[Editorial note: add examples throughout, especially to best practices guidelines, and bring in line with agreed TA model]

Guidelines for creating test assertions

· A test assertion

· should be a simple, atomic statement

· addresses one feature at a time.

· Keep each assertion as simple as possible.

· Multiple single-feature assertions are easier to test than complex multi-part assertions.

· Simple test assertions make it easier to identify the cause of test failures and to exclude buggy tests.

· Map assertions to text within the specification.

· Don't change the semantics of the specification.

· Group assertions into logical sets, following the structure of the specification.

· Provide a unique ID for each assertion to facilitate tool development.

· Test assertions must be technology-neutral (don't assume features of the implementation).

· Indicate explicit dependencies and constraints.

· Describe features, values and attributes to be measured and indications of success or failure.

Testability

· The test assertion

· focuses, more than the specification, on the details of the testable statements

· focuses on testable properties or behaviors of a test assertion target (TAT)

· optionally adds any further qualifications or conditional expressions regarding the test assertion target or its properties or behaviors (such as "if ... then ...")

· In some cases every relevant test assertion target would be identified for a set of test assertions and listed together with enumerated or coded values. Individual assertions would then reference the respective relevant code value by stating 'applies to: ...'.

· A link between test assertion abstract descriptions of the test environment and the concrete descriptions in test cases can later be bridged with meta-data ('test meta-data') to facilitate the definition of a test harness.

· There are different objectives for test assertions: firstly to improve quality of specifications and secondly to help test case development. Some users are only interested in the first while others are interested more in the second.

· A test assertion may have as its main component the prose of a specification's normative statement either copied exactly (literal), reworded (derived) or referenced.

· Whether the normative statement can be copied exactly can can depend on all of the required details being together in the form of a testable expression.

· In some cases there may be a need to bring together details for the assertion from several places in the specification, perhaps even from tables or diagrams or artefacts such as schemas, in which case the assertion is said to be 'derived'.

· A 'derived' assertion can be expressed as a statement of fact which, typically, is expected to be true when the specification normative requirement is satisfied.

Best Practice:

Test Assertion Target will usually be needed but can be coded (in an 'applies too ...' section) and code values defined for a set of relevant items under test in the header section for a group of assertions.

Much of the detail of a test assertion is likely to apply to more than one assertion. In such cases these common details can be described in one place at the head of the group of assertions. Enumerated lists of some such details can be referred to in individual assertions by coded values.

It could be mandated that test assertion formulation be included in the process of writing specifications much as it may be mandated that a specification must include a conformance clause.

In many cases, there is no need to use a sophisticated test assertion structure. The simplest possible test assertion is a normative statement that is either contained within or derived from the specification, together with an identifier. It should be possible to identify to a "useful" level of granularity the location within the specification where the statement may be found or from whence it has been derived.

Mandatory components should be Test Assertion Identifier and Specification Reference.

Test Assertion Target will usually be needed but can be coded (in an 'applies too ...' section) and code values defined for a set of relevant items under test in the header section for a group of assertions.

Consider various situations in which an implementation may find itself,

and question the behavior that is expected in each one of these situations.

Test assertions can be interspersed within a specification or listed in a separate formal document or both of these.

Of course, given the former, the latter can be automatically generated but there may be different types of mark-up chosen for each approach.

Referring to Specifications

· Specification architects and implementation guide architects link test assertions to precisely identified parts of a specification. Specifications (such as for profiles to aid adoption) may reference other specifications and themselves be referenced. The simplest case is where the text of the assertion can be found directly within the specification while there are more complex cases where the text of the assertion is derived from the specification.

· Example:

Test Assertion Id: 6.14-1

Specification Reference: http://www.w3.org/TR/html401/types.html#h-6.14

Test Assertion Target: HTML user agent

Prose: (must) Script data (%Script; in the DTD) can be the content of the SCRIPT element and the value of intrinsic event attributes. User agents must not evaluate script data as HTML markup but instead must pass it on as data to a script engine.

· Specifications often reference other specifications.

· It should not be assumed that all "specification references" are to the same specification: Within a single "assertion list" there may be references to multiple specifications.

· When describing umbrella specifications (specifications that inherit assertions from other reference specifications) a specification and it's assertions may be inherited completely and unchanged by the umbrella or may only be partially inherited or inherited with modifications. When inheritance is partial or with modifications then -

· statements of behavior for the umbrella specification might differ from the stated behavior within the sub-specification

· specification references might be complex (eg modified inheritance)

· assertion behaviors might be altered and should be evaluated in the context of the inherited specification relationship.

· The normative text for an assertion can be a subset of a sentence, a superset of many sentences, or combined and disjointed text fragments from multiple sentences. Also, multiple assertions might even share the same text fragments. These problems illustrate why a sentence boundary is a 'bad' granularity for specifying an assertion reference.

Best Practice:

Care needs to be exercised when converting a requirement to a test assertion, not to be adding interpretation or subtly changing the meaning.

Just using references to the specification may avoid adding interpretations but then care needs to be taken to make the reference sufficiently specific

(such as by specifying the boundary of which part is referenced).

There is value in including text outside the specification in the test assertion

but there is also a danger of divorcing the text from its context, formatting, etc.

One good practice approach is to somehow highlight text actually in the specification itself and add to it there a test assertion identifier.

When there are dependencies between specifications (layering, bindings), a test assertion should restrict its scope,

yet make clear assumptions on how much of the referenced specification is supposed to be previously tested.

The relationship between test assertion and specification may be many-to-many; there may even be more than one specification to which references need to be made.

For dependencies, delegate the testing of artifacts for conformance to referenced specification to another test assertion

so that test case writers can concentrate on a single specification - the one at hand. But delegation still means that the test assertion target for the main specification at hand, is supposed to have passed the test assertions for the referenced specification, prior to even exercising the test assertions for specification at hand. So it is not a functional dependency (no need to exercise TA #1 in order to exercise TA #2, e.g. test case for #2 can be executed standalone) but a "serialization" dependency: passing or failing TA #2 would be meaningless if the test assertion target did not conform to the referenced specification for sure (TA #1 must be assumed to have passed).

Grouping Test Assertions

· Grouping is useful, for example, for shared pre-conditions, artifacts, properties but be cautious to ensure that the resulting assertion with this data included is atomic and self-contained.

· Suggestions for grouping are

· by prerequisites

· by Test Assertion Target

· by specification modules and categories, e.g. to simplify assertions of conformance requirements

· Provide interesting classifications of assertion characterizations by considering a larger granularity (and grouping of assertions).

Sequences of Test Assertions

· There may be inherent logic of conditions specified in an assertion, based on the order and specification of previous assertions. Grouping of some assertions may need to be sequential. Indicate the position of a test assertion within this sequence, typically be indicating the previous test assertion in the sequence.

Best Practice:

Make it the rule to keep each test assertion singular and atomic but recognize that there are occasions when a sequencing of the test assertions is required in order to achieve this.

Specifications with Variability

· The test assertion might apply to a profile specification item derived from the original specification.

· Facilitate the identification of any derivations - trail/log by including references not just to specifications but to any other information about versions, derivation, profiles etc.

· Clarify where a test assertion is perhaps derived from a previous test assertion or where a test assertion is based on a specification item which is derived from another specification item.

Automation

We may automatically generate tests from assertions and automatically generate assertions from "well structured" specifications. Tools such as those which include test assertions themselves in code like compiler instructions, etc. would actually be able to pull in and reuse in some way such conformance tests and rules. Any formalism for Specification Analysis will have downstream effects on tools that may be designed to automate the process of analysis - as well as the metrics applied to an analysis. Specify this formalism in a pragmatic unambiguous way, such that analysis tools may be unambiguous and useful.

Best Practice:

Generation from a specified schema can just go straight to a test by-passing test assertion but including a test assertion step may add the possibility of including any assertions the schema alone cannot define.

For requirements such as automation a more structured assertion approach may be required.

More Structured Test Assertions

The more complex, sophisticated approach to writing test assertions may be aimed at test assertions being either formally processed according to a particular notation or methodology or even a set of test assertions which are so defined (as predicates or sets of predicates using, say, ADL) as to be processable into tests automatically with software tools. Such a test assertion may have the following as its main components:

· predicates (expressions more formal than free text prose and which evaluate to true or false)

1. to qualify the test assertion target, such as by describing preconditions for tests and post conditions for tests

2. to indicate that the test assertion target is adhering to the specification requirement addressed by the TA

· a structure to allow separation of prose and/or predicates

This provides an alternative to assertion prose.

· Example with prose:

Test Assertion Id: x1-envvermodel-fault (restructured for illustration)

Specification Reference: http://www.w3.org/TR/2007/REC-soap12-part1-20070427/#envvermodel

Test Assertion Target: SOAP node

Qualifier(s): x1-soapfault-only

Prose: If a SOAP node receives a message whose version is not supported it MUST generate a fault (see 5.4 SOAP Fault) with a Value of Code set to "env:VersionMismatch". Any other malformation of the message construct MUST result in the generation of a fault with a Value of Code set to "env:Sender".

Example with predicate:

Test Assertion Id: x1-envvermodel-fault

Specification Reference: http://www.w3.org/TR/2007/REC-soap12-part1-20070427/#envvermodel

Test Assertion Target: SOAP node

Qualifier(s): x1-soapfault-only

Indicator:

 When provided a message whose version is not supported the SOAP node generates a fault (see 5.4 SOAP Fault) with a Value of Code set to "env:VersionMismatch" AND when provided a message with any other malformation of the message construct the SOAP node generates a fault with a Value of Code set to "env:Sender".

The predicate is a boolean expression that may, for example, describe the state of the system immediately after the function under test executes. The test assertion predicate expression may use operators to describe the behavioral relationship within an assertion. View predicate test assertions as codified logical expressions. There are languages such as ADL, OCL XML Schema and XQuery which may help to formally describe parts of a specification and its assertions. When these are used then,along with the test assertion predicate, specify which dialect is being used (e.g. @dialect="XQuery", @dialect="OCL", etc.) using meta-data.

· Avoid use of RFC keywords 'MAY', 'MUST', 'SHOULD' and the like in the test assertion itself (except of course when there is a reference to text in the specification or it is quoted literally as such text may contain such keywords)

· but note that this does not prevent the keywords from influencing the way the test outcome of the assertion is worded.

Best Practice:

Where the test assertion prose is derived from the specification statement into the formal type of expression of a test assertion, it may be worded or reworded in a way which evaluates to a boolean (called a predicate expression). An evaluation to "true" is an indication that the item under test is adhering (conforming) to the specification requirement addressed by the TA. An evaluation to "false" is an indication that the item under test is NOT adhering to the specification requirement. It could be that the evaluation is not possible, but that is not to be considered in the TA definition: that is a test case issue. The interpretation of this result will depend on terms 'MUST', 'SHOULD' or 'MAY' or on alternative terminology such as 'required' and 'recommended'. Even for an optional requirement, the test outcome may be of interest for interoperability assessment. Note too that test assertion s may be associated with conformance levels or profiles which may interpret differently a test result for a 'SHOULD' or a 'recommended' normative specification statement.

Pre-requisites in test assertions

· Pre-requisites

· may qualify the test assertion target (such as a pre-condition which must be satisfied for the test to be applicable)

· may be needed as part of the evaluation of the test indicator

Example:

The received message must comply to SOAP in addition to complying with WS-RX which is SOAP-based.

· may inform test case writers about what should have been tested prior to executing a certain step in a test suite.

