[image: image1.png]Schemanti

TOMORROW'S SOLUTIONS TODAY

[image: image3.png]Schemanti

TOMORROW'S SOLUTIONS TODAY

[image: image2.png]Uruguayska o, 120 UU Prague £, Lzech HepubDlic, lel: +82U £ 21071 1371, Fax: +420 £ 21571 1312, e-Mail: info@schemantix.com, www.schemantix.com

[image: image1.png]

Schemas and Derivation

Discussion Document

Version 0.1

Matthew Gertner (matthew@schemantix.com)

Chair UBL Context Methodology Subcommittee

December 11, 2001

The purpose of this discussion document is to explore whether the use of formal schema constructs to model derivation relationships between types used in business documents is valuable for electronic business. In particular, the document makes recommendations about whether the UBL Context Methodology Subcommittee should plan actively to use schema derivation when applying context to create context-specific versions of standard UBL components.

1. Explanation of Problem

To understand this question better, let us first consider a concrete example. Suppose we have an address format defined as a UBL core component, with the following content model expressed in XSD:

<xsd:complexType name=”Address”>

<xsd:sequence>

<xsd:element name=”Street” type=”xsd:string”/>

<xsd:element name=”City” type=”xsd:string”/>

<xsd:element name=”State” type=”xsd:string” minOccurs=”0”/>

<xsd:element name=”Zip” type=”xsd:decimal”/>

<xsd:element name=”Country” type=”xsd:string”/>

</xsd:sequence>

</xsd:complexType>

Address Schema

This core component can be used directly in a business document schema, or extended using the context extension metholody (which is out of the scope of this document) to create a Business Information Entity (BIE). Consider the case where the Address type is used in a PurchaseOrder schema. At the same time, a specific user (say an auto manufacturer) requires that addresses use additional GPS information, so we define a context rule that, when applied to the Address component, creates a GPSAddress with the following content model:

<xsd:complexType name=”GPSAddress”>

<xsd:sequence>

<xsd:element name=”Street” type=”xsd:string”/>

<xsd:element name=”City” type=”xsd:string”/>

<xsd:element name=”State” type=”xsd:string” minOccurs=”0”/>

<xsd:element name=”Zip” type=”xsd:decimal”/>

<xsd:element name=”GPS” type=”xsd:decimal”/>

<xsd:element name=”Country” type=”xsd:string”/>

</xsd:sequence>

</xsd:complexType>

GPSAddress Schema [1]

Actually, some would argue that the GPSAddress definition is incorrect, and should instead look like this:

<xsd:complexType name=”GPSAddress>

<xsd:complexContent>

<xsd:extension base=”Address”>

<xsd:element name=”GPS” type=”xsd:decimal”/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

GPSAddress Schema [2]

In the second case, the fact that GPSAddress is a kind of Address is modeled explictly using the facilities provided by the schema language. It would seem intuitively (at least to me) that because this representation is formally correct, and because the schema language offers mechanisms to model this, then this approach is the best one, without further discussion.

However, practical discussions have indicated that there are issues with the type derivation mechanism used by XSD (particularly in terms of lack of tool support for restriction and lack of a means to extend enumerations) and of other schema languages (RELAX NG, for example, has no such mechanism at all). Since it seems that some ad hoc mechanism for representing type derivation relationships will therefore be needed in UBL, the question has been raised as to whether we would not make our lives easier by simplying foregoing the “official” derivation mechanism, representing derived types as if they were brand-new types (e.g. GPSAddress Schema [1]) and using XSD appInfo or some analogous means to convey the type relationships that are important to us.

2. The Case Against Derivation

Let us now consider this counterargument to use of derivation in more detail. I’ll put on my devil’s advocate hat (since I admit freely that I don’t agree with this viewpoint) and try to present the case as convincingly as possible.

The case is based primarily on two arguments. First of all, derivation support in schema languages is inconsistent and incomplete, as noted above. This is a fact and doesn’t require further discussion. We can hope for improvements in the way schema languages handle derivation and in the way tools support these features, but this effort can only be justified if there is a clear and compelling case for using schema derivation.

Secondly, use of derivation is schema languages does not serve any useful purpose, other than satisfying purists. Object-oriented programming languages benefit from using derivation to model relationships because the entities that they model (objects) have behavior as well as state. This let’s me exploit “late binding”, with an object deciding by itself how to perform a certain action. Without giving a course in OO programming, imagine that I have a “Shape” class that contains a method “calculateArea”. I can write code that uses this method without having any idea which shapes I am working on. Long after I deploy the application I can create new classes called “Circle” and “Rectangle” that implement this method appropriately, and the code will continue to run correctly because each object knows how to calculate its own area. This is an illustration of the property called polymorphism.

In the analogous case in XML, my Circle and Rectangle element types would only know how to represent static data like their radius or width. I can derive them from a generic Shape element type, but I don’t gain any advantage from this because the XML documents themselves don’t know how to perform an action like calculating their area; this has to take place in running code. So I might as well leave the messy details of XML type derivation alone, creating OO classes that consume the XML documents as data, model the proper derivation relationships and support polymorphism.

Another take on the bearish viewpoint is to say that XML schema is not the appropriate language to model data structures in the context of an application. UML is a better choice since it has superior modeling capabilities (for example, it can handle multiple inheritance), there are many excellent tools for visually designing UML models, and these tools support mappings to programming languages and other formats (like XML). Also, XML makes a distinction between elements and attributes that has no meaning from a purely formal modeling perspective. So even if I feel that my data model should drive the implementation in some way (which would justify the need for explicit derivation relationships), I would be better served using UML as my modeling language and mapping it to XML (and to other formats like Java classes) as needed.

3. The Case For Derivation

So to prove the case for derivation in XML schema, we really need to prove two separate points:

· that modeling these relationships in the data model has value in the context of the overall software architecture, and

· that there are clear advantages to representing the data model canonically as an XML schema rather than using some other modeling language like UML.

To understand why we need derivation in the data model, let’s consider how e-business architectures using XML will be deployed in the future. Two applications will communicate with each other using XML documents to transfer data. (Note that XML can also be used to trigger actions a la SOAP, but this isn’t relevant for this discussion.)

So the question boils down to this: I have written an application for consuming some flavor of XML. If someone wants to send me data that are related to the format that I support, in that they are an extension or a restriction of this format, is there any advantage to them formally specifying this relationship in the schema?

To be concrete: suppose I have an application that consumes a PO and :

· Displays in on the screen as a report for the user to view.

· Enables the user to approve or reject it.

· Stores the document in an RDBMS for future reference.

When the good are reading to ship, the application:

· Retrieves the PO from the database.

· Prints a shipping label.

· Transforms the PO into an invoice.

· Displays the invoice as a form for the user to modify.

· Changes the form data back into an XML invoice and sends it back to the initiating party.

My PO format uses the standard Address type given above. I have a trading partner who includes GPS in its addresses because it wants them printed on the shipping labels of the goods when they are finally delivered. Now the question is: would the fact of using GPSAddress Schema [2] offer any advantages over GPSAddress Schema [1]?

The answer is, unfortunately, not a simple one. It depends on how I am performing the various steps listed above. There are three possibilities:

· Completely generically (i.e. with no regard to the schema, like the way Internet Explorer displays XML documents as a tree).

· Completely ad hoc (i.e. I sit down, look at the schema and write the appropriate code to process it).

· Schema-driven (i.e. I use the schema to drive the rest of the software architecture).

If I am processing XML documents completely generically (another example would be just writing them as text files to the hard drive), then I don’t need a schema at all, let alone fancy derivation mechanisms. If I am writing my application ad hoc (and this could be C++, Java, XSLT or whatever), I am only using the schema as a guide. Expression of the derivation relationships could be useful to me, but this could be accomplished in many ways other than using the formal mechanism built into any given schema language that would let me more elegant, more consistent across schema languages, more expressive, etc.

Schema-driven development means that I am using the same code to process documents that use different schemas. This implies that the information in the schema itself is driving some of the processing logic. To understand this better, let’s consider the tasks listed above in our hypothetical billing/shipping application and how they could be implemented in a way that exploits the data model represented by the schema.

For data display, we can attach metadata to the schema in the form of schema annotations that drive display. For example, I can specify the order and grouping of fields, field labels, calculations and other information so that a document can be displayed without the need for a specific stylesheet. A similar approach can be taken for storing and retrieving data in an RDBMS, using schema annotations to tie fields in a schema to the appropriate tables and columns in the database. The same applies to transformations, which can be defined by mapping elements in one schema into another using schema annotations.

Assuming that an approach like this is taken, a lot of intelligent processing can be done on schemas containing derived types without breaking existing code. In the example given above, the modified PO can be displayed on the screen and transformed into an invoice, and an address can be printed on shipping labels (include the GPS info), even though the processor only knows about the base Address type. Storage in the database would be more complex, but possible if the mapping layer understands enough about XML schema. Generic processing can be used for the GPS fields, since no schema annotations will be available, but this should be sufficient for many purposes. In fact, it would be possible theoretically for the initiating party to send the recipient some annotations for its extended fields so that it can do more specific processing on them.

This is only a hypothetical software development strategy that has not yet been widely accepted. It is possible that this type of approach will never become popular, and also possible that some completely different approach that leverages schema information will arise that reinforces the need to represent derivation relationships explicitly in XML schemas. The point of this discussion is to demonstrate that such approaches are feasible, and that the notion of modeling derivation in XML schema could offer real advantages in future e-business architectures.

The final point is whether it wouldn’t be better to use a language specifically designed for modeling, like UML, to capture these and other relationships between data types. The implication is that the necessary XML schemas would then be generated from these models. Since the original UML models could be used to drive the software architecture, all the advantages described above could be gained without using schema derivation directly. In other words, GPSAddress Schema [1] would be used, but there would be a UML model for Address and GPSAddress that would provide information about the derivation relationship between these two types.

This is a perfectly valid approach, but it is perhaps telling that UBL has decided to use XML schema rather than UML for data modeling. There are a number of good reasons for this decision:

· If use of XML is already a given, the necessity to support UML as well adds a lot of extra baggage, especially if all or nearly all of what could be accomplished in UML can be done directly using XML schema.

· UML doesn’t map directly into XML, so standard tools must be extended in non-standard ways if XML concepts like the distinction between elements and attributes are to be captured.

· Use of XML schema provides a direct mechanism for serializing both the schema and instances corresponding to the schema in ways that are increasingly supported by standard programming tools like parsers, and even desktop applications like web browsers. This is unlikely to ever happen on this scale for UML.

4. Conclusion

So the answer to the question of whether derivation relationships should be represented explicitly in related XML schemas is: it depends. The main question is whether schema-driven development methologies like the one described above will be widely adopted at some point, first by tool vendors and then by enterprises.

I personally feel that this is likely to happen. At the same time, it is hardly a foregone conclusion, and UBL may be best served by remaining agnostic on this question for the time being. It should be possible to define a context extension methodology that could be used to generate either of the two derived variants given in the GPSAddress examples just by changing the internal workings of the context engine that implements the methodology (i.e. by reading in rules and modifying the source schema appropriately).

At the same time, the potential advantages of representing derivation relationships in XML schema should be understood, and every effort should be made to ensure that nothing in the context extension methology precludes this.

[image: image3.png] [image: image4.png]Uruguayska o, 120 UU Prague £, Lzech HepubDlic, lel: +82U £ 21071 1371, Fax: +420 £ 21571 1312, e-Mail: info@schemantix.com, www.schemantix.com

PAGE
9
[image: image4.png] [image: image2.png]

