components and applications.

Thus the business model provides the understanding needed before we can design
the fundamental re-usable business objects that span applications in the
enterprise. Designers and architects need to understand what the enterprise looks
like and what the present and future requirements are. Only then can they
correctly identify the abstractions that apply universally. And once those
abstractions are identified, they can be mapped to existing systems.

Failure to identify these widely applicable abstractions means failure to correctly
identify reusable assets.

But if processes and entities are correctly identified, they can be recombined and
reused in many new ways. This makes systems much more flexible and therefore
better able to respond to the ever changing competitive environment. It is no
overstatement to say that a correct business model, and the creation of a
supporting infrastructure of services commonly used by applications, are the keys
to dramatically improving the speed of application development.

On the other hand, those who want to conduct IT business as usual will continue
to create business processes that aren’t flexible enough to span applications and
that will result in new, similar-but-different processes for different applications.
This path leads to the same problems of redundant components, duplicate
processes, and incompatible data that Web services promise to solve.

 9

Of course, Web services alone cannot not solve these problems. But once the
foundation of modeling, infrastructure, and architecture is in place, Web services
do promise standard technology that reduces the cost and complexity of producing
easily accessible business processes that can be re-used, and thereby integrated
with other business processes. The goal of identifying and designing the correct
processes is now more important than ever, and the business model is how we
achieve that goal.

Software architecture models, including business models, are represented in the
Unified Modeling Language (UML), in the form of activity, collaboration, class, and
component diagrams. UML is based on an OMG standard, and the OMG is
promulgating an entire methodology based on formal modeling. See
www.omg.org/mda for more information about the OMG’s Model Driven
Development program.

2.5 Additional Requirements

Many B2B collaborations—and by extension many Web services—will be subject
to some kind of Service Level Agreement (SLA). An SLA may range from something
as simple as specifying a minimum and maximum response time, to something as
complex as having different service guarantees for different pricing levels.

For example, an Application Service Provider might offer two levels of subscription,
basic and premium. Those who opt for a premium SLA would pay a higher price
and in return get, for example, guaranteed throughput, response time, or up time.
Customers who pay for a premium SLA will want to be able to monitor service to
ensure that they are actually getting the premium level of service.

Further, collaboration between business partners will require some kinds of shared
context to be passed with the business documents. A shared context is necessary
for security and for transaction control, and potentially for billing information, e-
commerce market membership information, and so on.

Finally, collaborations may take hours or days to execute. Clearly, we cannot use
tradition two-phase commit (2PC) transactions to assure the atomicity of these
interactions. The issue here is the duration of resource locks and the impact on
concurrency. Instead, a new mechanism for extending atomicity will need to be
used.

Work is under way in developing solutions and standards for all of these issues.

3 Fundamentals of Distributed System
Architecture

Before presenting the enterprise Web services architecture, let us review some of
the fundamentals of distributed system architecture. Two of the most important
concepts in distributed system architecture are tiers and layers.

Architectural tiers and architectural layers both describe a logical separation of
functions such that each tier or layer has a specific set of roles and responsibilities.

 10

http://www.omg.org/mda

The logical separation for architectural tiers—that is, the boundaries between
tiers—are chosen/designed to support distribution, scalability, and reuse. Logical
tiers can be mapped to any number of different physical computer network
topologies. At one end of the distribution spectrum, all tiers might reside on the
same machine. In more complex environments, a single logical tier might run on
multiple machines (in the form of clusters or “machine farms”).

The logical separation for architectural layers is chosen based on the need to
separate infrastructure capabilities (for example, communication) from general
services (for example, logging), from business logic. The relationship between
architectural tiers and layers is shown in Figure 5 on page12, which portrays three
architectural layers (in green) and four architectural tiers (in blue).

The lowest layer is the Infrastructure layer, which provides the underlying technical
and communications capabilities. Generally, the functionality in this layer is
purchased from a middleware vendor; frequently, the purchased middleware will
be customized. Although this layer is important, it is not the subject of this paper.

The Services layer contains common utility functions that are useful in multiple
tiers and by multiple classes of applications. Services include capabilities such as
XML parsing and persistence.

The Application layer is where application and business functionality is
implemented and where we actually apply the roles and responsibilities of the four
architectural tiers.

The four-tier architectural model evolved from the classic three-tier model. In our
experience, the four-tier model is more suitable to an enterprise that must support
a wide range of client applications, devices, and access channels. In the four-tier
model, the “classical presentation tier” has been divided into user and workspace
tiers. Also, some logic that was typically implemented in the enterprise tier under
the three-tier model has been moved into the workspace tier:

• The User Tier is responsible for presentation and device independence, for
example supporting both a Web browser and a WAP-enabled phone.

• The Workspace Tier is responsible for a maintaining a user session, and
for manipulation of user data associated with that session.

 11

user enterpriseworkspace resource

services

infrastructure

application

Underlying technical and
communication capabilities

Common utility functions applied across tiers

Application level business logic

Tiers

Layers

Presentation
and device

independence

User session
and data

manipulation

Business
processes

and entities

Shared
enterprise
resources

Figure 5: Architectural Foundations

Together, the User and Workspace Tiers support all of the interaction with a single
user or partner. Together, the Enterprise and Resource Tiers provide resources and
services to all users:

• The Enterprise Tier is responsible for implementing business processes
and entities and making their functions available via service-oriented
interfaces.

• The Resource Tier is responsible for the management and access of
shared enterprise resources such as legacy systems, packaged
applications, and databases.

Thus the User and Workspace Tiers together support a single user, and there will
be many instances of these tiers to support multiple users. The Enterprise and
Resource Tiers support all users and there is typically one instance of these tiers in
the enterprise.

We can now consider the Web service architecture in the context of tiers and
layers, as shown in Figure 6 on page13. The infrastructure layer is based on a
Web services platform that provides communications capabilities, such as HTTP
and SOAP for external interaction, as well as other protocols such as IIOP for
internal communications. This layer also provides basic services such as logging,
configuration, and management.

 12

user enterprise

packaged
applicationResource

Adapter
Business

Entity

workspace resource

Business
Process

Business
Composition

Business
Document
Processing

Message
Handling

legacy
System

Application
Adapter

Business Processing
Services

Web Service
Services

XML
Services

infrastructure

application

Web Services Platform

services

Figure 6: Advanced Web Services Architecture

The Service layer provides those common services that span multiple tiers,
specifically services needed to support Web services, business processing, and
XML processing.

Now consider the individual tiers of the application layer. The User Tier of the
application layer provides for initial message handling and makes use of Web
Service Services such as an identity service, which establishes shared identity
between partners, and security services such as authentication.

The Workspace Tier processes the XML business document extracted from a
received message. Document processing relies on XML services such as parsing,
transformation, and persistence, as well as Business Processing Services such as
the Business Process Engine for executing process definitions, and so on.
Customization of processing also relies on the identity service and the shared
context it provides.

The Enterprise Tier is responsible for implementing business functions, which may
be exposed as business compositions. The compositions are constructed from
primitive business processes and entities and this construction capability relies on
the business processing and persistence services.

Finally, the Resource Tier exposes existing enterprise resources such as legacy
systems, databases, and packaged applications, to the business processes in the
enterprise tier.

As Figure 6 shows, there are three main groupings, or packages, within the
services layer. The Web Services Service package provide capabilities specifically
related to Web services, and includes:

• The identity service, which establishes shared identity between partners
and which may provide customized processing for a specific partner.

 13

• Service Level Agreement processing – Service Level Agreements are
negotiated with each partner and specify things such as maximum and

average response time, allowable down time, and so on. This service
enforces and monitors these agreements.

• Security, which provides authentication and authorization, non-
repudiation, and so on. Security may be tied to existing mechanisms
within the enterprise.

• Business Transaction Services, which provide an all-or-nothing outcome
for long-lived business collaborations. This is not the same as the tradition
2PC transaction support in many existing systems (where transactions are
typically short-lived) but is built upon such systems.

The Business Process Package provides services for executing business process
models, specifically:

• Business Process Engine, which can execute Business Process Models

• Auditing service to track each step in a process execution and to enable
restart and recovery

Finally, the XML Service Package provides services related to XML processing:

• Parsing and creating XML Documents

• Transforming XML from one schema to another, or to and from a non-XML
representation

• Persisting XML document state

3.1 Tiers and Responsibilities

The User Tier is responsible for performing security authentication and
authorization (at least to the extent that User Tier controls whether a partner
request is rejected or allowed to proceed), and then establishing the shared
identity context for the principals involved in a collaboration. The User Tier is also
responsible for enforcing and monitoring Service Level Agreements. Thus the User
Tier is the gateway to the system and provides the initial message processing for
an interaction.

The Workspace Tier has two main responsibilities. Firstly, it manages the session
state for the user. This is particularly important for long-lived and asynchronous
Web services.

Secondly, it requests services of the Enterprise Tier. But before Enterprise Tier
services can be invoked, the data in the incoming document must be extracted and
rationalized.

 14

So the first step is to parse the XML document that was passed into the
workspace. The document will apply to a specific business process or composition,
which will have an associated Business Process Model. Both the document and
the model will be passed to the BPM service for execution. Specific instances of
the BPM may be customized for individual users (for example, different trading
partners may require different data transformations or have different rules applied
based on SLAs).

Activities, or steps, within the business process will require certain
transformations, for example, between XML schemas or from XML to other
formats, and these transformations are performed by the transformation service.
Intermediate results may be stored using the persistence service. Rather than
passing the entire XML document between each step of the process, a “persistence
ID” may be passed so that each step can retrieve the appropriate data.

Thus the Workspace Tier primarily provides document processing functions.

The Enterprise Tier is responsible for providing business functionality and
managing the integrity of enterprise resources. In doing so, it may enforce system-
level business rules and begin (and thus delimit the scope of) traditional 2PC
transactions.

The business function may be a relatively new capability, such as an EJB in the
Enterprise Tier, but it is more likely that the business function is implemented in a
legacy system or packaged application. In this case, the Enterprise Tier must
interact with the Resource Tier.

The business function in the Enterprise Tier may itself be composed of finer-grain
functions – in other words, it may be a business composition. Complex
compositions may be expressed as Business Process Models, in which case the
Enterprise Tier will also make use of the business processing services.

Thus, the Enterprise Tier is essentially responsible for making business functions
available via service-oriented interfaces.

The Resource Tier is responsible for providing access to the system’s shared
resources and applications. The responsibilities of this tier have remained largely
unchanged as n-tier architectures have evolved over the past several years.

In making the resources of applications available, data transformation and
manipulation may be required. This kind of processing may be quite complex as
evidenced by the capabilities of many EAI systems today. It too will make use of
model processing engines. In this case, the models to be executed tend to have
more data integration steps than business processing steps, but can still be
processed by the same engine and infrastructure.

In deciding how/what to map these resources to, we draw on the business model,
which will have identified the fundamental business processes and entities. We
use the constructs identified in the business model as a starting point, and map
them onto the existing systems, rather than the other way around.

This point needs to be made very strongly. If we instead start with the existing
systems and let them drive the definition of business processes and entities (as
happens quite often), we tend to get new processes that look just like the existing
processes. Software objects or components defined this way are likely to be brittle
and offer very limited flexibility and reuse. Rather than having a set of fundamental
reusable processes, the result is a much larger set of similar, overlapping, and
inconsistent processes.

 15

Mapping systems to the business model in this way also provides the opportunity
to present their respective resources to the rest of the enterprise in some standard
or canonical format. Typically, the canonical format includes some elements of the
enterprise data model to represent the entities, and a technology standard, such as

EJB, to present a ubiquitous interface. Web services provide both the interface and
the metadata support needed to define the entities

Canonical formats are increasingly provided via a Web service. For example,
resource vendors like SAP and Oracle are planning to provide Web service
interfaces directly into their applications.

In summary, the Resource Tier is basically responsible for making resources
available to the enterprise.

3.2 The Process Automation Trap

We now see that process automation can be applied at several points during the
processing of a business document request. Most commonly, it is used in
processing the business document itself, and in the orchestration of a business
collaboration. In complex enterprises it is also used at the application integration
level.

A common architectural pattern in use today embraces the coincidental
appearance of process automation in multiple places, and combines all of the
automation-based processing into the same component. This process automation
model or pattern would be better characterized as the process automation trap.

The problem is that it ignores what we as an industry have learned from building
Web-based systems. The very first rule of architecture for modern systems is to
separate presentation from business functionality. And even though it is relatively
complex, the business document is just another form of presentation. And so, by
combining document processing and business processing in the same model or
pattern, we lose the ability to reuse the business logic in support of different
access channels.

legacy
System

Business
Document

Document Processing,
Business Collaboration,
Application Integration

database

Figure 7: The Process Automation Trap

The result of this improper combination is shown in Figure 7, which should be
contrasted with the architectural separation illustrated in Figure 8 and Figure 9.
This is one of the reasons that a good architecture clearly separates the
responsibilities of business document processing from those of providing business
functionality. And there are more reasons for this separation when the entire
enterprise is considered.

 16

user enterprise

.

.

.
Resource
Adapter

Business
Entity

workspace resource

Business
Process

Component
Business

Composition
Work

Coordinator
View

ControllerPresentation

legacy
SystemApplication

Adapter

Authorization
Service

Configuration
Service

BPM
Service

Logging
Service

Profile
Service

Persistence
Service

User
ProfileSession

application

services

infrastructure Application Services Platform

Figure 8: Web Interface Architecture

Figure 8 illustrates an architecture that we have been using for the past several
years to implement Web-based user interface systems at clients in the insurance,
telecom, finance, and manufacturing industries. It is based on the same three-
layer, four-tier model described above. Each tier in this architecture has essentially
the same responsibilities as in the Web services architecture described in Section
3.1 on page 14. Although the enterprise and resource tiers are the same, the
implementation of responsibilities in the user and workspace tiers is completely
different.

Web services promise to be the next technology revolution. But, like other
advances that have come before it, Web services must work in the context of
existing systems. We still operate and will continue to build traditional systems,
and no one believes that Web services will replace GUI applications. Web services
may well be integrated with GUI applications, but they are intended for a
completely different use and will not replace them.

Again, enterprises will need to build both GUI and Web service applications. Many
of these applications will need to share the same business logic, although the
channels that access that logic will be very different. We can think of the user-
workspace combination as providing that access channel to the business logic. The
architecture supports many different access channels, which come together at the
enterprise tier boundary to make common use of business services, as shown in
Figure 9.

 17

Business Processing

Web Service

Web Interface

user enterprise

packaged
applicationResource

Adapter
Business

Entity

workspace resource

Business
Process

Business
Composition

Business
Document
Processing

Message
Handling

legacy
System

Application
Adapter

Work
Coordinator

View
ControllerPresentation

User
ProfileSession

services

Figure 9: Combined Architecture

We have in fact implemented this aspect of the architecture in cooperation with
several customers. These customers continue to build fat clients for some of their
applications, but also need new Web based interfaces and functions. The user-
workspace channel is implemented as a fat client in Delphi or VB, which shares
business functions at the enterprise level with their new, Web base interfaces.

3.3 Web Services Enterprise Architecture

To summarize the main points of the Web services enterprise architecture:

It is implemented on three layers: infrastructure, services, and application. It is
implemented in four tiers: user, workspace, enterprise and resource. These are
logical tiers and layers, each with specific roles and responsibilities, and are
orthogonal to physical distribution.

The Enterprise Tier provides business processes and compositions to all users of
the enterprise. It does this by providing service-oriented interfaces to those
processes, and works in coordination with the Resource Tier.

Individual users of the system use those business processes through an access
channel made up of a User Tier / Workspace Tier combination. The most common
access channels are for Web-based user interfaces, and now we must provide an
access channel for Web services.

In the context of Web interfaces, the boundary between the User and Workspace
Tiers provides for device independence; in other words, many different devices can
access the same portal and display functions. This boundary also allows many
different business documents (or different variations of the same document) to use
common document processing capabilities.

 18

Regardless of whether the user is a Web service, or a person using a Web browser,
the same business processes are used, as shown in Figure 10.

Application Server PlatformApplication Server Platform

Web Services Integration PlatformWeb Services Integration Platform

Business
Document

Document
Processing
Document
Processing

packaged
application

legacy
System

database

web services

Execution
Engine

XML
Message

Simple
Web Service

Simple
Web Service

Service O
riented

Interfaces

Other
Devices

Portal
and display
functions

Portal
and display
functions

GUI interfaces

Adapters

5
4

3

2

1

Custom
Business

Processes

Custom
Business

Processes

Figure 10: Enterprise Architecture

This figure shows that we can provide higher-level, higher-value business functions
via service-oriented interfaces, instead of (or in addition to) exposing low-level
classes as Web services. The rest of the architecture is unchanged. In other words,
changing the level of the interface does not affect the underlying Web service
technology architecture. This lets us use Web services at a variety of levels, and for
a variety of purposes, within an enterprise.

The numbers in gray circles in Figure 10 correspond to the following usages:

1. Data Providers—simple single or multi-source data provider applications such
as stock quotes, or financial portals

2. Subscription Based Notification—connections to wireless and other remote
devices

3. Complex Business Functionality—ad-hoc interactions with consumers or
trading partners

4. B2B Collaboration—standards-based (ebXML, RosettaNet, EDI, etc.), complex
collaborations with trading partners

5. EAI—Integration within the enterprise

In other words, the same Web services technology can be use for simple and
complex interactions both inside and outside of the enterprise. By applying the
same technology to a wide range of problems, we can realize cost reductions in
buying, deploying and especially operating software infrastructures.

 19

3.4 Using Web Services for B2B Interaction

B2B collaboration between trading partners is characterized by the exchange of
complex business documents over the Internet. B2B collaboration systems—that
is, electronic exchanges and e-commerce marketplaces—were early pioneers in
connecting trading partners and exchanging XML-based business documents over
the Internet. Many of the techniques used in complex Web service applications
come from these roots.

However, most B2B applications pre-dated open Web services standards, and this
situation encouraged organizations such as RosettaNet and ebXML to create such
open standards. These standards span several layers and include communication-
level protocols such as SOAP and UDDI, and business-level protocols that deal
with the exchange of specific documents. As Web services become more mature,
these organizations are replacing lower-level, proprietary B2B communication
protocols with standard Web services protocols.This means that B2B standards,
and B2B standards bodies, can concentrate on higher level, value-added protocols
that specify collaborations between trading partners, and leave the lower level
communications protocols to Web service standards organizations. The value that
B2B standards add include:

• Asynchronous, Reliable, Request/Response exchange of business messages

• Service Level agreements that specify a “business” level quality-of-service
between trading partners

• Standard message exchange sequences (for example, request,
acknowledgement, reply, acceptance).

• Standard schema and taxonomy.

The architecture presented in this paper is applicable to B2B applications,
including those implemented via Web services, although some B2B specifics such
as business protocol and trading partner management are excluded for simplicity.

3.5 Using Web Services for EAI

Service Oriented Architectures have been promoted for years as the best approach
to achieving sustainable, evolvable Enterprise Application Integration solutions.
Unfortunately, although EAI applications have been successful in point-to-point
integration efforts, they have frequently failed in two major areas.

First, EAI solutions tended to be complex and expensive to implement because
they relied on proprietary technology, which is expensive to acquire, operate and
maintain. Worse, proprietary interfaces are usually difficult to implement and lead
to vendor lock-in.

Second, these solutions tend to focus on data level integration, rather than
application level (service-oriented) integration. Thus these implementations may
solve specific problems but do not create generic or flexible processes that lend
themselves to being reused in a variety of different, higher level business
applications.

 20

Web services provide a solution to these shortcomings in the EAI space. First, Web
services are a standards-based solution. Vendor competition on standards-based
software will result in increased choice of vendor and reduced cost for integrating
applications. Further, Web service standards provide a higher-level solution for
application integration because much of the lower level system programming has
been commoditized into the Web service platforms themselves. This lowers both
the cost and complexity of creating integration solutions.

Second, Web services promote the adoption of a service-based architecture within
the enterprise. Web-services provide a low-cost and efficient way to expose
business functionality with new interfaces. Coupled with a well-designed service-
oriented architecture, this capability enables enterprises to effectively achieve reuse
of business functionality and reduce time-to-market of new applications.

EAI systems address a different, but overlapping, problem space than the B2B and
other Web service scenarios discussed above. The first step in implementing an
EAI solution is to expose the existing enterprise functionality through a network-
enabled interface. A Web Services Integration Platform then invokes that interface,
using either a native mechanism or a messaging system like JMS.

Application data is formatted into a specially defined message and returned. A self-
describing mechanism such as ASN.1 or XML is commonly used for packing the
data into the message. The message format may be ad-hoc, or it may have been
transformed into a system-defined canonical format.

Finally, a transformation to the target format is performed. This last step can be
extremely complex, requiring message fan-in, fan-out, filtering, conditional
evaluations, and even the need to request additional data.

The description capabilities of Web services, namely WSDL, can be used to
describe and expose the existing enterprise functionality. WSDL is very flexible and
powerful, and can describe additional information such as supported and
potentially available transports. Then, the discovery capabilities of Web services
can be used to dynamically locate application functions, both at design time and at
run-time.

When the Web Services Integration Platform invokes the application, SOAP can be
used to send the request and response messages. The message payloads (or data)
can be defined in XML, which is the native format for SOAP. Because SOAP
supports protocols other than HTTP, the SOAP messages can be sent over TCP/IP,
JMS or any other appropriate protocol. Thus a protocol-aware system can use the
additional information within the WSDL file to optimize communications within an
enterprise.

Thus, Web services provide a standards-based solution to enterprise application
integration that also promotes the creation of reusable enterprise assets. These
standards simplify the creation of application integration “adapters,” and allow
third party vendors to create integration components that can easily be used by the
Web Service Integration Platform.

 21

4 Industry Trends and Evolving Standards
It is usually a good idea to see how well an architecture lines up with events and
trends in the industry. Today there is quite a bit of hype surrounding XML and
Web services. But in spite of that, there is real value in using these technologies.

Web services are evolving to embrace the convergence of B2B, EAI, traditional
middleware, and the Web. Web services are not a replacement for traditional
middleware, but when used in combination with middleware and EAI techniques,
Web services provide a simplified and standards-based approach to integration.

That simplicity promotes the use of Web services at many different levels in the
enterprise. We have already mentioned that application vendors such as SAP and
Oracle will soon offer direct Web services interfaces to their products. In addition,
many large enterprises are using Web services for application-to-application
integration within and across divisions. They expect, and are beginning to realize,
simplifications and cost reductions based on using the same technology for both
internal and external integration.

Some vendors are evolving toward a new, Web services-based integration platform
that may well emerge as the foundation for future Web-based applications. Many
of the capabilities that now exist in services layer of our architecture will be
subsumed into those next-generation platforms.

Finally, the standards community is also busily at work on Web services. Some of
the standards that should be tracked today, and which will affect our architecture
are:

• Security

o Security Services Markup Language (S2ML): S2ML enables
secure e-commerce transactions using XML. It creates a common
language for sharing security information in the context of
B2B/B2C transactions. Authors of the S2ML specification are
Bowstreet, Commerce One, Jamcracker, Netegrity, Sun
Microsystems, VeriSign, and webMethods. Reviewers of the
specification include Art Technology Group, Oracle,
PricewaterhouseCoopers, and TIBCO.

o Security Assertion Markup Language (SAML): provides single
sign-on for Web services. The OASIS XML-Security Services
Technical Committee is developing SAML. The committee defines
SAML as a framework for exchanging authentication and
authorization information. More information about SAML is
available at http://xml.coverpages.org/saml.html.

o XML Key Management Specification (XKMS): provides
authentication and digital certificates. This is a joint submission
by Microsoft, VeriSign, and webMethods to the W3C. It consists
of two major components: (1) XML Key Information Service, and
(2) the XML Key Registration Service. More information about
XKMS can be found at www.w3.org/TR/xkms.

• Transactions
 22

http://www.w3.org/TR/xkms

o Business Transaction Protocol (BTP): BEA proposal for
transactions over the Web. Submitted by BEA to the OASIS
Business Transactions Technical Committee. This specification
covers the problem of long-lived transactions over multiple
enterprises. More information about BTP can be found at
http://xml.coverpages.org/ni2001-03-08-b.html.

• Business Processes:

o XLANG (pronounced “slang”): a notation for the specification of
message exchange behavior among participating Web services;
this Microsoft proposal for describing a business process has been
submitted to OASIS. It uses a derivative of Backus Naur Form
(BNF) to build a “Service Description.” The service descriptions
are based on WSDL. Like the BTP proposal, it aggregates Web
Services. But unlike BTP, XLANG has a close relationship with
WSDL. More information on this proposal is available at
www.oasis-open.org/cover/xlang.html.

• Business Standards:

o RosettaNet: An independent business consortium of more than
400 companies dedicated to creating, implementing, and
promoting, open e-business standards. The RosettaNet
architecture includes Partner Interface Process (PIP)
specifications, business and technical dictionaries, and the
RosettaNet Implementation Framework (RNIF).

o ebXML: ebXML is sponsored by UN/CEFACT and OASIS for global
international standardization of business documents and
processes. Work is ongoing in the areas of Messaging Services,
Registries and Repositories, Collaborative Protocol Profile, and
Implementation, Interoperability, and Conformance.

Note that ebXML and RosettaNet standards are complementary;
ebXML specifications are horizontal, while RosettaNet’s tend to
be vertical. RosettaNet is adopting ebXML Business Process
Schema to express their PIPs, and with RNIF 3.0, RosettaNet will
use ebXML Messaging Services

• Business Modeling Standards:

o UML Profiles: UML profiles are an OMG-defined mechanism for
structuring extensions to UML. UML profiles support the
definition of a UML vocabulary in support of a specific business
domain such as e-commerce, or for specific implementation
technologies such as EJB or CORBA.

o Java Community Process (JCP): JCP is the way the Java platform
evolves. It is an open organization of international Java developers
and licensees whose charter is to develop and revise Java
technology specifications, reference implementations, and
technology compatibility kits. JCP was originally created by Sun
Microsystems and has evolved from an informal process to a

 23

http://www.oasis-open.org/cover/xlang.html

formalized process overseen by representatives from many
organizations across the Java community.

o ebXML Business Process Specification Schema (BPSS): BPSS
provides the definition (in the form of an XML DTD) of an XML
document that describes a business process. It identifies the
roles, transactions, DTDs or schemas of business documents,
document flow, legal considerations, security aspects, business
level acknowledgments, and status. Such a Specification Schema
can be used by a software application to configure the business
details of conducting business electronically with another
organization.

5 Architecture Review and Conclusions
We can now consider how well our architecture meets the principles and
requirements of enterprise-class Web services as described in Section 2.

A strict separation of concerns is enforced by the architectural layers and tiers: by
the explicit interfaces between layers, by the explicit boundaries between tiers, and
by the explicit responsibilities of both tiers and layers.

Accommodation of change, for example, for future application versions, is achieved
via strong support for the creation of business models, fundamental business
process, and business compositions. And the services layer provides functions that
enable the use of these mechanisms. The bottom line is that future versions and
new applications can be created by building a few new processes, and then by
recombining the new and existing process in different ways.

Industry trends are accommodated by using Web services at many different levels
within the enterprise, and by preparing for the next-generation Web service
integration platforms. Such integration platforms will support this architecture very
well, and will significantly increase the portion of the services layer that can be
purchased off-the-shelf.

New technologies and mechanisms are supported by the device and technology
abstractions inherent in the layers and tiers. This allows new technologies to be
incorporated into the enterprise without affecting business logic or disrupting
existing applications.

The various emerging industry standards are encapsulated into specific services
within the services layer. This minimizes the impact of change in these areas as
standards are finalized or extended.

Finally, the architectural foundation of layers and tiers embody the fundamental
mechanisms that promote consistency and reuse within the entire enterprise. And
consistency and reuse in turn support the critical business requirements – of time
to market, quality, and cost – that drive the adoption of technology in the first
place.

 24

The architecture described in this paper has been implemented and refined in
numerous client engagements over the past four years. IONA Global Services has
had the opportunity to validate its assumptions and assertions in real life situations
and the correctness and applicability of this architecture has been proven.

IONA has witnessed how the consistency and reuse provided by this architecture
helps current customers. They have experienced real and measurable
improvements in time-to-market, quality and cost. There is every reason to believe
that your enterprise can achieve similar benefits through the adoption of a Web
services enterprise architecture.

 25

6 Further Reading
1. IONA Technologies. IONA E2A Application Server Platform White Paper,

December 2001.

2. IONA Technologies. IONA E2A Web Services Integration Platform
Product Brief, December 2001.

3. IONA Technologies. Preparing for Web Services White Paper, December
2001.

 26

7 Contact Details
IONA Technologies PLC
The IONA Building
Shelbourne Road
Dublin 4
Ireland
Phone: ...+353 1 637 2000
Fax: ...+353 1 637 2888

IONA Technologies Inc.
200 West St
Waltham, MA 02451
USA
Phone: ...+1 781 902 8000
Fax: ...+1 781 902 8001

IONA Technologies Japan Ltd
Akasaka Sanchome Bldg 7/F
3-21-16 Akasaka
Minato-ku, Tokyo
Japan 107-0052
Phone: ...+813 3560 5611
Fax: ...+813 3560 5612

Support: ..support@iona.com
Training: ..training@iona.com
Orbix Sales: ..sales@iona.com
IONA’s FTP siteftp.iona.com

World Wide Web: www.iona.com

 www.xmlbus.com

 27

http://www.iona.com/
http://www.xmlbus.com/

	Summary
	Introduction
	Definition of Web Services
	Web Service Characteristics
	Creating Higher-Level Business Functions
	Document Based Processing
	The Importance Of Business Models
	Additional Requirements

	Fundamentals of Distributed System Architecture
	Tiers and Responsibilities
	The Process Automation Trap
	Web Services Enterprise Architecture
	Using Web Services for B2B Interaction
	Using Web Services for EAI

	Industry Trends and Evolving Standards
	Architecture Review and Conclusions
	Further Reading
	Contact Details

