UBL-NDR-WD12-Comments

Lines 168-177

Seems to me that in XSD syntax, attribute declaration also are declared to have (simple) types. And of course, these may be derived simple types. See my discussion of code lists later in this comment paper as it applies to the use of simple types with attributes.

Lines 179-198

Mixed-content elements and Empty elements are ‘oranges’ in a field of ‘apple’ elements. A ‘Mixed-content’ element is an element at any level other than ‘leaf’, and an ‘Empty’ element is a leaf element, from an ‘apple’ viewpoint.

The ‘hierarchy’ of ‘top’ and ‘lower’ level elements adds confusion – there are ‘top-level’, ‘intermediate levels’, and ‘leaf level’ elements.

Lines 213-216,283-285,312-352

XSD primary purpose is to support syntax validation. Use of annotation and documentation in an XSD to hold metadata is contrary to the primary purpose of XSD. Metadata should be stored using a syntax designed for metadata storage. RDF/RDFS is an XML-based language that serves that purpose, and is the language I would recommend at this time.

The use of xsd:annotation and xsd:documentation as defined in lines 283-352 represent a very non-standard way to represent metadata in XML syntax. Please find a proper home to store metadata. You might like:

 <rdf:Description about=’someUID’>

 <ubl:UID>someUID</ubl:UID>

 <ubl:Name>someName</ubl:Name>

 <ubl:ObjectCLass>someobjetclass</ubl:ObjectClass>

 etc

</rdf::Description>

You will find that it is easy to extend the collection of metadata associated with a resource using RDF. This may include extensions outside the ubl namespace. For example, the metadata might include information useful in formatting data for reports, information useful for constructing an XSD from the metadata (e.g., xsd:maxLength, etc.)

Lines 240-241

I would hope that XML elements contained in ‘Prose’ were elements defined outside the scope of UBL. If so, then would it not be better to represent this in XML as CDATA, which then leaves the further processing of this data through a subsequent XML parser beyond the scope and vision of the ebXML parser.

Lines 242-244

I think this decision was made in haste. See my later discussion of ‘code lists’ to see why I think empty elements should be permitted in UBL.

Lines 394-491

I fully support the definition of a simple ‘code content type’ as described in this section. I believe that the content of the ‘code list type’ is metadata best represented in some other manner. I recognize the need to provide some means to access metadata associated with a given ‘code content type’.

The Code List Paper acknowledged that code lists represent semantic choice , whereas other ‘types’ of information represent instance ‘values’. When one studies existing business document definitions the importance of this distinction becomes clearer. I’ll try to express the knowledge I have gained through such examination through example:

Analysis of the semantic structure of an X12 transaction Set or UN/CEFACT Message reveals a type hierarchy that extends beyond the simple ‘numeric’, ‘string’ types. For example, the dictionaries for these standards define a number of ‘generic’ elements, such as ‘date’ or ‘amount’. These elements are equivalent to the ‘representation type’ found in the UBL NDR paper. A standalone ‘date’ or ‘amount’ element value, say 20020625 or 100.25 conveys no semantic information. That these types must exist as elements is an outcome of the chosen EDI syntax. In fact, additional properties must be associated with these ‘type’ elements to produce semantically complete components. In UN/CEFACT, this is accomplished in syntax by creating a ‘component’ consisting of two or more elements, and by using the requirement designators on the contained elements to provide relationship detail (e.g., one-to-one or parent/child). In X12, this may be accomplished using components, but is more often done using syntax notes that are not part of the transmitted message.

Further examination reveals that use of a generic ‘type’ element and one or more associated ‘qualifier’ elements is not consistent across the language definition. Typical of this is the use of a ‘generic’ element like ‘amount’, coupled with a ‘semantic note’ that ‘fixes’ the value of a qualifier. Also typical is the use of a qualified element name (e.g., ‘account number’ or ‘assigned number’) which likewise fixes the value of a qualifier. Frequently, but not always, these fixed qualifier values appear also as semantic qualifier values in one or more code lists associated elsewhere in the standards with a generic type element. Thus in EDI syntax, the same semantic entity may be represented in a different manner in different standard constructs used to define a business message.

In XML syntax, we could likewise represent the same semantic entity using a variety of syntax constructs. On the other hand, the enhanced capability of the XML language provides an opportunity to standardize the appearance of these different constructs, such that each XML element represented a semantically meaningful entity. For example:

<Amount kind=’TL’ currency=’US>

<TotalAmount> where kind is fixed=’TL’ and currency is by default ‘US’

<TotalDollarAmount> where kind is fixed=’TL’ and currency is fixed=’US’

and where all three XML elements provide the same fixed UID attribute that serves as a reference to the semantic definition of ‘amount’. Note of course, that both the ‘kind’ and ‘currency’ attributes need in some way reference the semantic definitions of Total and US Dollars.

Note also the ease with which (the ‘leaf’) TotalAmount and TotalDollarAmount might be interchanged using XSD capabilities, and compare that with the difficulty in substituting the leaf ‘TotalDollarAmount’ the intermediate complex element ‘Amount’. XSL can perform that sort of magic, but I haven’t a clue how to do it in XSD.

The above discussion centered on code sets used as qualifiers of leaf elements. Sometimes, code sets are used to qualify intermediate elements. For example, an entire Address block would be qualified by a code set value such as ‘ST’ (ship to). If the code set value is represented in a separate element, then:

 Address

 AddressCode

 [Address detail elements]

does not syntactically reflect the semantic truth that AddressCode qualifies each of the entities in Address detail elements, since it appears to be a peer of Address detail elements, not a parent. This structural weakness is a common occurrence in EDI syntax that should not be carried forward into XML syntax. Of course, that weakness could be overcome by adding another nesting level to the XML representation, but representing the code as an attribute of Address is both natural and elegant.

My conclusion is that the ‘code content’ type is best applied to XML attributes, not to XML elements. My study of existing EDI structures suggests that in most cases the element to which a code list attribute was associated would naturally have non-empty content. If there do exist a few cases where the element would have empty content if the code were expressed as an attribute, I recommend use of an empty element for design consistency.

One final note on code lists. Since code list values represent semantic values, there is a need to associate the code list values with their individual semantic (primitive) UID’s. [I use the term ‘primitive’ in this context specifically to represent an XML type’ definition as contrasted to an element or attribute definition. Also, observe that the same primitive UID may be referenced in multiple code lists, and that the code list value may (will likely) differ in these different code lists. The current working draft treats code list values as literals.

